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Abstract: Urban planning education must address the Modifiable Areal Unit Problem (MAUP) to
comprehend the critical impact of urban density on sustainable city development. Quantitative stud-
ies using administrative area units face indefinite aggregate level biases. This paper introduces an
efficient block-searching method to calculate property densities around residences of various bound-
ary scales and empirically examines their relationship with housing prices in Auckland, New Zealand.
Results reveal negative associations between housing prices and densities within neighbourhoods,
emphasising the limitations of administrative boundaries. These findings underscore the necessity
for planning education to navigate MAUP’s complexities in shaping urban development policies.
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1. Introduction

Urban economics explores the interconnection between the layout of cities, economic
dynamics, and personal preferences within an urban setting. Central to this field is the
concept of agglomeration effects. Individuals agglomerate to denser urban environments
for better access to amenities, job opportunities, and cultural experiences. This choice
is motivated by the desire to minimise transportation costs and to enhance productivity,
innovation, and knowledge exchange. The trend towards such urban agglomeration is
fuelled by the strong demand for land in central locations, driven by the convenience and
advantages of proximity to essential services, workplaces, and social networks [1]. On a
global scale, many countries are implementing policies to encourage the development of
densely populated, compact urban areas. The compact city model, characterised by high
urban density and mixed land use, has become a key strategy in modern urban planning
for sustainable city development [2]. By promoting greater urban density, cities can achieve
several benefits, including improved public transportation use, shorter commute times
for residents, and the creation of vibrant mixed-use neighbourhoods that enhance overall
liveability.

Since then, the scholarly literature has begun to illuminate the complex relationship
between urban density and its various outcomes. Although adjustments in urban density
can lead to positive effects in some areas, they may also result in negative impacts elsewhere.
Ahlfeldt and Pietrostefani [3] conducted a comprehensive review identifying 15 different
urban outcome categories linked to density effects and quantified each in monetary terms.
Their research indicates that although significant benefits and costs are associated with
increases in urban density, the benefits tend to surpass the costs in most large, developed
cities. In a similar vein, Melia et al. [4] highlighted the trade-off between these urban
outcomes, referring to it as the ‘paradox of intensification’ in the context of transport policy.
This paradox suggests that while higher population densities reduce per capita car use and
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benefit the built environment, they can also lead to higher levels of motor traffic, which
may adversely affect the local area. Furthermore, the paradox of intensification associated
with urban density often arises from a too simplistic understanding of this complex concept.
Although density is a useful measure for planning compact cities, its simplicity may mask
the intricacies of urban form [5]. Therefore, it is crucial to dissect the factors contributing to
the effects of density in compact urban environments [3].

Yet, the task of analysing and contrasting the effects of varying urban densities be-
comes much more complicated when employing spatially aggregated data. Compilations
of data at disparate spatial scale levels or within different zoning systems for identical
regions often fail to provide consistent analytical outcomes. This challenge is known as
the Modifiable Areal Unit Problem (MAUP), initially highlighted by [6] and subsequently
elaborated by Openshaw and Taylor [7]. In essence, the MAUP represents an ecological
fallacy in spatial analysis, occurring when data, which are originally specific to particular
locales, are aggregated into broader spatial categories such as regions or districts. This
aggregation process, relevant to various metrics, including population density or illness
rates, substantially affects the derived measures—such as totals, rates, proportions, and
densities—depending on the size and shape of the spatial units selected for analysis. The
continued practice of inputting census data (from census tracts) into regression models for
urban policy development highlights the persistence of MAUP as a significant concern [8].
This is because the use of these areal units at various scales of aggregation has been demon-
strated to lead to aggregation biases [9,10], which can result in inaccurate conclusions and
policies [11].

The Modifiable Areal Unit Problem (MAUP) in the Housing Market

Imagine a city being analysed to understand the impact of ethnic density on housing
prices, aiming to identify areas with high and low prevalences of ethnic minority groups.
The city is divided into various spatial units for this study, such as districts or neigh-
bourhoods. In one scenario, the city is divided into broad districts, while in another, it is
segmented into finer neighbourhoods. Analysing larger districts might reveal a seemingly
uniform impact of ethnic density on housing prices, potentially masking true variations
within those districts. For example, within a single district, an affluent area may have low
ethnic density, while an adjoining less affluent area may exhibit higher ethnic density. Av-
eraging the data across the entire district could inaccurately suggest a uniformly moderate
influence of ethnic density on housing prices.

For example, the visual below (Figure 1) clearly demonstrates how the Modifiable
Areal Unit Problem (MAUP) can impact the interpretation of housing economic data, paral-
leling the discussion on ethnic density. In the upper diagrams, “Region Set A” and “Region
Set B” depict residential data points within varying regional boundaries. Each square sym-
bolises a residence, with the number inside indicating the ethnic density (1 for high ethnic
density, 0 for low ethnic density), signifying areas with higher or lower ethnic diversity.
In “Region Set A”, residences are encompassed within a single boundary, leading to an
aggregated indication of a 50% level of ethnic density—suggesting an even distribution of
high and low ethnic density across the residences. In contrast, “Region Set B” divides the
same residences across two distinct boundaries. Post-aggregation, one region displays a 0%
level (indicating low ethnic density across all homes), while the other records a 100% level
(indicating high ethnic density at every residence). This outcome variance arises not from
genuine differences in ethnic density but from how the regional boundaries are defined. As
a result, this arbitrary division can significantly distort the perceived distribution of ethnic
diversity across the city, potentially leading to inaccurate analyses of how ethnic density
influences housing economics, thereby, urban planning and policy inappropriately.

This variability can skew interpretations of variable relationships, impacting decision-
making in urban planning, public health, and environmental management. MAUP remains
a critical and intricate issue within spatial analysis, bearing considerable consequences
for understanding spatial relationships and deriving valid conclusions from geographical
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data [12]. In urban planning, neighbourhoods are frequently delineated by census block
groups such as census tracts in the US or statistical areas in Australia and New Zealand.
These units of geographical location, varying in spatial scale, can introduce MAUP into
regression analyses.

Buildings 2024, 14, x FOR PEER REVIEW  3  of  23 
 

 

 

Figure 1. An example of the modifiable areal unit problem and the distortion of ethnic density. 

This variability can skew  interpretations of variable relationships,  impacting deci-

sion-making in urban planning, public health, and environmental management. MAUP 

remains a critical and intricate issue within spatial analysis, bearing considerable conse-

quences for understanding spatial relationships and deriving valid conclusions from ge-

ographical data [12]. In urban planning, neighbourhoods are frequently delineated by cen-

sus block groups such as census tracts in the US or statistical areas in Australia and New 

Zealand.  These  units  of  geographical  location,  varying  in  spatial  scale,  can  introduce 

MAUP into regression analyses. 

One approach to mitigate the Modifiable Areal Unit Problem (MAUP) involves uti-

lising smaller and more consistent areal units. Consistency in an estimator means it con-

verges in probability to the true value of the parameter as the sample size increases indef-

initely. Sensitivity analysis is another effective method, assessing how outcomes fluctuate 

with alterations in the spatial unit of analysis and offering insights into the robustness of 

the results. Additionally, adopting alternative spatial divisions that align more accurately 

with the natural or social boundaries of the data, as opposed to arbitrary administrative 

divisions, can provide a truer representation of spatial phenomena. Su et al. [13] proposed 

the creation of homogeneous boundaries within each district, such as block-block group, 

while Kwan [14] advocated for identifying the optimal scales to address MAUP. Parenteau 

and Sawada [15] and Chen et al. [16] employed sensitivity analysis to counteract MAUP’s 

effects. Consequently, an effective analytical approach requires the exploration of various 

consistent  boundaries with  sensitivity  tests  rather  than  depending  on  predetermined 

third-party boundaries for data aggregation.   

This study introduces a block-searching model that aims to create customised, con-

sistent areal units to minimise the Modifiable Areal Unit Problem (MAUP) impact. To il-

lustrate its application, it employs an empirical analysis of neighbourhood effects on prop-

erty densities and housing prices. The research provides a detailed exploration of the re-

lationship between housing density and property prices, factoring in internal and external 

Figure 1. An example of the modifiable areal unit problem and the distortion of ethnic density.

One approach to mitigate the Modifiable Areal Unit Problem (MAUP) involves utilis-
ing smaller and more consistent areal units. Consistency in an estimator means it converges
in probability to the true value of the parameter as the sample size increases indefinitely.
Sensitivity analysis is another effective method, assessing how outcomes fluctuate with
alterations in the spatial unit of analysis and offering insights into the robustness of the
results. Additionally, adopting alternative spatial divisions that align more accurately
with the natural or social boundaries of the data, as opposed to arbitrary administrative
divisions, can provide a truer representation of spatial phenomena. Su et al. [13] proposed
the creation of homogeneous boundaries within each district, such as block-block group,
while Kwan [14] advocated for identifying the optimal scales to address MAUP. Parenteau
and Sawada [15] and Chen et al. [16] employed sensitivity analysis to counteract MAUP’s
effects. Consequently, an effective analytical approach requires the exploration of vari-
ous consistent boundaries with sensitivity tests rather than depending on predetermined
third-party boundaries for data aggregation.

This study introduces a block-searching model that aims to create customised, con-
sistent areal units to minimise the Modifiable Areal Unit Problem (MAUP) impact. To
illustrate its application, it employs an empirical analysis of neighbourhood effects on
property densities and housing prices. The research provides a detailed exploration of the
relationship between housing density and property prices, factoring in internal and external
densities and the specific characteristics of different housing types within neighbourhoods.
Internal housing density refers to site-specific measures such as floor area ratio and the
utilisation of floor space within individual properties. On the other hand, external housing
density encompasses the concentration of private residences in the vicinity of a property
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and the prevalence of non-residential property types, such as industrial facilities, public
housing, or Airbnb listings within neighbourhoods. The objective is to shed light on how
various aspects of density affect the quality of urban neighbourhoods. This includes assess-
ing the detrimental impacts of industrial property density, the effects of high residential
density, and the presence of public housing or Airbnb units. The study posits that these
density-related factors can significantly influence the attractiveness and liveability of urban
areas, potentially leading to either price premiums or discounts on housing, all other factors
being constant.

To the best of our knowledge, the existing literature in urban studies lacks a holistic
analysis and comparison of different measures of urban density within a single context,
limiting our understanding of their effects and the spectrum of positive and negative
outcomes they may yield. The impacts of housing density can vary, encompassing both
positive and negative aspects [5]. Higher urban densities offer sustainability advantages,
such as efficient land use, social equity, and diversity. Conversely, drawbacks include
social and psychological stresses resulting from limited space, safety concerns (crime),
and inadequate shared amenities, traditionally considered private goods. Consequently,
numerous studies have found a negative correlation between higher densities and housing
prices, indicating a preference for lower-density neighbourhoods among home buyers [17].

The study will be structured as follows: In Section 2, we review the literature on
density effects and neighbourhood effects. In Section 3, we discuss the research design and
the block-searching method, and in Section 4, we present and discuss the empirical results.
In Section 5, we summarise the findings and implications of the study. In the Appendix A,
we report three robustness checks on our density models.

2. Literature Review on Density Effects

The influence of density on health, particularly mental health, has been extensively
explored in prior research. Spacious internal and external environments have been identi-
fied as beneficial for health and well-being, especially for families with children [18–20].
Numerous studies have investigated the effects of internal density on housing, focusing
on factors such as interior space and the number of residents per dwelling unit [18,21,22].
However, there is a noticeable gap in research on the external effects of housing density [23].
Gomez-Jacinto and Hombrados-Mendieta [24] argued that external density, also known
as “community density”, has a more significant impact on human stress compared to
internal density. Urban planning acknowledges the significance of externalities and strives
to regulate development intensity by considering the carrying capacity of urban areas [20].
Furthermore, Bramley and Power [25] identified various negative consequences of high
urban density on quality of life, including reduced community cohesion, inadequate urban
amenities, and a lack of open spaces. Moreover, previous studies examining urban land
density analysis have lacked a solid foundation and tend to be arbitrary [26]. Research on
residents’ perceptions of housing density in their neighbourhoods has mainly relied on
property agents or qualitative methods such as surveys and interviews [27–29].

Conversely, a significant body of literature in urban economics has highlighted the
benefits of urban density, including reduced commuting times [30] and increased access
to amenities [31]. The positive association between higher housing density and property
values in a neighbourhood has been extensively researched and documented [3,32]. Yet,
there are also costs associated with urban density, such as crowding and crime. The
negative relationship between density and property values has been observed in some
studies, particularly in high-density cities [33,34]. More recently, Duranton and Puga [1]
provided a comprehensive literature review on both the costs and benefits of urban density.
Samsudin et al. [35] reviewed the studies on both the positive and negative impacts of
high-density environment on social capital. Wang et al. [36] examine the spatial variation
characteristics of housing conditions in China, using 2846 counties as the basic research
unit. Their study highlights significant spatial clustering of housing conditions, with better
conditions southeast of the “Hu Line” and worse conditions northwest. Key findings
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include the importance of elevator configuration and the superior housing conditions
in urban areas compared to non-urban areas. The study also reveals that urbanisation
significantly impacts housing conditions, particularly in urban settings.

In recent discussions, there has been growing recognition of the potential associations
of public housing density and Airbnb in neighbourhoods, particularly concerning inclusiv-
ity. Thackway et al. [37] investigate the spatial variability of Airbnb’s impact on housing
prices in Sydney. Using a hedonic property valuation model and geographically weighted
regression (GWR), the study finds that Airbnb generally increases property prices, with a
1% rise in Airbnb density leading to a 2% increase in property sales prices. However, the
effect is geographically uneven, with significant value uplifts in Sydney’s northern beaches
and parts of western Sydney, while traditional tourist areas around the CBD and eastern
suburbs see insignificant or negative impacts. This research highlights the need for tailored
Airbnb regulations based on local housing market conditions. However, empirical studies
on this subject are notably scarce, and existing studies primarily rely on stated preference
approaches, which may not provide robust large-scale evidence. This paper aims to fill this
research gap by empirically examining the associations of internal, external and property
type-specific housing densities on housing prices using a revealed preference approach.
By analysing actual transacted housing prices across neighbourhoods with varying levels
of housing density, public housing density, and Airbnb density, etc., this study seeks to
identify and quantify these associations.

In fact, analysing the associations of density with housing prices, both over time and
across different areas, can yield conflicting findings. Temporal analyses often found a
positive price effect of upzoning [19,38,39]. However, Murray and Limb [40] found no
relationship of zoned capacity with housing prices in their studies of upzoned densification
areas in Brisbane, Australia. Yet they considered median home price data of the admin-
istrative area units (Statistical Areas SA2) instead of the upzoned areas. The discrepancy
between the boundaries of the SA2 and the upzoned areas can lead to questionable results.
It is therefore crucial to identify variables, such as house density and median housing price,
from the same community boundary.

Furthermore, these studies primarily examine the temporal increase in development
intensity and fail to consider the negative externality of higher neighbourhood densities in
a cross-sectional context. Regarding cross-sectional comparisons of housing prices across
neighbourhoods, varying housing densities have generally yielded negative results [17].
Nevertheless, it is worth noting that most cross-sectional studies on density effects rely
on administrative area units, such as state population densities [41], localised densities of
individual development sites [33], or densities of census tracts [17]. These administrative
units vary in shape and size but have similar populations or numbers of housing units,
making it difficult to draw meaningful comparisons of density effects on a like-for-like basis.
For instance, Fesselmeyer, Seah and Kwok [33] compared density effects from development
projects ranging from 17.86 to 645.08 units/acre on land areas spanning 0.04 to 18.52 acres.
Despite having the same average density of 84.75 units/acre, the impact on housing prices
can differ significantly between two plots of land that vary in size by a factor of 400. Some
studies have employed a fixed-area method to analyse density effects, but with certain
limitations. For example, Sequeira and Filippova [42] measured concentrations of social
housing within a fixed 500 m radius but did not include the external housing density
variable. They categorised densities into three dummy variables (High-Medium-Low)
and incorporated other neighbourhood attributes, such as a deprivation index based on
administrative area units. Essentially, they used two different definitions of neighbourhoods
within the same model.

Dong [43] provided insights into the development and characteristics of multifamily
homes in the Portland metropolitan area and evaluated the influence of density and
density-related factors on the pricing of such homes. The findings of this study revealed
that medium-density multifamily homes tend to have lower selling prices than other
housing types. Surprisingly, the cost-saving effect typically associated with higher-density
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development appears to be weak or even negative in the case of multifamily homes. Instead,
dwelling size emerges as the primary determinant of prices in this housing category.
Similarly, Cheung and Yiu [44] measured the number of houses of different cohorts within
a fixed-radius distance from homes but conducted a panel data analysis involving spatial
and temporal comparisons. This approach may have mixed the effects of cross-sectional
negative externalities and longitudinal positive upzoning effects, leading to a complex
interpretation of density effects.

In a similar vein, the positive and negative effects of public housing on housing prices,
which indicate positive and negative externalities, have been studied piecemeal. Positive
externalities such as accommodation subsidies are typically applied at the administrative
area unit level [45]. On the other hand, negative externalities such as the stigma of public
housing [46] or higher crime rates [47,48] can be related to the density of public housing
in proximity. In some situations, measuring these neighbourhood impacts by means of
a buffer with a certain radius is more relevant. Moreover, the emergence of Airbnb has
also been shown to impact housing prices. While there can be negative externalities for
residents in the neighbourhoods [49,50], previous studies have generally found a positive
effect of Airbnb on housing prices due to increased rental income [24] and reduced housing
supply for local residents [51–53] based on administrative area units.

The choice between an administrative area unit or a radial buffer matters in the density
effect research. The analysis depends on the specific attributes being studied. While admin-
istrative area units may be appropriate for studying the price effect of school zones, they
may not accurately represent the neighbourhood effect of housing density due to variations
in shape and size. This can introduce boundary bias and misrepresent the attributes of
households near the administrative area unit boundaries. Demographic variables such as
average household income, crime rates, and job opportunities are unlikely to align with
administrative area units. Government statistics departments typically provide aggregate
demographic data in administrative area units. However, accessing raw data from govern-
ment data laboratories and efficiently processing density-related studies can be challenging.
Counting metrics from raw data can be a time-consuming process, mainly when dealing
with large numbers of entities. Moreover, while calculating housing density for each house
may seem straightforward, it requires substantial computational resources, especially in
cities with a large number of houses. Bangura and Lee [54] highlight the complexity of
defining housing submarkets by demonstrating that the determinants of homeownership
affordability vary significantly across different regions of Greater Sydney. This variability
underscores the importance of considering submarket differences when analysing housing
affordability and density effects, aligning with the need to address the Modifiable Areal
Unit Problem (MAUP) in housing studies.

So, the fundamental yet significant research inquiry: Can we formulate a compre-
hensive framework within the urban housing market that enables planners to disentangle
various measures of urban density, thereby aiding in the identification and attainment of a
balance between the positive and negative consequences of higher density development in
practical contexts? Based on the literature review concerning the effects of density, we have
reformulated the framework of various density impacts, the details of which are provided
in Table 1. This reformulated framework also guides our statistical analysis in the empirical
tests that follow.

Table 1 compares three different research approaches investigating the impact of
density on housing prices, yielding conflicting empirical results. The first approach explores
the internal density effects of development intensity within a land parcel or within a
housing unit on housing prices. This approach has been commonly applied in architectural
research. The second approach examines the price implications of temporal changes in
density. For instance, cities undergoing upzoning or densification often experience positive
effects on housing prices. However, these studies typically focus solely on the increase
in development intensity, overlooking potential negative externalities associated with
higher housing density. The third approach involves cross-sectional comparisons of various
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property-type densities across different districts or neighbourhoods to evaluate their price
effects. This approach, exploring the external density effects, forms the basis of this study.
So far, empirical studies investigating the impact of neighbourhood density on housing
prices remain scarce, likely due to challenges in accurately estimating representative density
metrics. Overall, these three research lines have contributed to our understanding of
density effects on housing prices. However, the existing literature exhibits conflicting
findings and knowledge gaps, necessitating further exploration to develop a comprehensive
understanding of the complexities surrounding housing density and its implications for
property values.

Table 1. Multifaceted associations of urban density on housing prices.

Internal Housing Density Effect Temporal Changes in Housing Density
External Density Effect—Various

Property-Type Densities in
a Neighbourhood

Higher development intensity within a
land parcel may lead to a negative
association with housing prices due to
overcrowding and inadequate amenities.

Upzoning initiatives can result in a
positive association with housing prices
by potentially increasing the sellable
floor area.

In neighbourhoods, higher housing
density can have a negative impact on
prices due to increased housing supply,
while elevated public housing density
can also contribute to price depreciation.

Increased floor space occupancy within
individual housing units may lead to
decreased housing prices due to
overcrowding concerns.

The densities of non-residential property
types can exert either positive or negative
effects on prices, depending on the
complementary or conflicting
relationships between these property
types and residential housing.

3. Research Design

Many urban studies necessitate counting the number of properties and/or amenities
within a neighbourhood, such as measuring residential density [55,56] or analysing the
number of points of interest [57]. Identifying nearest neighbours typically involves estimat-
ing their distances from the subject point of interest (POI). This computational challenge
is commonly addressed using a range-query-oriented spatial index like KD-Tree, R-Tree,
or Ball-Tree, which may be efficient for full-distance matrix computation [58]. However,
a predetermined boundary is often set in urban planning issues such as housing density
estimation, a radial buffer or a census tract/statistical area unit are examples of the bound-
ary used. In other words, the maximum number of properties in a cluster is known and
constant. Our block-searching method is a bespoke algorithm designed for a known-size
dataset to enhance estimation efficiency.

3.1. Block Searching Method (BSM)

We have devised a block-searching technique to expedite the counting process. The
proposed method significantly reduces computational time and memory requirements,
making it applicable to various counting processes for counting other neighbourhood
points of interest. Identifying whether two houses are neighbours within a boundary ne-
cessitates estimating the distance between all houses from the subject house. For instance,
this study encompasses approximately 400,000 houses in Auckland, New Zealand. Sim-
ply counting neighbouring houses requires computing the distance between two houses
400,000 × 400,000 times. Using conventional methods, this computation could take days
to complete.

3.1.1. Divide the Study Area into Blocks

We define a neighbourhood by a fixed dimension of a buffer radius, such as 0.5 km or
1.0 km from a house, calculated using the Haversine formula. The BSM divides the map
into several grid blocks based on longitude and latitude. For instance, if the dimension of a
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neighbourhood is defined as a d km radius from a house, then the study area is initially
divided into grid blocks with dimensions of at least d × d (Figure 2a).
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Figure 2. (a) An illustration of dividing the study area into d × d blocks; (b) An illustration of
searching the neighbouring houses in nine blocks. This example shows a 3 × 3 blocks and the
numbering sequence from 0 (the subject property location) and the surrounding eight blocks.

3.1.2. Searching and Counting Method

The nine grid blocks around a house set the boundary for searching and counting
neighbouring properties of each house, and properties beyond the nine grid blocks are not
considered neighbouring properties. For example, as shown in Figure 2b, if a house located
at grid block 0 needs to count the number of neighbouring houses, the search area can be
limited to the nine grid blocks {0, 1, . . ., 7, 8} surrounding the subject house.

3.1.3. Data Structure to Save Memory

To conserve computational memory, we utilise a unique data structure called Property
Node Indexing (PNI) [59]. Housing attributes, not utilised in the searching and counting
processes, are stored in a “Property” node, as shown as Pi in Figure 3, where i = 1, 2, 3, . . .
As the study area is divided into blocks, each house is designated with a grid block number.
We store only the pointer of each “Property” node in a block to save memory. This data
structure enables efficient calculation of distances between properties by sequentially going
through the index of the “Block” node.

The “Block” node includes an index of the “Property” node data and the count of
corresponding properties. This data structure enables us to calculate the distance between
properties by sequentially accessing the index of the “Block” node. We store only pointers
because the size of the “Property” node data is large. By containing only pointers, the index
reduces memory usage, potentially increasing search speed. Additionally, no extra storage
is necessary during the searching and counting processes.

Furthermore, this data structure of entity nodes enhances the versatility of the search-
ing and counting program. It allows for the integration of datasets from various entity
nodes for searching and counting within the same area. For instance, in this study, the
“Property” node data structure is applied to all types of property in the Auckland Region,
including housing units, public housing units, Airbnb, commercial property, and industrial
property. This method can also be extended to search and count other community or
institutional buildings, as well as special points of interest. Overall, this approach makes
the program universally applicable for most spatial searching and counting purposes.
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Figure 3. Data structure of the region node. Notes: as an illustration, the figure shows a situation
where there are two block nodes, block 1 and block 2. Both have five neighbouring houses. The
“Block” node connects the corresponding neighbouring houses to an index list without consuming
too much in storage or memory resources.

3.1.4. Enhancement of Computational Efficiency

To demonstrate the computational efficiency enhancement of the BSM through block
counting, we conducted experiments to evaluate the computational time required for
various block sizes. The results as shown in Figure 4 indicate a significant reduction in
execution time compared to traditional methods. For instance, when the buffer radius of
neighbourhoods is increased from 0.5 km to 14.5 km, the computation time for searching
and counting the number of houses and public houses is sharply reduced. The BSM
enhances computational efficiency by 98%.
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Figure 4. Execution time in seconds of searching and counting houses within a radial buffer of each
house from 0.5 km to 14.5 km by the BSM. The vertical axis refers to the execution time in seconds,
while the horizontal axis refers to the radial buffer size in km.

The figure depicts a linear increase in execution time from 0.5 km to 6.5 km, followed
by a levelling off. This trend suggests that shorter search distances yield similar housing
densities within neighbourhoods, whereas longer search distances encompass rural areas
with lower housing densities.
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3.2. Empirical Models

This study counts the number of housing units, public housing units, and Airbnb
units to estimate both the external housing density and the property type-specific housing
densities of various building types within three walking distances: a 0.5 km, 1.0 km, and
1.5 km radius. For comparison, data on private and public housing densities will also be
collected based on the administratively defined boundary—Statistical Area 1 (SA1) unit
(Public housing in New Zealand is generally provided by Housing New Zealand (Kāinga
Ora) and Community Housing Providers (CHPs). The former is a state organisation
operating under the Crown Entities Act 2004, the latter are NGOs. Kāinga Ora is the largest
public housing provider providing 63,589 housing units, whereas CHPs provides 7730 units
in June 2020 [60]. Auckland, being the highest populated city in New Zealand, possesses
most of the public housing units provided).

3.2.1. Baseline Model

Equation (1) shows the baseline hedonic price model in the semi-log specification,
including the structural attributes, location dummy attributes in suburbs, and time dummy
variables, etc.

ln(Pits) = α0 +
K

∑
k=1

γkXki+
V

∑
v=1910

βvCiv +
T

∑
t=1

αtDit+
S

∑
s=1

θsLis+εist . . . (1)

where Pits denotes the transaction price of property i at time t in suburb s (i = 1, . . ., n; t = 1,
. . ., T; s = 1, . . ., S), γk denotes the implicit price for the kth property characteristic Xjk (k = 1,
. . ., K); Civ denotes the cohort dummy, which is set to 1 if the ith house was built in decade
v and to 0 otherwise (v = 1910s, 1920s, . . ., 2010s, with the 1900s cohort as the omitted base
case); Dit denotes the month-of-sale dummy, which is set to 1 if the ith house sold at time
t, and otherwise to 0; Lis denotes the suburb location dummy, which is set to 1 if the ith

house sold is located in suburb s, and otherwise to 0; and εist denotes the error term with
the mean zero and the variance σ2. The coefficients γk, βv, αt, and θs can be estimated by
the ordinary least squares method.

3.2.2. Housing Density Model

Equation (2) presents the housing density hedonic price model in the semi-log specifi-
cation estimated using the ordinary least squares (OLS) method, which accounts for the
number of houses within a fixed walking distance from the transacted house. This study
presents results for three different radial buffers within walking distance: a 0.5 km radius
(Model 3), a 1.0 km radius (Model 4), and a 1.5 km radius (Model 5). The density considered
here encompasses not only external housing density, determined by the number of housing
units, but also property type-specific housing densities, including public housing density
and Airbnb density. It achieves this by relating the proportion of public housing units or
Airbnb units to the total number of housing units in the neighbourhood. Mathematically,

ln(Pits) = α0 + αr NHir + δ
p
r

nPUBir
NHir

+ δa
r

nAIRir
NHir

+
K
∑

k=1
γkXki+

V
∑

v=1920
βvCiv

+
T
∑

t=1
αtDit+

S
∑

s=1
θsLis+εist . . .

(2)

where NHir denotes the total number of housing units in the r-radius buffer neighbourhood
from the ith house (Equation (2)) and αr measures the housing density effect; δ

p
r and δa

r
denote the implicit prices for the proportion of public housing and Airbnb to the total
number of housing units in the r-radius buffer neighbourhood, r = 0.5, 1.0, 1.5, as defined
in Equations (3) and (4), respectively:

NP_PUBir =
nPUBir

NHir
. . . (3)
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NP_AIRir =
nAIRir
NHir

. . . (4)

where nPUBir and nAIRir denote the numbers of public housing and Airbnb units in the
r-radius buffer neighbourhood from the ith house, respectively.

4. Data and Empirical Results
4.1. Data

The models are empirically tested using housing transaction data recorded in Auck-
land Central, New Zealand, spanning from January 2020 to December 2020 (12 months).
Figure 5a shows an overview map of Auckland, New Zealand, highlighting major roads
and locations. Figure 5b is a detailed map showing Statistical Area 1 (SA1) in blue and
Statistical Area 2 (SA2) in orange. Figure 5c at the bottom is a zoomed-in map with a scale
illustrating the layout of SA1 (blue) and SA2 (orange) within a 1-km radius. The map
provides a detailed view of the statistical areas and their boundaries. As the COVID-19
pandemic commenced in 2020, the impacts of density on housing prices should be more
pronounced, as the spread of disease depends on density. The dataset utilised in this study
is sourced from CoreLogic. To maintain consistency in housing types, the hedonic price
analysis excludes all non-house dwelling types, such as townhouses and apartments, from
the transaction data. However, when counting the number of houses in the neighbourhood
to test the density effect, all types of dwellings, including apartments and townhouses,
are considered.

After excluding outliers, approximately twenty thousand valid records of housing
transactions were identified for the period under study. Housing data were from Auckland
Council’s (2022) [61] Rating Information Database (RID). The RID records all property infor-
mation in Auckland and is used for setting and assessing property rates. Additionally, the
dataset provides a comprehensive list of variables concerning property and neighbourhood
characteristics. Airbnb data in Auckland, New Zealand, were obtained from the AirDNA
(2021) [62] subscription.

Table 2 shows the summary statistics of the housing and public housing densities of
the neighbourhoods and other variables.

SA1 and SA2 refer to statistical area units of varying dimensions designated by the
New Zealand Government to maintain a consistent population range within each unit.
For instance, SA1s in New Zealand typically have a population of 100–200 residents, with
a maximum of 500. SA2s in city council areas typically accommodate a population of
2000–4000 residents, whereas SA2s in district council areas usually encompass a population
of 1000–3000 residents [63]. However, because this measurement does not account for the
measured land area and may introduce boundary bias, it is generally not considered a
reliable metric for assessing density associations with housing prices.
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Figure 5. (a) (top left) An overview map of Auckland, New Zealand, highlighting major roads and
key locations. (b) (top right) A detailed map of Statistical Area 1 (SA1) in blue and Statistical Area 2
(SA2) in red, offering a closer look at the statistical boundaries and their distribution within Auckland.
(c) (bottom) A zoomed-in map with a black radial circle illustrating how a radial circle covers the SA1
(blue) and SA2 (red) administrative boundaries. The yellow triangle indicates the CBD of the city.
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Table 2. Descriptive Statistics of Variables of the Hedonic Price Model.

Variable Description Mean SD Min Max

ln(Pits)
Natural logarithm of the sale price of the ith

house at time t, suburb s
13.49 12.86 10.02 14.76

Dit Month-of-sale dummy variable 12 months (January–December of 2020)

Lis Suburbs where the ith house is located, 1736 suburbs of the Auckland Region

Demographic characteristics of neighbourhoods in various levels

NHiSA1 No. of housing units in the SA1 21.82 59.95 0.00 776.00

NP_PUBiSA1
Proportion of the no. of public housing to total

no. of housing units in the SA1 0.03 0.08 0.00 0.92

NHiSA2 No. of housing units in the SA2 1021.99 425.21 12.00 2887

NP_PUBiSA2
Proportion of the no. of public housing to total

no. of housing units in the SA2 0.04 0.06 0.00 0.51

NHir500 No. of housing units in the 0.5 km radius 812.76 959.72 1.00 8211.00

NP_PUBir500
Proportion of the no. of public housing to total

no. of housing units in the 0.5 km radius 0.04 0.06 0.00 0.62

NP_AIRir500
Proportion of the no. of Airbnb to total no. of

housing units in the 500 m radius 0.001 0.007 0.00 1.00

NHir1000 No. of housing units in the 1 km radius 2614.21 2558.68 1.00 19,424

NP_PUBir1000
Proportion of the no. of public housing to total

no. of housing units in the 1 km radius 0.04 0.05 0.00 0.43

NP_AIRir1000
Proportion of the no. of Airbnb to total no. of

housing units in the 1000 m radius 0.001 0.007 0.00 1.00

NHir1500 No. of housing units in the 1.5 km radius 5090.00 4314.53 1.00 26,044

NP_PUBir1500
Proportion of the no. of public housing to total

no. of housing units in the 1.5 km radius 0.04 0.05 0.00 0.38

NP_AIRir1500
Proportion of the no. of Airbnb to total no. of

housing units in the 1.5 km radius 0.001 0.004 0.00 0.50

Xik Housing characteristics k of the ith house, including:

BD Number of bedrooms 3.08 0.85 1.00 5.00

BATH Number of bathrooms 1.50 0.66 1.00 4.00

AREA Building floor area in square metres 142.72 61.41 24.00 410.00

COHORT Dummy variables of the decade in which the house was built. 15 cohorts (1880, 1890, . . ., 2020)

TENURE Two types of tenure (freehold, leasehold)

Notes: The 0.5% outliers are excluded; non-house type housing transactions are excluded. The attributes of the
number of bedrooms, bathrooms, and floor area are continuous variables, whereas the attributes of year built
(cohorts in decades) are dummy variables. The sample contains 24,800 transactions.

4.2. Empirical Results

Table 3 presents the results regarding density associations with housing prices. Col-
umn (1) displays the outcome for Model 1, which encompasses external housing density
and public housing density based on SA1 units. Nearly all variables are statistically signifi-
cant at the 1% level, and the model exhibits a reasonably high explanatory power (adjusted
R-squared = 76%). Housing characteristic variables control various effects, including cohort,
housing type, size, location, and time effects.
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Table 3. The results of Models 1–5.

Administrative Area Unit Radius Distancer from Each House Radius Distancer from Each House
(With CBD_DISTi)

Model 1
(SA1)

Model 2
(SA2)

Model 3a
(r = 0.5 km)

Model 4a
(r = 1.0 km)

Model 5a
(r = 1.5 km)

Model 3b
(r = 0.5 km)

Model 4b
(r = 1.0 km)

Model 5b
(r = 1.5 km)

Variables Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

NHir

0.00005 −0.00003 −0.0001 −0.00002 −0.00001 −0.0001 −0.00002 −0.00001

(2.38) ** (−5.49) *** (−8.46) *** (−6.59) *** (−6.53) *** (−6.12) *** (−5.47) *** (−4.59) ***

nPUBir/NHir

−0.107 −0.259 −0.363 −0.484 −0.490 −0.313 −0.367 −0.370

(−6.48) *** (−7.82) *** (−11.42) *** (−9.62) *** (−7.52) *** (−10.78) *** (−8.10) *** (−6.31) ***

nAIRir/NHir - -
0.224 0.172 0.226 0.599 −0.004 −8.14

(2.43) ** (3.83) *** (2.06) ** (0.77) (−0.17) (−3.28) ***

CBD_DISTi

−0.011 −0.013
- - -

−0.003 −0.004 −0.006

(−5.43) *** (−6.31) *** (−1.78) * (−2.16) ** (−2.46) **

FIXED
EFFECTS Structure attributes, Month dummies, Suburb dummies, Cohort dummies, and Tenure dummy

No. of Obs. 17,773 17,773 17,775 17,775 17,775 10,560 10,560 10,560

Adj.
R-Squared 0.76 0.76 0.76 0.76 0.76 0.60 0.59 0.59

Notes: The dependent variable ln(Pits) is the logarithm of the net transacted housing prices in New Zealand
dollars, and *, **, *** mean that the coefficient is significant at the 10%, 5%, and 1% levels, respectively. The figures
in parentheses are the t-statistics. Outliers are excluded. The standard errors are Huber–White–Hinkley (HC1)
heteroskedasticity consistent. Structure attributes (number of bedrooms, number of bathrooms, floor area, cohort
dummies, tenure dummy) fixed effects, location (suburb dummies) fixed effects, and time (monthly dummies)
fixed effects are controlled in all models.

When considering neighbouring houses at the SA1 level, the external housing den-
sity effect is found to be positive and significant at the 5% level. However, at the SA2
level (Model 2), this effect becomes negative and significant. These contradictory results
highlight the challenges of measuring density associations using administrative area units.
Conversely, the associations between external housing density and housing prices are
consistently negative and significant across the 0.5 km, 1.0 km, and 1.5 km neighbourhood
levels. Furthermore, the negative effect of housing density is weaker in larger buffers.
These results agree with Fotheringham and Wong [8] and Ye and Rogerson’s [64] (p. 53)
conclusion that “when individual observations are aggregated differently, the sign and
magnitude of aggregate-level bias are indefinite”.

The effect of public housing density is negative and significant at both the SA1 and
SA2 levels, as well as across the three radial neighbourhood buffer levels. However, the
negative magnitudes estimated by the SA models (−0.107 at SA1 and −0.259 at SA2) are
much weaker than those estimated by the radial neighbourhood buffer models (−0.363 at
0.5 km to −0.490 at 1.5 km). These results suggest that certain positive externalities arise
from housing and social welfare policies favourable to public housing residents, which are
better measured using administrative area unit models. In contrast, radial buffer models
mostly capture the stigmatised negative externalities of public housing.

Models 3a, 4a, and 5a reveal a positive association between Airbnb density and housing
prices in neighbourhoods, consistent with previous studies indicating asset value apprecia-
tion by Airbnb landlords [24]. However, the strong positive associations between Airbnb
density and housing prices may be influenced by location, as these associations become in-
significant or even negative when including the distance to the CBD variable, CBD_DISTi,
while the signs and significance of other coefficients remain largely unchanged, as depicted
in Models 3b, 4b, and 5b. These results offer a clearer understanding of the associations
between Airbnb and housing prices in neighbourhoods, as they measure Airbnb density
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within a certain walking distance instead of relying on the commonly used numbers of
Airbnb listings in zip codes [53].

Three robustness tests on property density associations with housing prices are con-
ducted, and the results are provided in the Appendix A. The first test examines the asso-
ciations of different property types on housing prices, including residential, commercial,
industrial, and government, institutional, and community (GIC) properties. The second
test involves counting building floor areas instead of property numbers. The third test
incorporates additional neighbourhood attributes, such as household income and ethnicity
ratios, in the regression models to detect any potential variable omission biases.

5. Conclusions

The modifiable areal unit problem (MAUP) poses significant challenges in planning
education, particularly in the analysis and interpretation of spatial data. This study found
empirically that the association between property density in a neighbourhood and housing
prices can vary depending on the aggregation of geographical area units. This variability
highlights the sensitivity of analysis outcomes to the chosen spatial scale, which can lead to
misleading conclusions if not carefully addressed. In planning education, understanding
the MAUP underscores the importance of spatial analysis techniques that account for
scale effects and encourage critical thinking about the implications of spatial aggregation.
It emphasises the need for planners to be aware of the limitations and potential biases
introduced by different spatial scales when making decisions or drawing conclusions based
on spatial data analysis.

The paper makes a dual contribution. Firstly, it introduces a BSM to dramatically
enhance computational efficiency in defining various boundaries to search and count
neighbouring building structures, reducing computation time by 98% (from 14 h to 0.3 h).
Secondly, employing hedonic price analysis initiates an examination of two distinct asso-
ciations of housing density with housing prices: external housing density and property
type-specific density, encompassing public housing density and Airbnb density. A sensi-
tivity analysis of the areal unit scale is also conducted to demonstrate the impacts of the
MAUP on the effects of property densities on housing prices. A conflicting sign of the
density effects is found when administrative area units are used. More reasonable and
significant results are obtained by using circular buffers of 0.5 km, 1.0 km and 1.5 km. The
tests reveal negative associations between external housing density and public housing
density, but there is a positive association between Airbnb density and housing prices in
neighbourhoods. Specifically, external housing density incurs a discount of approximately
−15.9% per one per cent increase in residential units within a 1.0 km radius neighbourhood.
However, the effect varies by housing type, with detached/semi-detached houses yielding
a positive premium of about 12.5%, while public housing density results in a discount of
approximately −36.0%. Conversely, Airbnb density entails a premium of about 18.1% for a
one per cent increase in Airbnb units within the neighbourhood.

Additionally, considering floor area proportion instead of the number of housing units,
the density effect of residential properties in the 1.0 km radius neighbourhood is −4.8%.
Detached/semi-detached houses, apartments, and public housing exhibit density effects of
5.4%, −2.2%, and −56.8%, respectively. The consistently negative and significant density
associations of public housing are noteworthy. Unlike previous studies relying on surveys
or interviews, i.e., by stated preference [25], this study leverages actual housing transaction
data to provide empirical evidence on external and property type-specific densities. This
revealed preference approach aids discussions on inclusive and sustainable neighbourhood
planning, assisting urban planners in design decisions.

The study does encounter limitations, such as the assumption that density is uniformly
associated with housing prices [65], and the risk of endogeneity bias when analysing cross-
sectional data [66]. While the results confirm negative associations of density, particularly
public housing density, with housing values, their practical implications may be subject to
controversy. First, the dissatisfaction of homeowners may simply be a kind of statistical
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discrimination, i.e., discriminatory practices motivated by attempts to increase economic
profits [67,68]. Second, many international organisations, such as the EU, OECD, and
UN-Habitat, consider compact cities to be a sustainable urban development idea [69].
Densification or intensification is also often used to improve housing affordability in cities.
Thus, the density issue can become part of a class struggle between homeowners and
renters. Third, the desirability of compact developments is not universally true but is found
to be “shaped by socioeconomic and cultural contexts surrounding the development” [70]
(p. 4). For example, “in developing economies, urban densification often seems to exacer-
bate rather than mitigate urban challenges such as inequitable access to urban amenities,
crowdedness, and urban poverty”. Despite these constraints, the results provide valuable
perspectives for conducting cost–benefit analyses in inclusive planning and assessing the
implications of upzoning for urban planners. Also, while our block-searching technique
provides a robust method for analysing housing density and price associations, it is not
without limitations. One potential bias is the assumption of uniformity within each block,
which may not perfectly capture the heterogeneity of urban environments. Additionally,
the choice of border scales can influence the results, highlighting the need for sensitivity
analyses. As a future direction, the application of remote sensing technologies could be
explored to address the MAUP in urban planning studies. Remote sensing offers high-
resolution, consistent data over large areas, which can help reduce the dependence on
predefined administrative boundaries. This technology allows for the collection of detailed
spatial and temporal information, facilitating the analysis of dynamic urban phenomena
with greater accuracy. Integrating remote sensing data with existing spatial analysis meth-
ods can enhance the robustness of findings and provide more reliable insights for urban
planning and policy-making.
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Appendix A Robustness Tests

We further conduct two robustness tests on the neighbourhood density associations
with housing prices. In the first one, we count the numbers of all types of buildings in
the neighbourhood of the house and analyse them by classifying them into four land
use categories, viz. (a) residential, (b) commercial, (c) industrial, and (d) government,
institutional and community (GIC). In the second test, we count the building floor areas of
all types of buildings in the house’s neighbourhood. We conduct each of the robustness
tests at two levels of analysis. The first level is based on the four land use categories,
and the second level is based on the sub-categories of each land use. For residential land
use, in particular, we consider the neighbourhood density associations of the residential
sub-categories with housing prices: houses, apartments, and public housing, and the
commercial sub-categories: retail and office.

https://auckland.primo.exlibrisgroup.com/permalink/64UAUCK_INST/1lk16jl/alma99217168414002091
https://auckland.primo.exlibrisgroup.com/permalink/64UAUCK_INST/1lk16jl/alma99217168414002091
https://github.com/cwsham/Spatial-clustering-method
https://github.com/cwsham/Spatial-clustering-method
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Appendix A.1 Neighbourhood Density Associations of All Building Types in Numbers

Table A1 shows the results of the level 1 models at the designated buffer radius from
the subject house. NBir, nRESir, nCOMir, nINDir represent the number of buildings, res-
idential properties, commercial properties and industrial properties, respectively. The
results confirm the less favourable neighbourhood density association of all types of prop-
erties in comparison with the omitted one, i.e., GIC properties. The magnitudes of the
negative density association of residential properties are reduced when the neighbourhood
radius is larger. However, the small magnitude of the negative associations of industrial
building density with housing prices probably reflects that counting the number of build-
ings may not be appropriate when the property size is excessively large. We therefore
further conduct another robustness test counting the building floor areas of properties.

Table A1. The Results of Models 6–8.

Model 6 (r = 0.5 km) Model 7 (r = 1.0 km) Model 8 (r = 1.5 km)

Variables Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

NBir
−0.0001 −0.00002 −0.00001

(−6.21) *** (−5.56) *** (−4.17) ***

nRESir/NBir
−0.208 −0.159 −0.042

(−4.05) *** (−2.16) ** (−0.43)

nCOMir/NBir
−0.370 −0.343 −0.367

(−12.06) *** (−6.47) *** (−5.48) ***

nINDir/NBir
−0.191 −0.130 0.062

(−3.06) *** (−1.42) (0.51)

DISTi
−0.003 −0.005 −0.006

(−1.85) * (−2.54) ** (−2.83) ***

FIXED EFFECTS Structure attributes, Month dummies, Suburb dummies, Cohort dummies, Tenure dummy

No. of Obs. 11,329 11,329 11,329

Adj. R-Squared 0.61 0.60 0.60

Notes: The dependent variable ln(Pits) is the logarithm of the net transacted housing prices in New Zealand
dollars, and *, **, *** mean that the coefficient is significant at the 10%, 5%, and 1% levels, respectively. The figures
in parentheses are the t-statistics. Outliers are excluded. Non-house-type housing is also excluded. The standard
errors are Huber–White–Hinkley (HC1) heteroskedasticity consistent. Structure attributes fixed effects, location
fixed effects and time fixed effects are controlled in all models.

Table A2 shows the results of the level 2 models at the designated buffer radius from the
subject house. NBir, nHSEir, nAPTir, nPUBir, nAIRir, nRETir, nOFFir, nINDir represent
the numbers of buildings, houses, apartments, public housing, Airbnb, retail, office and
industrial properties. The results confirm the less favourable neighbourhood density of all
types of properties in comparison with the GIC properties. The results confirm the negative
and positive neighbourhood density associations of public housing and Airbnb, even
considering the total number of buildings. However, the impact of many other building
types is either insignificant or inconsistent, which supports our second robustness test
using floor areas.
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Table A2. The Results of Models 9–11.

Variables
Model 9 (r = 0.5 km) Model 10 (r = 1.0 km) Model 11 (r = 1.5 km)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

NBir
−0.0001 −0.00002 −0.00001

(−6.45) *** (−5.58) *** (−3.74) ***

nHSEir/NBir
−0.009 0.125 0.114

(−0.47) (4.74) *** (2.82) ***

nAPTir/NBir
−0.001 0.095 0.180

(−0.01) (1.51) (1.76) *

nPUBir/NBir
−0.336 −0.360 −0.390

(−11.40) *** (−7.55) *** (−5.58) ***

nAIRir/NBir
0.118 0.181 0.113

(1.73) * (2.04) ** (0.91)

nRETir/NBir
−0.204 0.158 −0.476

(−2.15) ** (0.86) (−1.86) *

nOFFir/NBir
−0.049 0.527 0.626

(−0.24) (1.61) (1.58)

nINDir/NBir
−0.002 0.096 0.120

(−0.06) (2.15) ** (1.93) *

DISTi
−0.005 −0.005 −0.005

(−2.57) *** (−2.42) ** (−2.50) ***

FIXED EFFECTS Structure attributes, Month dummies, Suburb dummies, Cohort dummies, Tenure dummy

No. of Obs. 11,329 11,329 11,329

Adj. R-Squared 0.61 0.60 0.60

Notes: The dependent variable ln(Pits) is the logarithm of the net transacted housing prices in New Zealand
dollars, and *, **, *** mean that the coefficient is significant at the 10%, 5%, and 1% levels, respectively. The figures
in parentheses are the t-statistics. Outliers are excluded. Non-house-type housing is also excluded. The standard
errors are Huber–White–Hinkley (HC1) heteroskedasticity consistent. Structure attributes fixed effects, location
fixed effects and time fixed effects are controlled in all models.

Appendix A.2 Neighbourhood Density Associations of All Building Types in Floor Areas

Table A3 shows the results of the level 1 models at the designated buffer radius from
the subject house. ABir, aRESir, aCOMir, aINDir represent the total floor areas of all build-
ings, residential properties, commercial properties and industrial properties, respectively,
in the isochrone. The results confirm the less favourable neighbourhood density of all
types of properties in comparison with the omitted one, i.e., GIC properties. The adverse
associations of industrial building density are significantly more substantial and consis-
tent, showing that counting the floor area of buildings is a more appropriate approach to
assessing neighbourhood density associations.

Table A4 shows the results of the level 2 models at the designated buffer radius from
the subject house. ABir, aHSEir, aAPTir, aPUBir, aRETir, aOFFir, aINDir represent the total
floor areas of all buildings, houses, apartments, public housing, retail, office and industrial
properties, respectively, in the isochrone. Airbnb is not included, as the data of Airbnb’s
floor area are not available. First, the results confirm a reducing strength of the negative
neighbourhood density association of the total floor areas of properties with housing prices
when the isochrone radius increases. Second, the results also confirm an increasing strength
of the negative neighbourhood density association of public housing floor areas. Third, the
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neighbourhood density associations of houses and apartments are consistently positive
and negative, respectively, but some estimates are statistically insignificant.

Table A3. The Results of Models 12–14.

Model 12 (r = 0.5 km) Model 13 (r = 1.0 km) Model 14 (r = 1.5 km)

Variables Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

ABir
−5.41×10−8 −5.69×10−8 −2.11×10−8

(−1.09) (−3.04) *** (−1.73) *

aRESir/ABir
−0.039 −0.048 −0.097

(−1.92) * (−1.88) * (−2.68) ***

aCOMir/ABir
−0.050 0.018 −0.047

(−2.64) *** (0.73) (−1.60)

aINDir/ABir
−0.049 −0.070 −0.092

(−2.17) ** (−2.71) *** (−2.72) ***

DISTi
−0.001 −0.002 −0.002

(−0.62) (−0.78) (−1.05)

FIXED EFFECTS Structure attributes, Month dummies, Suburb dummies, Cohort dummies, Tenure dummy

No. of Obs. 11,329 11,329 11,329

Adj. R-Squared 0.61 0.60 0.60

Notes: The dependent variable ln(Pits) is the logarithm of the net transacted housing prices in New Zealand
dollars, and *, **, *** mean that the coefficient is significant at the 10%, 5%, and 1% levels, respectively. The figures
in parentheses are the t-statistics. Outliers are excluded. Non-house type housing is also excluded. The standard
errors are Huber–White–Hinkley (HC1) heteroskedasticity consistent. Structure attributes fixed effects, location
fixed effects and time-fixed effects are controlled in all models.

Table A4. The Results of Models 15–17.

Model 15 (r = 0.5 km) Model 16 (r = 1.0 km) Model 17 (r = 1.5 km)

Variables Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

ABir
−1.78×10−7 −7.92×10−8 −2.33×10−8

(−3.50) *** (−4.06) *** (−1.77) *

aHSEir/ABir
0.010 0.054 0.038

(0.66) (2.48) ** (1.18)

aAPTir/ABir
−0.085 −0.022 −0.276

(−1.30) (−0.22) (−1.47)

aPUBir/ABir
−0.458 −0.568 −0.721

(−14.02) *** (−10.80) *** (−9.18) ***

aRETir/ABir
−0.062 0.091 −0.007

(−1.65) * (1.70) * (−0.11)

aOFFir/ABir
0.083 0.155 −0.044

(0.87) (1.06) (−0.21)

aINDir/ABir
−0.031 0.003 −0.015

(−1.70) * (0.14) (−0.47)

DISTi
−0.004 −0.004 −0.004

(−1.91) * (−2.01) ** (−1.81) *
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Table A4. Cont.

Model 15 (r = 0.5 km) Model 16 (r = 1.0 km) Model 17 (r = 1.5 km)

Variables Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

FIXED EFFECTS Structure attributes, Month dummies, Suburb dummies, Cohort dummies, Tenure dummy

No. of Obs. 11,329 11,329 11,329

Adj. R-Squared 0.61 0.60 0.60

Notes: The dependent variable ln(Pits) is the logarithm of the net transacted housing prices in New Zealand
dollars, and *, **, *** mean that the coefficient is significant at the 10%, 5%, 1% levels, respectively. Figures in
parentheses are the t-statistics. Outliers are excluded. Non-house type housing is also excluded. The standard
errors are Huber–White–Hinkley (HC1) heteroskedasticity consistent. Structure attributes fixed effects, location
fixed effects and time fixed effects are controlled in all models.

Appendix A.3 Controlling More Neighbourhood Attributes

Table A5. The results of Models 3B, 4B, 5B with neighbourhood variables.

Radius Distancer from Each House (With CBD_DIST and Neighbourhood Variables)

Model 3B (r = 0.5 km) Model 4B (r = 1.0 km) Model 5B (r = 1.5 km)

Variables Coefficient
(t-Stats)

Coefficient
(t-Stats)

Coefficient
(t-Stats)

NHir −0.00004 (−4.90) *** −0.00002 (−4.33) *** −0.00001 (−3.72) ***

nPUBir/NHir −0.222 (−6.70) *** −0.204 (−3.62) *** −0.144 (−2.10) **

nAIRir/NHir 0.830 (1.05) −0.255 (−0.16) −8.081 (−3.27) ***

DISTi −0.004 (−1.91) * −0.005 (−2.24) ** −0.006 (−2.60) ***

ln(Income i) −0.030 (−2.58) *** −0.028 (−2.42) ** −0.025 (−2.13) **

ln(crime i) −0.012 (−4.45) *** −0.014 (−4.81) *** −0.013 (−4.56) ***

Asiani −0.027 (−0.53) −0.032 (−0.63) −0.043 (−0.84)

Maorii −0.257 (−4.42) *** −0.255 (−4.41) *** −0.271 (−4.66) ***

MELAAi −0.632 (−2.01) ** −0.597 (−1.86) * −0.629 (−1.92) *

Paci f ici −0.126 (−2.71) *** −0.157 (−3.29) *** −0.197 (−4.14) ***

Othersi 0.414 (1.15) 0.398 (1.11) 0.265 (0.73)

FIXED EFFECTS Structure attributes, Month dummies, Suburb dummies, Cohort dummies, and Tenure dummy

No. of Obs. 10,418 10,418 10,418

Adj. R-Squared 0.60 0.60 0.60

Notes: Compared with the model specifications of Models 3b, 4b and 5b, seven neighbourhood variables are
added in these Models 3B, 4B, 5B. They are (1) the natural logarithm of the median personal income per each
neighbourhood statistical area unit where house i is located, ln(Income i), (2) the natural logarithm of the number
of crimes per each neighbourhood statistical area unit where house i is located, ln(crime i), (3) the proportion of
Asian people per each neighbourhood statistical area unit where house i is located, Asiani , (4) the proportion of
Maori people per each neighbourhood statistical area unit where house i is located, Maorii , (5) the proportion of
Middle Eastern, Latin American and African people per each neighbourhood statistical area unit where house i
is located, MELAAi , (6) the proportion of Pacific Islanders per each neighbourhood statistical area unit where
house i is located, Paci f ici , (7) the proportion of other ethnic group people per each neighbourhood statistical
area unit where house i is located, Othersi . The dominant ethnic group European people is omitted to allow
estimations without multicollinearity. The dependent variable ln(Pits) is the logarithm of the net transacted
housing prices in New Zealand dollars, and *, **, *** mean that the coefficient is significant at the 10%, 5%, 1%
levels, respectively. The figures in parentheses are the t-statistics. Outliers are excluded. The standard errors are
Huber–White–Hinkley (HC1) heteroskedasticity consistent. Structure attributes (number of bedrooms, number of
bathrooms, floor area, cohort dummies, tenure dummy) fixed effects, location (suburb dummies) fixed effects and
time (monthly dummies) fixed effects are controlled in all models.
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