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Abstract: Construction safety requires real-time monitoring due to its hazardous nature. Existing
vision-based monitoring systems classify each frame to identify safe or unsafe scenes, often triggering
false alarms due to object misdetection or false detection, which reduces the overall monitoring
system’s performance. To overcome this problem, this research introduces a safety monitoring system
that leverages a novel temporal-analysis-based algorithm to reduce false alarms. The proposed
system comprises three main modules: object detection, rule compliance, and temporal analysis.
The system employs a coordination correlation technique to verify personal protective equipment
(PPE), even with partially visible workers, overcoming a common monitoring challenge on job sites.
The temporal-analysis module is the key component that evaluates multiple frames within a time
window, triggering alarms when the hazard threshold is exceeded, thus reducing false alarms. The
experimental results demonstrate 95% accuracy and an F1-score in scene classification, with a notable
2.03% average decrease in false alarms during real-time monitoring across five test videos. This study
advances knowledge in safety monitoring by introducing and validating a temporal-analysis-based
algorithm. This approach not only improves the reliability of safety-rule-compliance checks but
also addresses challenges of misdetection and false alarms, thereby enhancing safety management
protocols in hazardous environments.

Keywords: construction safety; computer vision; temporal analysis; false alarm; personal protective
equipment (PPE); real-time monitoring

1. Introduction

Globally, the construction industry experiences an excessive number of fatal and non-
fatal accidents. Based on a report from the International Labor Organization, construction
workers in developed nations face a nearly four-fold higher likelihood of experiencing
fatal accidents compared to workers in other industries. Similarly, their counterparts in
less-developed countries are at a nearly six-fold higher risk compared to workers in various
other sectors [1]. Fatalities and cases of permanent disability occur alarmingly often in
the construction industry [2–4]. Although the construction sector employs about 7% of
the global workforce, it is responsible for a significant 30% to 40% of occupational deaths
in many countries [5–7]. For instance, South Korea had the highest average mortality
rate of 17.9 compared to the United States of 9.4 and China of 5.3 [8]. Renowned for its
complexity, the construction industry sector heavily relies on manual labor for supervision
and oversight. However, the involvement of human intervention in maintenance and safety
monitoring has proven to be a costly, time-consuming, and error-prone process, resulting in
inefficiency. Nevertheless, the utmost responsibility of construction companies lies in ensur-
ing the safety of their workers. Consequently, it is crucial to speed up processes, improve
productivity, and deal with safety problems in the construction industry promptly [9–13].
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Previous research on construction safety has highlighted the significant number of
hazards present in the industry due to dynamic and temporary on-site activities. Factors
contributing to the high accident rates include personnel factors, company factors, and im-
mediate factors directly related to accidents [14]. Recently, computer vision (CV) technology
applications have expanded in various industries, including construction, where CV plays
a crucial role in enhancing safety and monitoring operations [15]. Zheng and Li reviewed
studies between 1991 and 2021, indicating the significance of information technology tools
and software such as computer vision, virtual reality, and simulation in enhancing hazard
awareness and safety practices in construction [14]. Researchers have developed CV-based
detectors and systems to prevent accidents and ensure compliance with safety regulations
at construction sites [16]. Significant contributions have been made by proposing personal
protective equipment (PPE) detectors to ensure compliance with safety regulations [17–22].

However, these methods, despite their effectiveness in controlled environments, have
yet to be deployed and assessed on actual construction sites in real-time [23]. Some
researchers have proposed practical applications of their CV techniques in real construction-
site scenarios, but these models commonly exhibit limited generalizability, performing
well only within the specific conditions of their training datasets. Furthermore, these
methods do not consistently detect each frame accurately, leading to false or missed
detections due to occlusion or overlapping [24]. This issue results in false alarms, making
automated monitoring systems impractical for construction sites. Additionally, Li et al.
have highlighted the need for standardized methods to mitigate subjectivity and errors
in safety risk decisions [25]. These approaches highlight the need for robust and reliable
systems that can operate effectively in dynamic and complex environments.

To address these challenges, researchers have integrated CV technology with Internet
of Things (IoT) sensors to minimize false alarms. Wang et al. [26] proposed a system that
combines object-tracking algorithms with sensors to decrease false alarms in detecting
unsafe-proximity situations. Talaat et al. [27] proposed a smart fire detection system that
enhances accuracy and reduces false alarms. Similarly, optimized deep learning models
and temporal-analysis techniques have been explored to improve detection accuracy and
reduce false detection rates [28–33]. According to the bibliometric study by Luo et al. [34],
various developed and developing countries have adopted AI technology for safety re-
search on construction sites. Mostly, researchers have proposed new methods for rule
compliance, inspection, and risk assessment and identification. However, classification
or rule-compliance-based systems often fail during monitoring due to false detections
or missed detections, triggering the alarm after detecting an unsafe event. Despite these
advancements, no study has comprehensively addressed the challenges of false and missed
detection in real-time construction-site safety monitoring, which triggers false alarms.

Therefore, this study aims to proposes a CV-based approach that integrates time-based
analysis of work construction activities. This integration aims to classify safe and unsafe ac-
tions effectively by considering the presence of both the objects and the temporal context of
worker behavior. To do so, the proposed system incorporates a newly developed algorithm
for temporal analysis to address the challenge of false alarms triggered in dynamic work
environments. As a case study, the system focuses on validating the dynamic scenario of
wearing a helmet, where worker behavior frequently changes throughout the workday.
The system first utilizes an object correlation technique to ascertain whether the worker
is wearing a helmet. Subsequently, the system leverages the temporal-analysis module
to examine the time-based relationship between the detected objects. This analysis helps
to reduce false alarms triggered by dynamic work environments and ensures consistent
performance in the monitoring process.

The remainder of this paper is organized as follows. Section 2 presents related research
on CV techniques for construction safety monitoring and existing methods for reducing
false alarms during real-time monitoring. Next, Section 3 describes the proposed methodol-
ogy and algorithms for implementing safety rules in real-time monitoring, incorporating
temporal analysis to reduce false alarms. Then, Section 4 outlines the experimentation
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details, the results of the proposed methodology, and the performance of the algorithms.
Subsequently, Section 5 discusses the proposed method and its uniqueness and limita-
tions. Finally, Section 6 summarizes the significant findings of the proposed technique and
suggests avenues for future research.

2. Literature Review
2.1. Computer Vision Techniques for Construction Safety Monitoring

The integration of CV technology is driving a significant transformation in the field of
construction safety management [35,36]. With the advent of deep learning, opportunities
for CV-based data analysis have emerged, offering solutions to challenges associated with
the manual observation and recording of unsafe behaviors. Researchers and industry
professionals recognize the considerable potential of CV systems for conducting safety
inspections and monitoring at construction sites [11,37]. This recognition has increased
research activities aimed at exploring various methods and applications tailored to moni-
toring construction sites. Despite acknowledging their potential, the literature emphasizes
the limited practical deployment and application of these techniques within the dynamic
environment of construction sites [23]. This limitation underscores the necessity for further
exploration and development in this area. This section highlights this gap by providing an
overview of the various CV techniques and methodologies that have been proposed for
construction safety monitoring.

Fang et al. [17] introduced a deep learning-based detector capable of identifying in-
dividuals without proper helmet protection. In another study, Fang et al. [18] focused
on enhancing worker safety in aerial environments, detecting individuals with and with-
out helmets, harnesses, and anchors, whether lined or not lined with webbing. Further,
Huang et al. [19] and Han et al. [20] worked on detecting individuals wearing helmets.
Further advancements have been made to detect diverse types of PPE. For example,
Hung et al. [21] successfully detected PPE items, such as hard hats, shirts, gloves, belts,
pants, and shoes. Furthermore, Wu et al. [22] extended the scope by identifying assorted
colors of hard hats. These endeavors reflect the increasing importance of CV-based systems
in promoting workplace safety and the proactive measures taken by researchers to address
various aspects of PPE compliance.

Researchers have focused on PPE detection and proposed techniques to enhance
worker safety through compliance with safety regulations regulated by the Occupational
Safety and Health Administration (OSHA) or the Korean OSHA (KOSHA) for other con-
struction equipment operations. For instance, Anjum et al. [38] presented a technique to
check the safe working height of workers using A-type ladders. In addition, Fang et al. [39]
introduced an automatic CV approach using the mask region-based convolutional neu-
ral network (Mask R-CNN) to detect individuals traversing structural supports during
construction projects to identify unsafe behavior and prevent potential falls from heights.
Moreover, Khan et al. [16] proposed a correlation-based approach for mobile scaffold safety
monitoring in the construction industry, using the Mask R-CNN to identify and detect safe
and unsafe worker behaviors.

In the construction domain, CV-based techniques are commonly employed across
various tasks, including image classification, object detection [17], object segmentation [40],
and pose estimation [41]. Image classification involves categorizing images into predefined
classes or categories, enabling the recognition of specific objects, scenes, or activities
relevant to construction safety. For example, Seong et al. used classification techniques to
provide an evaluation of safety vest detection using color information in construction-site
images [42]. Object detection aims to locate and classify objects within an image or video
frame. This technique is employed to detect equipment, machinery, workers, or potential
hazards in real-time [17,22]. For instance, Fang et al. utilized Faster R-CNN to detect
workers and identify harnesses for safety during falls from heights [43]. Wang et al. used
surveillance cameras to track and classify workers and equipment using a deep region-
based convolutional neural network (R-CNN). Subsequently, trajectories were derived
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from another CNN-based model to analyze spatial-temporal relationships and identify
danger zones [44].

Instance segmentation involves locating specific objects or regions of interest within
an image. Few studies in construction have used segmentation techniques or drawn
polygons when training the model on real-world data. This method achieves high tracking
accuracy and precision, demonstrating its effectiveness in tracking multiple workers despite
occlusions and scale variations. For instance, Xiao et al. proposed a vision-based method
for tracking workers in off-site construction that integrates the Mask R-CNN algorithm to
apply instance segmentation and the Kalman filter to accomplish instance association [40].
Similarly, Khan et al. used this technique for safety-rule correlation for mobile scaffold
monitoring [16].

Pose estimation refers to estimating the spatial orientation or pose of objects or in-
dividuals within an image or video frame. Establishing the pose estimation of objects
(e.g., machines or workers) poses challenges due to such factors as viewpoint, illumination,
and contextual backdrop, which introduce noise. Different action recognition techniques
were established for recording construction worker actions [41]. Yang et al. introduced
a scene-parsing system using semantic information to enhance the action recognition of
workers [45]. Although CV-based worker monitoring systems have been deployed across
various construction-site scenarios, employing various techniques for multiple tasks, the ef-
fectiveness of these methods diminishes with environmental changes and variations in
training data specific to certain conditions, leading to missed and false detection [46].

2.2. Reducing False Alarms during Real-Time Monitoring

False detection, false positives, and missed detection contribute significantly to false
alarms in real-time monitoring systems. Achieving accurate detection relies on develop-
ing precise and generalized models capable of effectively identifying target objects [47].
Borowski et al. addressed the challenge of high false-alarm rates within intensive care unit
monitoring systems, primarily stemming from irrelevant noise and outliers in the time
series of the sensor data. Their study introduced two online signal filters based on robust
repeated median regression within moving windows of varying widths. These filters aimed
to differentiate relevant signals from noise and outliers in real time, enabling comparisons
between signal estimations and alarm limits rather than raw measurements [48].

Similarly, Yu et al. addressed the problem of false alarms in fire detector sensors
within structures by introducing a multidetector fire detection model. This model leveraged
asynchronous spatiotemporal signal similarity among detectors, calculating correlation
coefficients using the Pearson-derivative dynamic-time-warping method. Furthermore,
they proposed a calculation rule for the correlation coefficients of the multidetector signals
and determined alarm threshold values using the support vector classification algorithm.
The model provided early fire warnings by constructing a real-time detection model
employing these correlation coefficients [49].

The integration of camera sensors with IoT sensors is also a notable technique pre-
sented in the literature. For instance, Sudhakar et al. addressed the ecological degradation
caused by forest fires by employing uncrewed aerial vehicles (UAVs) for continuous mon-
itoring and fire hotspot detection. Their method focused on reducing false alarms by
developing and implementing reliable and accurate forest fire detection algorithms explic-
itly tailored to UAVs. This approach involved enhancing signal processing techniques,
optimizing sensor data fusion, and improving algorithm adaptability to diverse environ-
mental conditions [50]. However, this study has numerous limitations, such as outdoor
navigation obstacles, cost, safety concerns associated with UAV testing, and difficulties in
detecting defined marks for navigation, which posed significant hurdles. Additionally, in-
accuracy in width estimation influenced by the pitch angle precision was also encountered.

Moreover, Talaat et al. introduced the smart fire detection system, which employed
the improved YOLOv8 algorithm for real-time fire detection in smart cities. This system
aimed to enhance accuracy, reduce false alarms, and offer cost-effective scalability for
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detecting various urban hazards. Their framework integrated fog, cloud, and IoT layers
and facilitated rapid data processing and responses to mitigate property damage and
safeguard lives during fire emergencies [27].

However, the integration of IoT sensors and CV for decision-making can cause delays
and may be unsuitable for real-time monitoring. Thus, some researchers have opted to
rely solely on camera sensors for real-time monitoring using CV techniques. For instance,
De Venâncio et al. emphasized the significance of early fire detection and highlighted the
limitations of human-based surveillance in open areas. They proposed an automatic fire de-
tection method combining spatial (visual) and temporal patterns, leveraging convolutional
neural networks (CNNs) [51].

In addition, Abdulghafoor et al. addressed challenges encountered by surveillance
systems in real-time object detection and tracking, presenting an algorithm to overcome
these obstacles. By integrating the principal component analysis and deep learning net-
works, the algorithm efficiently detected multiple moving objects in natural scenes. Its
adaptability between the two approaches optimizes performance, as demonstrated by the
experimental results achieving superior detection and classification accuracy compared
to existing systems. This approach promises advancements in security and surveillance
applications [52].

In addition, CV researchers have optimized deep learning models by modifying their
architecture and optimizing the hyperparameters through automated machine learning
to reduce false alarms and false positives. For example, Zhu et al. optimized the head of
an object-detection model to enhance accuracy and generalizability [28]. Their optimized
head effectively classifies and localizes small objects.

Similarly, Chen et al. employed transformers for object detection alongside a residual
network (ResNet-101), resulting in improved detection accuracy and a missed detection
rate reduced by up to 3.1% [30]. In another study, Chen et al. proposed an attention
mechanism-based deformable convolution to enhance the feature pyramid network, achiev-
ing a detection accuracy of 87.9% for complex scenes [29]. Although these studies have
demonstrated enhanced detection accuracy and lower missed and false detection rates,
the models still lack sufficient generalization and produce false alarms.

Temporal analysis in object detection involves analyzing the changes and movements
of objects over time in frame or video sequences [53]. To mitigate false detections and false
alarms, researchers have employed temporal-analysis techniques. For example, Kong et al.
employed logistic regression for the classification of scenes with and without fire and
applied temporal smoothing to reduce false-alarm rates [32].

Similarly, De Venâncio et al. proposed a two-dimensional deep CNN that integrated
object detection with tracking to analyze temporal behavior and decrease false alarms
from objects, such as clouds and car lights. Their approach reduced the 60% false positive
rate [33]. Temporal-analysis methods and false-alarm reduction techniques are primarily
applied in fire detection systems.

Scarce studies have been conducted on reducing false alarms in the construction
domain. Wang et al. presented an unsafe-proximity detection model focused on minimizing
false alarms in construction sites. By considering the position, heading, and speed attributes,
the model achieved accurate identification through a state tracking and safety-rule module.
Evaluation through simulation and field experiments demonstrated promising results,
indicating the potential for enhancing construction safety and mobility while reducing false
alarms and disruptions [26].

Additionally, Chow et al. proposed an anomaly-detection approach for the inspection
of concrete defects in civil infrastructure. This approach integrated anomaly detection,
extraction, and defect classification, significantly reducing the search space for defects by at
least 60% with an average hit rate of up to 88.7% and a false-alarm rate of up to 14.2% [54].
However, occlusion or object overlapping further complicates accurate detection [55].

Construction sites encompass a diverse spectrum of worker activities and scenarios,
which can be broadly categorized into two distinct types: static and dynamic. In static
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scenarios, the work environment and nature of the activities remain relatively stable and
predictable. Construction workers engage in tasks that demand precision and unwavering
attention, with constant, uniform conditions over extended periods. For instance, we
consider the scenario of a worker operating on a mobile scaffold. In such a static scenario,
a monitoring system primarily focuses on inspecting and ensuring the structural integrity
of the mobile scaffold, including such aspects as the presence of outriggers [16]. However,
in dynamic scenarios, such as scenarios where workers consistently wear required PPE,
reliability becomes crucial. Dynamic scenarios at construction sites are characterized by a
constant state of flux, demanding workers to adapt and frequently relocate. While recent
advanced techniques can initially accurately detect hard hats, maintaining this accuracy
over time presents challenges. Instances of missed or false detection can result in frequent
false alarms, compromising reliability and disrupting operations. An exemplary instance of
a dynamic scenario involves the continuous surveillance of workers to ascertain their strict
adherence to safety protocols while actively employing a mobile scaffold. This heightened
level of surveillance becomes essential because workers may need to adjust or temporarily
remove their safety gear. This paper addresses the dynamic scenario of wearing a hard hat
as a case study to evaluate the proposed system.

3. Research Method

This study employs a comprehensive approach to real-time construction safety moni-
toring, integrating both CNN-based single-stage object-detection models such as the YOLO
series [56], and temporal-analysis techniques, specifically the sliding window approach [57],
to enhance object detection and mitigate false alarms. The primary objective of this method
is to automatically identify the scene as safe or unsafe by ensuring compliance with safety
rules and regulations. The research method is depicted in Figure 1. The initial stage involves
the conceptualization of the study. This includes identifying insufficient safety measures
and conducting an exhaustive review of existing literature to pinpoint gaps and evaluate
current problem-resolution methodologies. For preliminary validation, a straightforward
use case involving PPE checks—specifically, verifying the use of hard hats by workers—is
examined. Following this, a dataset is compiled and utilized to train a CV model.

A CV-based safety monitoring process consists of two core modules: an object-
detection module, deploying algorithms to efficiently identify and track diverse objects and
individuals at the construction site, and a rule-compliance module, assiduously enforcing
safety protocols by evaluating the collected data or frames from real-time streaming against
pre-established rules. A meticulous sequence of steps is adhered to for the object-detection
module to establish an effective real-time monitoring system. This process encompasses
data collection and preparation, including annotation and preprocessing, followed by
model training, rigorous validation, and deployment. After validating the performance,
the trained model is seamlessly integrated into the monitoring system, enabling imme-
diate detection of safety violation (as safe or unsafe scene) in real time and facilitating
the generation of alerts or alarm to immediate immediate corrective action. In addition,
the temporal-analysis module is added to the existing monitoring system, using a unique
temporal-analysis technique to reduce false alarms. In this context, a hypothesis is formu-
lated to determine the difference in accuracy of the monitoring system in generating false
alarms with and without integrating the proposed temporal-analysis module.
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Figure 1. Research method.

3.1. Data Collection and Preparation

The dataset encompasses a comprehensive repository of 5903 images depicting a myr-
iad of instances involving safety gear objects. These objects were systematically classified
into five classes: person, hard hat, boots, vest, and robodog. A heterogeneous approach was
employed to acquire images from various sources (e.g., job sites, and publicly accessible
dataset [58]) in the compilation of data. The dataset adeptly captures authentic scenarios
prevalent in diverse occupational settings. The dataset was partitioned into distinct subsets,
with 80% allocated for training, 10% for validation, and 10% for testing to facilitate model
training and evaluation because the 80:10:10 data split ratio is the best for optimizing
the learning [59]. Furthermore, various studies have used the stated data split ratio for
training deep learning models and dataset construction [60–62]. This multifaceted strategy
was instrumental in infusing the dataset with a broad spectrum of contextual diversity.
Significantly, the annotations for each object in the dataset were carefully generated using



Buildings 2024, 14, 1878 8 of 29

Roboflow, incorporating bounding box annotations to enhance the utility of the dataset for
machine learning tasks.

The training subset was augmented by applying a diverse array of augmentation
techniques to enhance the diversity and resilience of the dataset. These techniques comprise
various operations, such as horizontal flipping, saturation and brightness adjustments,
exposure variations, blur, noise addition, controlled darkening, and shear transformations.
These augmentation strategies enrich the training process by introducing deviations in
lighting conditions, spatial perspectives, and intrinsic parameters commonly encountered
in real-world scenarios. This augmentation initiative yielded a substantial three-fold
expansion of the original training dataset scale. The augmented dataset encapsulates a
broader range of variations, contributing to the robustness and adaptability of the machine
learning model trained on these augmented data.

Furthermore, a testing set comprising 214 images was collected from online data (https:
//universe.roboflow.com/universe-datasets/hard-hat-universe-0dy7t/dataset/26, accessed
on 4 December 2023) for classification. Subsequently, each picture was manually examined and
classified as either safe or unsafe to establish the ground truth during the selection of the images.
Also, some images with partial objects at the border of the image were removed because these
images are not suitable for fair classification. Thus, the final classification dataset contains 111
safe images and 103 unsafe images.

3.2. Object-Detection Module

After preparing the dataset, the subsequent stage involves training the detection model.
These detection models are categorized into two categories according to the architecture:
single- and two-stage detectors. The domain of two-stage detectors encompasses prominent
algorithms, such as the R-CNN [63], Fast R-CNN [64], Faster R-CNN [65], and Mask R-
CNN [66]. In contrast, one-stage detectors, exemplified by the YOLO series [67] and
the single-shot multibox detector [68], employ a single CNN for predicting class labels
and positional offsets without necessitating proposal generation. One-stage detectors are
oriented toward real-time object detection, prioritizing swift inferences over attaining
maximal detection precision [56].

Among the real-time object detectors, YOLO emerges as a preeminent selection due
to its lightweight network architecture, adept feature fusion techniques, and improved
detection performance. Notably, YOLOv5 and YOLOv7 have garnered extensive adop-
tion for their efficacy in real-time and resource-efficient object detection tasks. However,
YOLOv5 may exhibit constraints in detecting diminutive objects and densely clustered
object scenarios [69]. Conversely, the performance of YOLOv7 might be susceptible to
degradation attributed to various factors, including data availability, model architecture
intricacies, and hyperparameter settings [70]. Ultralytics introduced YOLOv8 in 2023,
aiming to combine the strengths of various real-time object detectors [71]. It offers excellent
extensibility and achieves a 1% higher accuracy than that of YOLOv5, making it the most
accurate detector to date [70]. The comparison of YOLOv5, YOLOv7, and YOLOv8 is
shown in Table 1.

In addition, YOLOv8 has emerged as a potent and versatile object-detection model
with broad applications. The architecture of YOLOv8 comprises two principal compo-
nents: the backbone and the head. The backbone extracts features from the input im-
age [72]. Notably, YOLOv8 introduces modifications to the YOLOv5 backbone architecture.
The conventional C3 module of YOLOv5 is replaced with the C2f module, and the initial
convolutional layer employs a 3× 3 kernel configuration, diverging from the prior 6× 6
specification [27,73].

Conversely, the head component predicts essential parameters, including bounding
boxes, objectness scores, and class probabilities relevant to objects identified within the
image. A feature that sets YOLOv8 apart is its deliberate adoption of the anchor-free
detection paradigm [27]. This approach eliminates the necessity of a priori anchor box
definitions and instead directly predicts the central coordinates of the detected objects [74].

https://universe.roboflow.com/universe-datasets/hard-hat-universe-0dy7t/dataset/26
https://universe.roboflow.com/universe-datasets/hard-hat-universe-0dy7t/dataset/26
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This approach deviates from the conventional approach of calculating offsets with respect
to predefined anchor boxes. This paradigm shift in the detection methodology offers a
two-fold advantage. First, it significantly reduces the magnitude of box predictions, miti-
gating computational complexity [75]. Second, it enhances the efficacy of the subsequent
nonmaximum suppression phase, an intricate postprocessing procedure tailored to refining
candidate detection in inference [76].

Table 1. Comparison of YOLOv5, YOLOv7, and YOLOv8 [24,56,69,72,77,78].

Feature YOLOv5 YOLOv7 YOLOv8

Backbone CSPDarknet53
Extended efficient layer
aggregation network
(E-ELAN)

Modified CSPDarknet53 backbone
(C2f module replaces the CSPLayer
used in YOLOv5)

Architecture Efficient and Lightweight More complex with
additional layers

Optimized for better accuracy and
speed

Detection Anchor-based Anchor-based Anchor-free

Loss Function
• Cross Entropy Loss
• CIoU (Complete Intersec-

tion over Union) Loss
Focal Loss Focal Loss

Small Object Detection No No

Yes (YOLOv8 solves the occlusion
issue and small object detection,
introduces a new augmentation
technique for improving the overall
detection accuracy)

Dynamic Environment
Adaptation

Good for real-time performance,
robust to variations

Better adaptation with
enhanced network design

Superior adaptability and
generalization across environments

The exploration of object-detection model training has emphasized its critical role in
achieving accuracy and efficiency within detection systems. A profound analysis of real-
time object detectors has illuminated the strengths and limitations of prominent models,
with particular attention paid to YOLOv8. The selection of YOLOv8 as the methodology
for the detection framework is due to its compelling attributes, including adept feature
fusion techniques, and superior detection performance [27]. As revealed in the following
section, YOLOv8 holds great promise for achieving precise and standard-compliant object
detection within occupational safety contexts.

3.3. Rule-Compliance Module

This module is designed to ensure compliance with the safety rules and regulations of
the OSHA of various countries. After object detection, the bounding box coordinates of the
detected objects can be used to check for rule compliance and conduct safety assessments.
Additionally, other CV postprocessing techniques and depth-estimation techniques can
be applied at this step for safety-rule compliance. Previous studies have proposed vision-
based methods for ensuring construction worker safety. Ahmed et al. [79] performed PPE
detection; however, the safe and unsafe scene classification was not conducted to check
rule compliance, requiring manual monitoring to identify individuals not wearing helmets.
Similarly, Gallo et al. [80] proposed a smart system for detecting PPE, such as helmets and
vests, without performing classification.

Classifying the scene as being compliant with safety rules (safe) or noncompliant
(unsafe) is crucial for monitoring and triggering alarms in hazardous situations. Some
researchers have addressed rule compliance; for instance, Isailovic et al. [81] developed an
algorithm for head-mounted industrial PPE compliance using deep learning. However, it
was evaluated only in a laboratory environment with one person in one frame. Moreover,
Lee et al. [82] developed an algorithm for monitoring the wearing of personal equipment
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on construction sites, checking whether the hard hat and vest are within the worker area.
The algorithm classifies the situation as safe or unsafe accordingly.

In this study, the assessment of worker behavior at a construction site centers around
the crucial criterion of hard hat compliance. The methodology employs an object-detection
module that independently identifies workers and hard hats within the construction-site
environment. Determining whether a worker is wearing a hard hat depends on the precise
coordinates of each detected object, adhering to a coordinate-based system. The functionality
of the algorithm, detailed in Algorithm 1, encapsulates this process. The algorithm involves
detecting and categorizing objects in the input frame, drawing bounding boxes around them,
and examining the coordinates of each object in a coordinate-based system. The scenarios for
evaluating hard hat compliance are depicted in Figures 2 and 3.

Figure 2. Scenarios for checking wearing hard hats with a coordination-based system when the
full-length person bounding box is detected. The subfigures (a–e) show the various positions of the
hardhat intersecting with the upper line of the person’s bounding box, confirming that the hardhat
is worn.

Figure 3. Scenarios for checking wearing hard hats with a coordination-based system when a partial
person bounding box is detected. The subfigures (a–e) show the different positions of the hardhat’s
bounding box detected when a partial person is detected.

Initially, Algorithm 1 assumes that every worker is detected without wearing a hard
hat, and the flag i is set to False. The algorithm then calculates the size of the hard hat and
worker using Equations (1) and (2):

size_of_worker←Wy2 −Wy1 (1)

size_of_HardHat← Hy2 −Hy1 (2)

After calculating the sizes, the algorithm determines whether the worker size is twice
the size of the hard hat, confirming the cases shown in Figure 2. If the condition is not
satisfied, the algorithm indicates that the worker is occluded or the bounding of the worker
is partially drawn, as depicted in Figure 3. If the first scenario is confirmed, the algorithm
checks the conditions (Wx1 < Hx1 and Wx2 > Hx2 and (Wy1 + Wy2)/2 > Hy2). If this
condition is true, it confirms that the detected worker is wearing the hard hat, and flag i
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changes to true. Otherwise, flag i remains false. In the second case, the algorithm checks
the conditions (Wx1 < Hx1 and Wx2 > Hx2 and (Wy1 + Wy2)/2 > Hy1 + Hy2 /2). If true,
the worker is wearing the helmet, and flag i is set to true. Otherwise, flag i remains false.

Additionally, the algorithm can classify unsafe scenarios, as depicted in Figure 4, such
as a hard hat in the middle of the worker, a hard hat in the hand, or a hard hat not appearing
in the head area of the worker. In these cases, the algorithm classifies the situation as the
worker not wearing a hard hat, which is an unsafe event.

Algorithm 1 Rule-Compliance Module

1: Input: model (PPE Trained Model) and F (Frame or image)
2: Output: F′ (detected frame) and sa f ty_status (Safe or Unsafe)
3: function RULECOMPLIANCEMODULE(model, F)
4: Step 1: Load the image
5: Step 2: Initialize variables:
6: hats← [] ▷ empty list to store hat details
7: Workers← [] ▷ empty list to store person details
8: safety_status← Safe
9: Step 3: Inference the model:

10: recognitions← model(F) ▷
pass the image into a loaded model to obtain detection results

11: Step 4:
12: for each res in recognitions.getItem() do:
13: label← res.label_name
14: bounding← res.bounding_box_info
15: if label == “Hat”:
16: hats.add(res)
17: else if label == “Worker”:
18: Workers.add(res)
19: F′ ← drawBBox(F, label, BBox) ▷ draw bounding box on image
20: end for
21: Step 5: Logic to check worker with helmet:
22: for each W in Workers.getItem() do:
23: i← false ▷ flag variable to check worker with helmet
24: W_bounding←W.bounding_box_info
25: for each H in hats.getItem() do:
26: ▷ Calculate the size of the helmet and person in pixels
27: size_of_worker←Wy2 −Wy1

28: size_of_helmet← Hy2 −Hy1

29: ▷ Checking if a worker is wearing a helmet and the worker’s body is
occluded or partial Worker shown

30: if size_of_worker > size_of_helmet× 2 then
31: if Wx1 < Hx1 and Wx2 > Hx2 and (Wy1+Wy2 )

2 > Hy2 then
32: i← true ▷ per instance (worker) with a helmet
33: end if
34: else
35: if Wx1 < Hx1 and Wx2 > Hx2 and (Wy1+Wy2 )

2 > (Hy1+Hy2 )
2 then

36: i← true ▷ per instance (worker) with a helmet
37: end if
38: end if
39: end for ▷ Check flag variable status of each instance of Worker
40: if i == false then
41: {safety_status← “UnSafe”}
42: end if
43: end for
44: return F′, sa f ety_status
45: end function
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Figure 4. Unsafe scenarios for checking for wearing hard hats with a coordination-based system
when the full-length bounding boxes of the person and the hard hat are detected. (a) When the
hardhat is overlapped by the person’s bounding box and is positioned above the midpoint of the
person but does not intersect with the upper line of the person’s bounding box. (b) The hardhat is
positioned at the midpoint of the bounding box and intersects with the right side of the person’s
bounding box. (c) The hardhat is above the midpoint of the person’s bounding box but partially
intersects with the person’s bounding box. (d) The hardhat bounding box is near the upper line of
the person’s bounding box and completely overlapped. (e) The hardhat is completely overlapped
and positioned at the midpoint of the person’s bounding box.

3.4. Temporal-Analysis Module for Real-Time Monitoring

Real-time monitoring systems require object detection and scene classification for each
frame or image. Relying solely on object detection or segmentation in real-time monitoring
requires manual intervention for decision-making and action. However, categorizing a frame
as depicting a safe or unsafe scene involves postprocessing, as discussed in Section 3.3.
This postprocessing automates decisions and initiates actions. Additionally, achieving 100%
accuracy in classification for each frame is challenging or impossible, leading to false alarms
because consecutive frames of the same scene may experience misdetection or false detection.

Temporal analysis is a technique that involves examining data and events over
time [83]. The output of the rule-compliance module is an event that can be safe or unsafe.
To mitigate the false alarms, this study proposes and develops an algorithm to reduce
false alarms during real-time monitoring through the temporal analysis of consecutive
frames. Specifically, the sliding window approach is adopted for the temporal analysis that
involves dividing the time series (or sequence of frames in our case) into overlapping or
non-overlapping segments of a fixed length and analyzing each segment separately [57,84].

The algorithm detects every sequential frame and performs classifications based on the
rule-compliance module. The algorithm analyzes each frame, maintains streaming results
in a buffer, and generates a list categorizing frames’ status as safe or unsafe. The proposed
algorithm evaluates the classification results for x sec window. If z% of frames within this
time frame (x s) are classified as unsafe, an alarm is triggered, and the streaming data,
including the buffer from the preceding y min, is stored as an unsafe event.

Mathematical Model and Algorithm

We let Fi denote the frames of real-time streaming, Ri is the result of classification for
frame i, Bi represents the buffer for temporary event recording, and T denotes the duration
of evaluating the classification results (x s). Moreover, z denotes the threshold percentage
for classifying frames as unsafe, and N denotes the total number of frames within the
time duration T. Further, U is the number of frames classified as unsafe within time T,
and Alarm is the binary variable indicating whether an alarm is triggered. The six critical
elements of the algorithm are mathematically represented as follows.

Frame analysis and classification: This step performs detection and classification for
each frame in video_streaming (Equation (3)):

F′i , statusi = RuleComplianceModule(Fi). (3)
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Buffer update: After classification, each frame is stored in a buffer for temporal
analysis. The results of frame i are stored with the previous buffered frames (Equation (4)).

Bi = UpdateBu f f er(Bi−1, Fi). (4)

Temporal analysis: Initially, the total number of frames N is estimated in time T using
Equation (5). Then, the total unsafe and safe frames are calculated using Equations (6) and (7).
The symbol I represents the indicator function, which is used to define a function that takes
the value of 1 if a specified condition is true and is 0 otherwise:

N = ⌊ T
frame_duration

⌋ (5)

U =
N

∑
i=1

I(statusi = “Unsafe”) (6)

S =
N

∑
i=1

I(statusi = “Safe”) (7)

Alarm←
{

1 if U
N ≥

z
100

0 if S
N ≥

z
100

(8)

The total unsafe and safe instances in T are calculated to confirm unsafe and safe
events and trigger alarms, and the decision is made according to threshold z (Equation (8)).
If U

N ≥
z

100 , it triggers the alarm and starts recording the video for y min, including the
frames in T, and resets the buffer and variables after recording the y min video. In contrast,
if S

N ≥
z

100 , the buffer and variables are initialized and analyzed against the new frames
for time T. The Algorithm 2 presents the overall process and workflow of the temporal-
analysis-based real-time monitoring system to reduce false alarms.

Algorithm 2 Temporal-Analysis-based Real-time Monitoring Algorithm
Input: Streaming/Frame sequence F = {F1, F2, . . . , Fn}, Rule-Compliance Module, z threshold, and y is the
time duration for recording unsafe event in minutes

2: function TEMPORALANALYSIS(model, F, T, z, y)
Initialize buffer: B← {}

4: N ← ⌊ T
frame_duration ⌋

U ← 0
6: S← 0

for i← 1 to n do
8: F′i , statusi ← RuleComplianceModule(model, Fi) ▷ Frame Analysis and Classification

B← UpdateBuffer(B, F′i ) ▷ Buffer Update
10: U ← U + I(statusi = “Unsafe”) ▷ Classification Evaluation

S← S + I(statusi = “Safe”) ▷ Classification Evaluation

12: Alarm←
{

1 if U
N ≥

z
100

0 if S
N ≥

z
100

if Alarm == 1 then
14: Trigger alarm for 5 s ▷ Alarm will ring for 5 s as a background process

Store streaming data for y minutes, including a time buffer T from the preceding y minutes, as an
unsafe event.

16: if y minutes video recorded then
B← {} ▷ Reset Buffer

18: U ← 0 ▷ Reset Unsafe counter
S← 0 ▷ Reset Safe counter

20: end if
else ▷ Reset buffer and other variables because most frames are classified as Safe

22: B← {} ▷ Reset Buffer
U ← 0 ▷ Reset Unsafe counter

24: S← 0 ▷ Reset Safe counter
end if

26: end for
end function
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4. Experimentation, Results, and Evaluation
4.1. Model Training and Experimental Setup

The object-detection model underwent training on a robust system featuring an i9-10900
central processing unit clocked at 2.80 GHz with 10 cores, 32 GB of RAM, and an NVIDIA
RTX 3090 graphics processing unit (GPU) with 24 GB of dedicated memory. The YOLOv8
framework employs a suite of optimizers, including Adam, AdamW, AdaMax, NAdam,
RAdam, RMSprop, and stochastic gradient descent (SGD) [71]. However, no optimizer is
universally applicable to all machine learning tasks. The choice of the optimizer that yields
optimal performance depends on the specific dataset, model architecture, and hardware
configuration [85,86]. This choice underscores the importance of experimenting with various
optimizers to determine the one that best suits the task, highlighting the essential role of
experience and the iterative process of trial and error in optimizing machine learning models.

Seven experiments were conducted to achieve this goal, with each experimental ses-
sion using one of the mentioned optimizers. A consistent batch size of 16 was maintained,
and training continued for 300 epochs in each experiment. Furthermore, default hyper-
parameters, such as the learning rate, momentum, and decay, were fixed during model
training. For comparative purposes, the larger YOLOv5 and YOLOv7 models were also
trained under similar conditions. The YOLOv5 and YOLOv8 models underwent training
with default hyperparameter settings and a batch size of 16 for 300 epochs.

4.2. Evaluation Metrics

As mentioned in the methodology, the proposed method comprises two primary
modules: the object-detection and rule-compliance modules. Two distinct validation
approaches were employed for each to validate these modules experimentally. This choice
stems from the nature of the modules. The first module focuses on object detection, whereas
the second module classifies safe and unsafe scenes. In the evaluation of the object-detection
module, established evaluation metrics were employed to quantify performance. These
metrics encompass the precision (P), recall (R), mean average precision (mAP), and the
precision-recall (PR) curve. These metrics are calculated as follows [87]:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP =
1

∑
n=0

Pn(Rn − Rn−1) (11)

mAP =
1
N

N

∑
i=1

APi (12)

where TP denotes true positive, TN indicates true negative, FP represents false positives,
and FN denotes false negatives in Equations (9) and (10). In Equation (11), n is the threshold
level belonging to real numbers, and the values are in the range of 0 to 1, whereas N denotes
the total number of classes. The average precision (AP) and mAP values are fundamental
for object detection, offering a comprehensive view of the ability of an algorithm to identify
and localize objects accurately within images [88], accounting for precision and recall
trade-offs [89].

In contrast, the AP and mAP were not computed for the rule-compliance module.
Typically, these metrics are employed to evaluate the object-detection module. Instead,
the evaluation relied on the metrics of accuracy (Acc.) and the F1-score (F1) to quantify
the performance of the rule-compliance module, classifying scenes into safe and unsafe
categories. Accuracy is essential for classifying objects or scenes correctly, providing a
straightforward measure of overall correctness. The F1-score strikes a balance between pre-
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cision and recall, making it valuable when finding the equilibrium between false positives
and negatives is critical [87,90].

Furthermore, sensitivity, precision, and specificity were computed to evaluate the
classification performance of the rule-compliance module. Sensitivity (also recognized as
the recall or true positive rate) ensures the model correctly identifies positive instances.
Precision (also known as positive predictive value) ensures the accuracy of the positive
predictions, and specificity (commonly referred to as the true negative rate) evaluates the
ability of the model to identify negative instances correctly [91]. The precision and recall
were calculated using the formulas expressed in Equations (9) and (10). The remaining
metrics were calculated as follows [87]:

Acc. =
TP + TN

TP + TN + FP + FN
(13)

F1 =
2 · P · R
P + R

(14)

Speci f icity =
TN

TN + FP
(15)

4.3. Comparison of YOLOv5, YOLOv7 and YOLOv8

This section assesses the performance of three versions of the YOLO object-detection
model: YOLOv5, YOLOv7, and YOLOv8. Although, it is a known fact that the YOLOv8
is better than YOLOv5 and YOLOv7 based on the detection results on MS-COCO dataset
which is a huge dataset with 80 classes and 330k images. However, the dataset used in this
study is smaller with different characteristics. Furthermore, the effectiveness of the deep
learning models can vary significantly depending on the characteristics of the dataset [92,93].
The evaluation is conducted on a validation set and testing set, using an intersection over
union threshold of 0.5. Table 2 presents detailed results. The analysis of the results of the
validation set reveals several noteworthy observations. First, YOLOv7 exhibited superior
performance compared to YOLOv5 and YOLOv8 in terms of precision and recall. Specifically,
YOLOv7 achieved a precision of 0.922 and a recall of 0.800, indicating its ability to identify
objects accurately and locate a high percentage of relevant objects in the validation dataset.
In contrast, YOLOv5 and YOLOv8 achieved slightly lower precision and recall scores; YOLOv5
and YOLOv8 demonstrated mAP scores of 0.859 and 0.867, respectively, on the validation
set, signifying a similar overall object detection performance for these two models on this
particular dataset.

Table 2. Comparison of YOLOv5, YOLOv7, and YOLOv8 on the validation and testing sets with a
threshold of 0.5.

Dataset Images Technique Precision Recall mAP@0.5 mAP@0.95

YOLOv5 0.899 0.798 0.859 0.583
Validation Set 676 YOLOv7 0.922 0.800 0.785 0.523

YOLOv8 0.908 0.806 0.867 0.601

YOLOv5 0.803 0.645 0.743 0.440
Test Set 676 YOLOv7 0.855 0.649 0.626 0.361

YOLOv8 0.836 0.659 0.752 0.450

The evaluation of the testing set provides further insight into the model’s capabilities
and ability to generalize the model to unseen data. Moreover, YOLOv8 emerged as the
top performer on the testing set, surpassing YOLOv5 and YOLOv7 in precision, recall,
and mAP. Notably, YOLOv8 achieved a precision score of 0.836, recall score of 0.659,
and mAP score of 0.752, demonstrating its robustness and accuracy when applied to new,
unseen data. Although YOLOv5 demonstrated superior recall compared to YOLOv8 on
the testing set, highlighting its ability to locate relevant objects, its precision was slightly
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lower. Further, the performance of YOLOv7 significantly decreased on the testing set
compared to the validation set, indicating potential sensitivity to the training dataset and
suggesting overfitting.

The observed decline in performance on the testing set, particularly in the case of
YOLOv7, raises concerns regarding overfitting. Overfitting occurs when a model becomes
overly tailored to the training and validation data, compromising its ability to generalize to
new and unseen data. The contrasting performance of YOLOv7 between the two datasets
highlights the importance of addressing overfitting problems during model development
and training.

4.4. Experimental Validation

This section presents the performance of all three modules of the proposed methods,
including the validation of the object-detection module, safety-rule-compliance module,
and temporal-analysis-based real-time monitoring module.

4.4.1. Validation of Object-Detection Module

The YOLOv8 model outperformed YOLOv5 and YOLOv7, as illustrated in Table 2.
Consequently, YOLOv8 was selected for further experimentation and analysis. Experiments
were conducted with different optimizers to determine the best model, as detailed in
Table 3. Among the six tested optimizers, YOLOv8 with SGD and YOLOv8 with AdamW
demonstrated superior performance on the validation set, achieving a 0.86 mAP. However,
YOLOv8 with SGD performed best on the testing set. Table 3 provides further details.

Table 3. Comparison of the YOLOv8 model with optimizers on the validation and testing sets with a
0.5 threshold.

Dataset Images Optimizer Precision Recall mAP@0.5 mAP@0.95

SGD 0.908 0.806 0.867 0.601
Adam 0.844 0.737 0.801 0.504

AdamW 0.876 0.805 0.860 0.546
Validation Set 676 AdaMax 0.869 0.801 0.855 0.548

NAdam 0.862 0.743 0.812 0.513
RAdam 0.857 0.752 0.815 0.514

SGD 0.836 0.659 0.752 0.450
Adam 0.819 0.669 0.731 0.387

AdamW 0.775 0.697 0.73 0.396
Test Set 676 AdaMax 0.898 0.524 0.719 0.448

NAdam 0.777 0.652 0.722 0.379
RAdam 0.845 0.628 0.726 0.394

Adam and AdamW displayed competitive performance in terms of the mAP@0.5
scores, with AdamW achieving the highest recall score on the test set; however, SGD
demonstrated superior scores of mAP@0.5 and precision on the testing set. The high pre-
cision of the SGD-based YOLOv8 model indicates that a high proportion of the objects
it retrieves is relevant. This result suggests the model is good at avoiding false positives,
ensuring that the items it returns are primarily relevant. Moreover, the high mAP implies
that the model performs well across various levels of recall, indicating a robust performance
across the thresholds. Therefore, the results suggest that SGD might be more effective at
capturing a higher proportion of true-positive instances in the dataset than Adam and
AdamW. However, optimization algorithm selection depends on various factors, including
dataset characteristics, convergence speed, and computational resources. The advantage
of the SGD over the Adam optimizer in object detection likely arises from the stable con-
vergence [85] (attributed to its fixed learning rate [86]) compared to potentially aggressive
updates for the Adam optimizer due to the adaptive learning rates. Therefore, based on
these results, the YOLOv8 model trained with the SGD optimizer was best and was selected
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for scene classification. Figure 5 depicts the PR curves of the YOLOv8 model trained with
various optimizers.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Precision-recall curves of the YOLOv8 model with (a) SGD, (b) Adam, (c) AdamW,
(d) AdaMax, (e) NAdam, and (f) RAdam optimizers.

4.4.2. Validation of Rule-Compliance Module

The algorithm presented in Algorithm 1 is applied for scene classification in images,
determining whether safety rules are adhered to within the scene. The algorithm categorizes
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images as either safe or unsafe based on this criterion. The dataset for classification consists
of 214 images, as outlined in Section 3.1. By employing the YOLOv8 detection model
with a rule-compliance module, the model achieved high precision scores of 0.93 for
the unsafe class and 0.98 for the safe class. These scores indicate that 93% and 98% of
predictions for unsafe and safe instances, respectively, were accurate. The recall scores
were commendable, with the models correctly identifying 98% of actual unsafe instances
and 93% of actual safe instances. The F1-score, the harmonic mean of precision and
recall, was equally impressive for both classes, at 0.95. The macro and weighted averages
for the precision, recall, and F1-score were consistently high, further affirming model
robustness. With an overall accuracy of 95%, the model effectively classified instances,
which is crucial for applications where safety is paramount. These findings suggest that the
model has promise for practical deployment in scenarios where distinguishing between
safe and unsafe conditions is imperative, contributing to enhancing safety measures and
risk-mitigation strategies. Figure 6 and Table 4 present the confusion matrix and detailed
macro average results, respectively.

Figure 6. Confusion matrix of scene classification using the rule-compliance module.

Table 4. Macro average scene classification results employing the rule-compliance module.

Class Precision Recall F1-Score Specificity Accuracy

Unsafe 0.93 0.98 0.95 0.98 0.95Safe 0.98 0.93 0.95 0.93

Macro Average 0.95 0.95 0.95 0.95 0.95

In addition to the classification results, the area under the curve (AUC) for the receiver
operating characteristics (ROC) curve was calculated at 0.95. Figure 7 illustrates the AUC
of the ROC, indicating that the ability of the model to distinguish between safe and unsafe
instances is excellent, with a high probability that the model ranks a randomly chosen
positive instance higher than a randomly chosen negative instance. The ROC-AUC visually
represents the trade-off between the true (sensitivity) and false positive rates (1−specificity)
across threshold settings. Its availability further underscores the model performance,
displaying a curve that approaches the upper-left corner of the plot, indicative of excellent
discrimination between the two classes. This combined evaluation reinforces the efficacy
and reliability of the model in accurately classifying instances, strengthening its potential
for practical deployment in real-world scenarios where safety assessment is critical.
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Figure 7. Area under the receiver operating characteristic curve of the YOLOv8 model with the
rule-compliance module on an unseen classification dataset.

Figure 8 depicts the visual results of the rule-compliance module. The proposed system
employs the rule-compliance module, wherein any violation results in the classification
of a frame or scene as unsafe. Workers who are compliant with safety rules, such as those
wearing helmets in this case, are indicated with green bounding boxes, signifying safe
behavior. Conversely, workers not wearing hard hats (who are violating the rules) are
marked with red bounding boxes accompanied by the label unsafe overlaid on the frame
or image.

Figure 8. Visual representation of the rule-compliance module outcomes. Compliant workers wearing
helmets are indicated by green bounding boxes; noncompliant workers without helmets are marked
with red bounding boxes labeled unsafe on the frame.

4.5. Evaluation of Temporal-Analysis Module for Real-Time Monitoring

To assess the effectiveness of the temporal-analysis module for real-time monitoring,
we conducted experiments in the controlled environment of the Construction Technology
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Innovation Laboratory at Chung-Ang University in Seoul, South Korea. For further evalua-
tion, the proposed monitoring system was employed on an actual construction site, where
short videos of each category (safe and unsafe) were collected for analysis. The perfor-
mance of the monitoring system was compared with and without the temporal-analysis
module by measuring the number of false alarms generated. For the experiment, we used
a laptop equipped with an NVIDIA 3080Ti GPU and 16 GB of dedicated RAM , with live
streaming and input facilitated through a closed-circuit television. Figure 9 illustrates the
experimental setup and results for real-time testing in the controlled environment.

Figure 9. Real-time monitoring: (a) Experimental setup for real-time monitoring and (b) results of the
temporal-analysis-based real-time monitoring.
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The real-time results demonstrate a notable decrease in false alarms with the imple-
mentation of the temporal-analysis module, underscoring its effectiveness, as no false
alarms were detected. Conversely, experiments conducted without the temporal-analysis
module exhibited instances of missed and false detection, leading to false alarms. Despite
varying the threshold z (in Algorithm 2) to 60%, 70%, and 80%, the proposed technique
yielded similar results. The selection of threshold z is contingent upon the mAP of the detec-
tion algorithm and the accuracy of the rule-compliance module. With the rule-compliance
module achieving 95% accuracy on the testing dataset (unseen data), it outperformed across
all thresholds of 60%, 70%, and 80%. However, as the number of classes or objects in the
dataset increases, the accuracy and mAP of the model decrease [94]. Consequently, for the
experiments, we set z = 70% in the algorithm, where Algorithm 2 triggers the alarm when
70% of the frames within a 5 s window are identified as unsafe, subsequently saving the
event video as proof.

For the quantitative analysis, we collected five videos to evaluate the temporal-analysis
module and false alarms. Of the collected videos, three were classified as safe and two as
unsafe. All safe videos contained safe frames, whereas unsafe videos contained unsafe
frames. Two types of ground truth were used: one with and one without the proposed
temporal-analysis method for real-time monitoring. Table 5 provides details of the videos
and a comprehensive overview of the video dataset for real-time monitoring, comparing
outcomes with and without the temporal-analysis module. Each video segment is classified
as either safe or unsafe, with corresponding durations measured in seconds and frame
rates specified in frames per second (FPS). The total number of frames in each segment is
also recorded.

Table 5 is divided into three main sections: one for video data information and two
for presenting results with and without the temporal-analysis module. In the section
detailing the results without the temporal-analysis module, ground truth alarms and gener-
ated alarms are presented for each video segment, alongside the corresponding accuracy
percentages. Conversely, in the section covering the results with the temporal-analysis
module, the same metrics are provided, revealing the influence of the module on alarm
generation and accuracy. The results indicate that the real-time monitoring system without
temporal analysis triggered false alarms for Videos 1, 2, 4, and 5. The average accuracy
of the real-time monitoring system without the temporal analysis is 97.97%. However,
the real-time monitoring system with temporal analysis displayed 100% accuracy, indicat-
ing the efficiency of the system. Hence, our hypothesis that the monitoring system with the
proposed temporal-analysis module would show better accuracy results compared to the
system without temporal analysis is supported by the findings. By showing 2.03% higher
accuracy compared to the system without temporal analysis, the monitoring system with
the temporal-analysis module demonstrates its effectiveness in enhancing performance
and reducing false alarms. While miss and false detection occurred during testing, the pro-
posed temporal-analysis module successfully avoided generating alarms, highlighting its
capability to enhance system reliability and minimize unnecessary alerts.

Table 5. Video dataset information for real-time monitoring and results with and without temporal-
analysis module.

Video 1 Video 2 Video 3 Video 4 Video 5 Avg. Acc. %

Classification Safe Unsafe Safe Unsafe Safe -
Duration in seconds 24 14 10 21.25 43.6 -
Fps 30 30 30 24 30 -
Total Frames 720 420 300 510 1308 -

GT Alarms for without TA 720 420 300 510 1308 -
Results without TA 52 419 0 509 32 -
Accuracy % 92.78 99.76 100 99.80 97.55 97.97

GT Alarms with TA 0 3 0 4 0 -
Results with TA 0 3 0 4 0 -
Accuracy % 100 100 100 100 100 100

GT: ground truth, TA: temporal analysis, FPS: frames/s, Avg. Acc.: average accuracy.
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5. Discussion

This study proposes an algorithmic framework for the real-time monitoring of con-
struction sites, addressing the challenge of false alarms triggered by inaccurate detection.
This study employs a systematic approach that integrates three critical modules (object
detection, rule compliance, and temporal-analysis monitoring), focusing on mitigating
safety risks and enhancing overall monitoring efficiency to achieve the research objective.

By leveraging a PPE detection model and spatial analysis techniques, the system
accurately identifies workers and evaluates whether they are wearing appropriate safety
gear, particularly helmets. The rule-compliance module uses the coordinate system, which
checks the correlation of bounding boxes between workers and hard hats. This approach
adds a layer of sophistication to safety compliance assessment, allowing for more accurate
detection of safety gear and consideration of various factors, such as occlusion and partial
visibility. The experimental evaluation of the algorithm for the rule-compliance module
demonstrated promising results, with high accuracy and reliability in detecting safety
violations while minimizing false alarms. The integration of the rule-compliance module
significantly enhances the ability of the algorithm to discern genuine safety breaches from
false positives, improving the overall effectiveness of the monitoring system.

Moreover, the accuracy of the classification model is intrinsically linked to the preci-
sion of the object-detection model, as Algorithm 1 relies on the bounding box information
provided by the object-detection model. During the classification process, these bounding
boxes are drawn and filtered based on a confidence score threshold. For instance, if an
object-detection model operates effectively with a threshold of 0.5, any adjustment to a
higher or lower threshold value will influence the classification outcomes, potentially
leading to a decrease in the system’s accuracy and F1-score. For validation purposes, we
employed the use case of hard hat detection, which yielded promising results. However,
it is important to note that the accuracy of the model may vary with different datasets,
potentially increasing or decreasing. This variability underscores the importance of select-
ing appropriate thresholds and datasets to maintain high-performance levels in diverse
real-world scenarios.

The temporal-analysis module, when tested in controlled environments, reduced
false alarms to zero. Without the temporal-analysis module, the average accuracy was
97.97%, with a 2.03% false-alarm rate. The critical strengths of the algorithm include
adaptability to environmental conditions and scene complexities. By integrating the rule-
compliance module and setting appropriate thresholds, the algorithm effectively identifies
unsafe events while minimizing false alarms. The buffering mechanism captures temporal
context, allowing the algorithm to discern patterns of unsafe behavior over time. It triggers
alarms and stores data for a specified duration when detecting unsafe events, facilitating
post-event analysis and compliance verification. The ability of the algorithm to reset
buffers and counters after processing each frame sequence enhances its efficiency and
adaptability. Its performance in maintaining zero false alarms in controlled environments
underscores its practical utility and reliability in real-world applications, especially in
safety-critical settings.

Temporal analysis in object detection involves tracking techniques or filtering meth-
ods [26]. These methods leverage information from neighboring frames to improve the
accuracy and robustness of object detection over time. The proposed temporal-analysis
method for real-time monitoring represents a departure from conventional tracking tech-
niques in the domain of object detection and scene classification. The involvement of a
rule-compliance module for classifying the frame or scene as safe or unsafe in real-time
tracking is challenging and requires more computation. Unlike tracking methods, which
inherently prioritize the continuation of identified objects, the proposed method evaluates
the collective behavior of objects within a temporal context. By analyzing frames within a
5 s time window (the time window is flexible, but a 5 s window is used in this study for
experimentation), we transcend the limitations of tracking, which may falter in scenarios
involving rapid object movement or occlusion.
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Moreover, the proposed method introduces a novel threshold criterion for event
declaration, where an event is classified as unsafe if at least 70% (the threshold is flexible and
can be changed, but 70% is used in this study) of the frames within the time window exhibit
characteristics indicative of unsafe conditions. This approach enables the identification of
potentially hazardous situations with a higher degree of certainty, avoiding the ambiguity
often associated with traditional tracking methods. Furthermore, the proposed method
incorporates the feature of streaming and recording concurrent with event detection. This
functionality facilitates post-event analysis for forensic purposes and serves as a robust
means of data validation and verification, augmenting the reliability and transparency of
the proposed methodology.

The object-detection model serves as the foundation to evaluate the adherence to
safety protocols. The best model can be suitable for other classification tasks and the use
cases because the object-detection model is trained on dataset that has various classes such
as hardhat, vest, boot, and person. In this study, Algorithm 1 is developed to assess the
safety compliance that uses the bounding box information provided by the object-detection
model; if a worker is found to be violating any safety rule within a frame, that frame
is classified as unsafe. Algorithm 1 can be expanded or modified to include additional
safety regulations, enabling its application to various classification tasks or use cases. Then,
the updated Algorithm 1 can classify the image as safe and unsafe and check more safety
rules according to the use case. Additionally, the proposed Algorithm 2 focuses on reducing
false alarms, remains applicable across various use cases, and is the primary focus of this
research. Furthermore, Algorithms 1 and 2 can be used with any object detection algorithm
because these algorithms only require bounding box information from the results of object-
detection model. Its deployment is intended to enhance the reliability of real-time safety
monitoring systems.

5.1. Limitations

While the proposed algorithm exhibits excellent promise, several limitations and areas
for future research remain. Optimizing algorithms for real-world deployment involves
addressing challenges such as data quality dependency, parameter sensitivity, and scal-
ability to complex scenes, particularly in the case of trained computer object detection
reliant on extensive, costly, and time-consuming photo datasets [25]. Typically, real-time
monitoring requires 30 FPS for high-quality, smooth streaming [95]. One limitation of
the study lies in the variability of the FPS performance observed in the temporal-analysis
real-time monitoring system, ranging between 19 and 25 FPS (with a 640× 640 image size)
during the experiments. The achieved FPS was notably influenced by such factors as the
resolution of the input image and the number of detected objects in the scene. Notably,
scenes with fewer objects maintained a relatively high FPS, whereas the FPS decreased
as the number of objects and frame complexity increased. This variability highlights the
challenge of maintaining consistent real-time performance across diverse construction-site
scenarios, affecting system reliability and its effectiveness in dynamic environments.

Figure 10 illustrates the results of the missed detection and classification. In Figure 10a,
a worker without a hard hat is not detected due to occlusion. However, the scene classifica-
tion remains accurate because another worker without a hard hat is detected in the frame.
Figure 10b depicts a worker mistakenly classified as wearing a hard hat, likely due to the
detected hard hat of an occluded worker behind the worker. Figure 10c depicts a worker
with an occluded and partially visible hard hat, resulting in the misclassification of the per-
son and the scene as unsafe. These types of false detection and classification occur because
conventional cameras lack depth perception, leading to the bounding box of the hard hat
being associated with the worker. These limitations highlight the challenges in deploying
the model in real construction domains. Similarly, detecting occluded objects remains a sig-
nificant challenge in CV, representing a limitation of the current object-detection modules.
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Figure 10. Missed and false detection and classification results. (a) Missed detection of the occluded
person in the image. (b) Wrongly classified worker with green bounding due to the detected hard hat
of the occluded worker. (c) Wrong scene classification due to the missed detection of a hard hat.

5.2. Recommendations

This research lays the foundation for further exploration and development in real-time
construction-site monitoring. Ongoing research focuses on leveraging depth camera solu-
tions and multicamera tracking techniques to overcome the challenges of occluded objects.
Furthermore, there is a pressing need for research into more advanced algorithms capable
of detecting small and occluded objects with higher accuracy and reliability. Additionally,
further validation and testing in diverse construction-site environments is essential to
ensure robustness and reliability across scenarios.

Additionally, optimizing performance for sustained real-time monitoring capabilities
remains a crucial focus. Furthermore, exploring the integration of blockchain technology
has promise, particularly regarding its potential to leverage system data for worker perfor-
mance evaluation. This data-driven approach could inform the development of incentive
schemes, where workers are rewarded based on their performance, enhancing productivity
and safety practices. Future work may involve expanding the scope of the algorithm to
encompass additional safety parameters and engaging industry stakeholders for real-world
validation and deployment.

6. Conclusions

This study addresses the necessity of precise and reliable real-time monitoring systems
in dynamic construction environments, with a paramount focus on ensuring worker safety.
Through the introduction of a novel algorithmic framework grounded in temporal analysis,
this research enhances real-time monitoring capabilities, particularly in verifying compli-
ance with hard hat usage as a primary use case. The integration of techniques, including
object detection, safety-rule-compliance assessment, and temporal analysis, empowers
the system to identify safety breaches accurately while mitigating false alarms during
real-time monitoring. Experimental validation confirms the effectiveness of the proposed
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system for object detection and classification, achieving 95% accuracy and a 95% F1-score.
The temporal-analysis for real-time monitoring algorithm reduces the overall false-alarm
rate to 2.03%, with zero false negatives, enhancing efficiency.

Theoretically, this study contributes to the body of knowledge by demonstrating how
temporal analysis can be effectively combined with object detection and rule compliance
assessment to improve real-time monitoring systems. The framework’s model-agnostic
nature, as evidenced by the proposed Algorithms 1 and 2, allows for integration with any
object-detection model, providing a versatile solution that can be adapted and expanded
upon with future advancements in object detection technology.

Practically, the validated temporal-analysis module has been tested in both controlled
construction environments and real job sites, confirming its robustness and reliability. This
real-world applicability means that the framework can be deployed to improve worker
safety across various construction projects, potentially reducing accidents and enhanc-
ing overall compliance with safety regulations. The reduction in the false-alarm rate
can minimize unnecessary interruptions in real-time safety-rule-compliance checking. Its
adaptability to diverse environmental conditions and scene complexities, particularly in
the construction domain, underscores its practical utility in real-world applications. Addi-
tionally, incorporating a buffering mechanism enables post-event analysis and compliance
validation, ensuring system reliability.

These endeavors aim to enhance safety practices, safeguard the well-being of construc-
tion workers, and drive innovation in construction-site monitoring technology. Ultimately,
this framework has the potential to set new industry standards and inspire future advance-
ments in safety monitoring systems across various high-risk industries.
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