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Abstract: As large-scale infrastructure construction projects conclude, the overall civil construction
market shrinks, leading to increased competition among construction companies. Accordingly, vari-
ous construction companies are gradually emphasizing the issue of project costs. Numerous studies
have shown the impact of material costs on the overall project cost. However, sharp fluctuations in
material prices have been observed in recent years due to various unstable factors in the market. Thus,
accurate prediction of material prices facilitates the development of appropriate material procurement
strategies to deal with market risks. This paper collects the rebar prices announced in the first half of
2023 in China’s Guangdong Province, selects one type of rebar price as a representative, and analyzes
the time series characteristics of the rebar price composition. Then, it judges whether the time series
passes the white noise detection, grey correlation detection, and level ratio detection. The prediction
model is established based on the seasonal auto-regressive integrated moving average (SARIMA)
model and the grey model (GM) (1.1) to predict future rebar prices. According to the characteristics
of the rebar price data in June 2023, the residual inverse method combines the results predicted by
the two models. The price in the early and middle of July 2023 is then predicted using the newly
constructed combined model. The results indicate that the combined model is more accurate than the
single prediction model.

Keywords: rebar price; combination of forecasting models; SARIMA; GM (1.1)

1. Introduction

With the completion of large-scale infrastructure construction in China, the scale of
the construction market is gradually decreasing. Consequently, market competition among
construction enterprises is becoming increasingly intense, leading to a yearly decline in
profitability within the engineering construction industry. The cost of materials accounts
for the majority of the project’s total cost. It takes several years to construct medium-
and large-scale projects, and the fluctuation of material costs significantly influences the
profitability of the enterprise. Construction enterprises mainly focus on the construction of
the price of raw materials.

Accurate prediction of material prices can improve the total project cost prediction
accuracy, ensuring the project’s profitability [1]. Construction material prices fluctuate
throughout a project’s life cycle, from the production of tender documents to the completion
of the final account of the whole process. As an uncertain risk factor affecting the entire
project construction cycle, the material price fluctuation caused by a project’s total cost
significantly affects the deviation of that project’s total cost [2]. Accurate prediction of
the future price of materials helps the procurement department to arrange appropriate
material procurement plans by which to minimize or avoid the risk of material price fluctu-
ations [3–5]. Among the construction materials, concrete and rebar costs account for most
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of the construction costs, and the rebar prices fluctuate significantly. The price of HRB400E
ϕ25 rebar in Guangdong Province reached its highest point of RMB 4586.67 in the first half
of 2023 with a low of RMB 3860 and a span of RMB 726.67 over half a year. Accurately
predicting the rebar price fluctuation provides appropriate purchasing arrangements with
which to manage it while also reducing its impact on the construction cost.

Many experts and scholars have established various forecasting models for steel price
forecasting. Al-Hammad tracked the price pattern of rebar in Saudi Arabia from 2003–2005
and constructed a polynomial regression equation to predict the future price of rebar [6].
Lin established a new grey prediction model, MFGMn (1.1), which increased the trend-
catching ability to obtain high-accuracy prediction results in steel price prediction in the
case of system instability [7]. Zhang predicted the weekly shipbuilding steel price data
through a variable-structure radial basis function (RBF) network model with a time-varying
number of basis functions and input orders [8]. Kapl predicted the price of the hot rolled
coil in the US market using the AMNIA and MSSA models, demonstrating the superiority
of the MSSA model to the AMNIA model as the time series grows [9].

Wu adopted an adaptive radial basis function neural network (RBFNN) and an adap-
tive sliding window (ASW) to predict the weekly prices of eight steel products extracted
from the Baoshan steel market in Shanghai, China, and the study demonstrated that the
ASW model had the highest accuracy [10]. Yin utilized an adaptive RBFNN model, a
back-propagation (BP) NN model, and a sliding window (SW) model to forecast the weekly
prices of eight steel products from January 2011 to December 2011 in the Baoshan steel
market in Shanghai, China, indicating the lowest mean absolute error (MAE) of the ASW
model [11]. Using the multiple eigenvalue prediction method, Feng constructed a convo-
lutional neural network to predict rebar price fluctuations [12]. Wang predicted the price
of rolled round steel using the triple exponential smoothing, grey prediction model (GM
(1.1)), grey Verhulst model, and polynomial fitting method. It was found that, although
the GM (1.1) was the optimal method, the polynomial fitting method provided the best
accuracy at specific local time points [13]. Faghih developed a vector error correction (VEC)
model for predicting short- and long-term steel prices in construction materials, achieving
excellent results in predicting the prices of asphalt, steel, and cement in the US market [14].
Shiha predicted steel bar prices in Egypt’s construction industry over a 6-month period
using an artificial neural network (ANN) [15]. Mir trained ANN to generate intervals
directly using the optimal lower bound estimation (LUBE) method, achieving excellent
results in predicting construction steel prices in the United States [16]. Xu established a
Gaussian process regression model to forecast the prices of 10 steel products in the Chinese
market [17]. Zhang improved the process of separating and retrieving the four components
of the time series, separately utilized the improved multiplicative and additive models
for forecasting and employed the inverse variance method to combine the multiplicative
and additive methods with reasonable weights. In [18], an improved combined forecasting
model was established for steel bar prices. Mi established a VMD–EEMD–LSTM model and
collected rebar futures data from 2009–2020 to predict the rebar futures price for the follow-
ing 14 trading days, providing results superior to other single and combined models [19].
Liu predicted the short-term spot price trend of steel plates using an autoregressive moving
average (ARIMA) model, a long- and short-term memory (LSTM) model, and a combined
LSTM–ARIMA model [20]. Sangkhiew made two improvements to the Holt–Winter (HW)
model, combined with artificial intelligence techniques to establish PSO–HW and GSA–HW
models to measure local stainless-steel prices [21].

2. Model Review
2.1. Rationale for Model Selection

This paper focuses on the time series price forecasting of the rebar model. To this end,
the time series of this price is analyzed to select an appropriate modeling method.
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2.1.1. Price Chart

As there are many types of rebars, material price inspection websites typically refer to
the price of a specific type of rebar as a representative sample. This section selects the price
data of rebar with the type “HRB400E ϕ25” published on the website of China Guangdong
Province Rebar Information Price Announcement (http://cbprov.gldjc.com/gd/homepage)
in 2023 as a representative. It utilizes the method of isotropic series interpolation to
supplement the missing price data due to holidays. Figure 1 displays the price of rebar in
Guangdong Province.
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Figure 1. Price of rebar in Guangdong province.

2.1.2. Stability Testing

This paper adopts the augmented Dickey–Fuller (ADF) test as the detection index by
which to verify the stability of the time series. The “Adfuller” function in Python 3.12.1 is
used to calculate the p value of the time series as 0.943, which is greater than the significance
level (α = 0.05), indicating the instability of the time series.

2.1.3. Seasonal Testing

To identify the seasonality of the time series, this study utilizes the “seasonal_decompose”
function in Python to decompose the time series values into trend, seasonal, and cyclical
components, with a seasonal cycle duration set at 30 days. Figure 2 illustrates the outcomes
of the splitting process.

The division of the time series data into multiple pairs suggests the presence of a
notable seasonal effect.

http://cbprov.gldjc.com/gd/homepage
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Figure 2. Time series splitting results.

2.1.4. White Noise Testing

White noise is utilized to assess the appropriateness of the time series for the ARIMA
model and its variations. The p value of the sequence, following the detection of the
first-order difference, is 0.012, which is less than the significance level of 0.05. The first-
order difference sequence successfully passes the white noise addition test, suggesting the
suitability of this time series for ARIMA modeling and its associated statistical time series
forecasting techniques.

2.1.5. Grey Correlation and Time Series Level Ratio Detection

The time series of rebar prices can be considered a single-factor time series predicted
by the past historical value as the characteristic feature used to predict future values.
Following the identification of seasonal variations in the time series, the grey correlation
index is employed to assess the strength of correlation between different seasons of the
time series by utilizing data from the preceding season to model the subsequent season’s
array. Simultaneously, the modeled data undergoes testing for the grade ratio to validate
the suitability of the GM model for numerical prediction.

The absolute grey correlation ε0i is calculated as follows:
Firstly, the price data for each month will be uniformly converted to 31 days, with

less than 31 days of the price data for the equivariant series interpolation complemented.
Considering the series X0 and X1, the specific calculation method can be described as
follows:

X0
i = (xi(1)− xi(1), xi(2)− xi(1), . . . , xi(31)− xi(1)) = Xi − xi(1) (1)

X0
0 = (x0

0(1), x0
0(2), . . . , x0

0(31))
X0

i = (x0
i (1), x0

i (2), . . . , x0
i (31))

(2)

εoi=
1 + |s0|+ |si|

1 + |s0|+ |si|+ |si − s0|
(3)
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|s0| = |
30
∑

k=2
x0

0(k) +
1
2

x0
0(31)|

|si| = |
30
∑

k=2
x0

i (k) +
1
2

x0
i (31)|

|si − s0| = |
30
∑

k=2
(x0

i (k)− x0
i (k)) +

1
2
(x0

i (31)− x0
0(31))|

As shown in Table 1 the grey absolute correlation between two adjacent months is
greater than 0.6, the previous month’s data can be employed to establish a prediction model
to predict the next month’s data.

Table 1. The grey correlation between two adjacent months from January 2023 to June 2023 obtained
from Equation (3).

Jan–Feb Feb–Mar Mar–Apr Apr–May May–Jun

ε0i 0.675 0.904 0.625 0.821 0.598

The grade ratio test is performed for each month’s data, modeling the data to predict
it through the grey prediction model. The grade ratio test can be described as follows:

The level ratio λ for the time series X0 = (x0(1), x0(2), . . . , x0(n)) can be calculated as
follows:

λ(k) =
x0(k − 1)

x0(k)
, k = 2, 3, . . . , n (4)

According to (4), the extremum values of the level ratios from January 2023 to June
2023 can be obtained, as shown in Table 2.

Table 2. The extremum values of the rebar price grey level ratio from January to June 2023.

Jan Feb Mar Apr May Jun

λmax 1.000 1.007 1.008 1.019 1.015 1.003
λmin 0.982 0.993 0.987 0.998 0.995 0.991

As shown in Table 2, the level ratios are in the interval (e
−2

n−1 , e
2

n+2 ). Table 3 shows the
grey level ratio intervals for different time lengths.

Table 3. Grey level ratio intervals for different time lengths.

n = 28 n = 30 n = 31

e
−2

n−1 0.929 0.933 0.936

e
2

n+2 1.069 1.064 1.062

After a grade comparison check, all of the rebar price data from January to June 2023
were checked and could be processed using the GM (1.1) model.

2.1.6. Model Selection

The examination of the above steps indicates that the time series exhibits non-stationary
time series with seasonal effects. These characteristics can be utilized to determine a suitable
modeling approach.

The SARIMA model is commonly employed for modeling non-stationary seasonal
effect time series in statistical modeling, which can achieve better forecasting results in long
time series forecasting. The combination of forecasting models can enhance the precision
of short- and medium-term forecasting.

Due to its good prediction accuracy in short- and medium-term time series, the grey
prediction model can realize the grey correlation detection and rank ratio detection. The
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GM (1.1) model can predict the future values of these time series. Therefore, the grey
prediction model can be integrated with the SARIMA model to enhance the accuracy of
predictions.

2.2. GM

The grey system theory proposed by Julong Deng in the 1980s can describe and deal
with uncertain information. Only a relatively small amount of data can be employed for
modeling without considering the data distribution [22,23]. After more than 40 years of
development, the relevant theories and methods have matured further, completing the
basic structure of the discipline system. This has many applications in image processing,
time series prediction, system optimization, control, and decision making [24–28].

In the grey system theory, completely unknown and known information are called
black and white information, respectively. Furthermore, partially known information is
called grey information, establishing the grey system. The grey system is mainly employed
for law discovery and mining historical behavioral data by classifying and processing
the known information and establishing approximate differential equations, i.e., grey
differential equations, for the explored laws.

Grey system forecasting is a grey theory component, employing the construction of
shadow equations to discover data patterns and predict the future. The GM (1.1) model
is suitable for predicting short-term data series rather than for predicting a wide range of
volatile time series [29]. Scholars have established many variants of the GM (1.1) model
by combining it with other models and have employed them to forecast food products,
securities, property markets, and energy products [27,30–35].

Section 2.1.5 verified the correlation and rank ratio of the time series from January
to June 2023. The test results indicate that the GM (1.1) model can predict the time series
successfully. The model can be established through the following process.

Let the original time series X0 in the system be as follows:

X0 = {x0(1), x0(2), . . . , x0(n)}, x0(k) ≥ 0, k = 1, 2, . . . , n

x1(k) =
k

∑
i=1

xo(i), k = 1, 2, . . . , n

X1 = {x1(1), x1(2), . . . , x1(n)},

The accumulation operation reduces the randomness of the sequence X0, and the
newly generated sequence X1 plots a curve to approximate the image of the exponential
curve. The resulting 1-AGO sequence for any non-negative raw data sequence monotoni-
cally increases.

Considering z1(k) = 1
2 x1(k) + 1

2 x1(k − 1), the following sequence of immediate neigh-
borhood mean generation can be obtained as follows:

Z1 = {z1(2), z1(3), . . . , z1(n)}

Let the grey differential equation be as follows:

x1(k) + a ∗ z1(k) = u (5)

Equation (5) describes the mean mode of the GM (1.1) model, which is essentially
a difference equation, where a and u are the internal variables and the parameters to be
identified. a represents the developmental dynamics of the grey system, called the devel-
opmental coefficient, and u indicates the developmental changes in the data relationship,
called the grey role quantity.
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The grey differential equation corresponding to the whitening equation (aka shadow
equation) is as follows:

dx1

dt
+ ax1(t) = u (6)

Considering Q =

[
a
u

]
, the least squares method can be used to obtain the coeffi-

cients as Q =

[
a
u

]
= (BT B)−1BTYn, where Yn and B can be calculated as follows:

Yn =


x0(2)
x0(3)
...
x0(n)

, B =


−z1(2)
−z1(3)
...
−z1(n)

1
1
...
1


The time response function of the whitening equation can be described as follows:

x̂1(k + 1) = [x0(1)−
u
a
]e−ak +

u
a

(7)

Considering x1(0) = x0(1), the predicted value of the original data series can be
obtained by the cumulative reduction of the values of x1(k + 1):

x̂0(k + 1) = x̂1(k + 1)− x̂1(k) = (1 − ea)(x0(1)−
u
a
)e−ak (8)

2.3. SARIMA

The differential autoregressive integrated moving average (ARIMA) model is one of
the most classical models in time series analysis. This model can fit non-stationary time
series containing trend and its main principle is to transform a non-stationary series into
a stationary one using the difference method. Nevertheless, certain non-stationary time
series might encompass cyclical features, which the ARIMA model cannot extract. The
seasonal autoregressive integrated moving average (SARIMA) model is applicable in such
scenarios.

The SARIMA model has been applied to the price forecasting of crude oil, agricultural
products, and electricity, attaining excellent results [36–42]. Based on its characteristics, the
SARIMA model is combined with other models to establish a new prediction model [43–45].
With the continuous generation of new practice series forecasting models, those combining
the SARIMA model as the object have been widely utilized [46,47].

The SARIMA model is based on the d-step differencing of the series and performs
the differencing operation on the two series values separated by S steps. The d-order
S-step differencing operation can eliminate the trend and periodicity, thus smoothing the
series. At this time, the model can be expressed as SARIMA. p denotes the non-seasonal
regression term order, d denotes the non-seasonal difference order, q denotes the non-
seasonal moving average term order, P denotes the seasonal regression term order, D
denotes the seasonal difference order, and Q denotes the seasonal moving average order.
The SARIMA model is established on top of the ARIMA model, requiring both the d-step
and the S-step differencing operations, expressed as follows:

∇sXt = Xt − Xt−1 = (1 − BS)Xt (9)

If a sequence is smoothed through the d-order S-step differencing and an ARMA model
is established for the differenced sequence, the model corresponding to this sequence is
called a SARIMA model, which can be defined as follows: let d and D be non-negative inte-
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gers; a random sequence can be obtained for the original sequence by d-order differencing
and D-order S-step differencing

Yt ≜ (1 − B)d(1 − B)DXt (10)

For a smooth ARMA sequence, we have

ϕ(B)ϕS(B)Yt = θ(B)θS(B)εt (11)

A SARIMA process with period S can be described as follows:

ϕ(B) = 1 − φ1B − φ2B2 − · · · − φpBp

ϕS(B) = 1 − φ1B − φ2B2s − · · · − φpBps

θ(B) = 1 − θ1B − θ2B2 − · · · − θpBq

θS(B) = 1 − θ1B − θ2B2s − · · · − θpBqs

The symbols AR and SA are, respectively, used to denote non-seasonal and seasonal
autoregressive polynomials, while the symbols MA and MSA are, respectively, used to
denote non-seasonal and seasonal sliding average polynomials. It should be noted that
these polynomials are white noise. D is rarely greater than 1 in practice, while p and Q
are generally less than 3. Time series modeling and forecasting are divided into linear and
nonlinear modeling. Linear modeling includes AR, MA, ARMA, ARIMA, and SARIMA
models. The SARIMA model is an evolutionary model of ARIMA, where its difference from
the ARIMA model is that it can deal with periodic time series data. Since the ARIMA model
cannot fit the periodic time series, the SARIMA model is proposed. The SARIMA model
fits non-stationary, periodic data well and is widely utilized in traffic flow forecasting and
disease prediction.

2.4. Model Evaluation Indicators

In order to conduct a fair comparison of the predictive accuracy of two distinct models, a
consistent comparison framework is established. Both models are developed using price data
collected from January to June 2023. At the same time, the GM prediction model exhibits high
accuracy in short- and medium-term numerical predictions but demonstrates limitations in
long-term numerical prediction due to its inherent prediction constraints, leading to a notable
bias in such forecasts. Hence, each month is delineated as a quarter, with each month further
segmented into three intervals. The data forecasting the market price of rebar is anticipated
to be available in early and mid-July 2023. In order to assess the accuracy of the prediction
results, this study introduces three evaluation indices: RMSE, MAE, and MAPE.

3. Methodology

The following four steps should be performed to establish the predictive models:
investigating data, data preprocessing and method selection, model testing and validation,
and combining baseline predictive models.

3.1. Survey Data

The information price of rebar in Guangdong Province, China, was calculated from
January to June 2023 (http://cbprov.gldjc.com/gd/homepage) and is presented in Ap-
pendix A. Furthermore, an interpolation method was employed to supplement the infor-
mation price that could not be released on non-working days to facilitate the prediction
model construction.

3.2. Identification and Estimation

This paper adopts two different forecasting models for combined forecasting of rebar
market prices: SARIMA and GM (1.1). First, a forecasting model is established. Second, a
model test is performed. The test results are employed to combine the models.

http://cbprov.gldjc.com/gd/homepage
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The SARIMA model establishes the function model using the Python language. The
traversal method is then utilized to derive various indicators under different combinations of
parameters. Furthermore, the AIC indicator is employed to select the best model parameters.

On the other hand, as the grey model predictions are suitable for short time forecasts,
the GM (1.1) model employs data from June 2023 to construct the prediction equations
considering the strong correlation between the two adjacent months detected in Section 2.

3.3. Model Validation

This paper chooses MSE, RMSE, and MAPE to validate the three models. The perfor-
mances of the different models are described in the following.

3.4. Combination of Models

According to the characteristics of various forecasting models, one of the research
directions of time series forecasting is to select the models with complementary characteris-
tics according to the data to be forecasted and combine them to establish new forecasting
models. Proper construction and selection of combined forecasting models can achieve
better accuracy in time series forecasting in various industry aspects. The combined fore-
casting model established using ARIMA and GARCH models has higher accuracy in the
short-term forecasting of international oil prices than those predicted by a single model [48].
The combined forecasting model also reflects higher accuracy in forecasting other time
series. Regarding stock prices, indices, and futures prices, the combined forecasting model
established using ARIMA and LSTM also obtained better forecasting results [49]. In terms
of the prediction accuracy of the dynamic gas emission concentration in the coal mining
face, wavelet decomposition and the GM–ARIMA-based prediction method are proposed
to improve the fitting effect and attain a higher prediction accuracy when compared with
results obtained by the GM (1.1), ARIMA, and their combination, called the GM–ARIMA
prediction model [50]. The combined forecasting model can freely choose the number of
models and forecasting methods, which opens up a broad research field to establish a time
series forecasting model [12].

The principle of the inverse residual method states that the higher the accuracy of the
model prediction, the smaller the residual value and the higher the weight value. If the
actual and predicted values at time t are denoted by x(t) and x̂(t), respectively, the sum of
squares of their differences in different times, denoted by Qi, can be calculated as follows:

Qi =
n

∑
t=1

(x(t)− x̂(t))2

Si is the positive square root of Qi, i.e.,

Si =
√

Qi =

√
n

∑
t=1

(x(t)− x̂(t))2

Let wi be the weight value of the prediction result in the ith sample, i.e.,

n

∑
i=1

wi = 1

wi =
S−1

i
n
∑

i=1
S−1

i

Let x̂i(t) be the predicted value at moment t. Now, x̂c(t) is the combined predicted
value at that moment, which is expressed as follows:

x̂c(t) = ∑ (x̂i(t) ∗ wi) (12)
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4. Analysis and Discussion of Results
4.1. Data Series

For the year 2023, the median price of Rebar information is CNY 4423.33, the mean is
CNY 4282.42, the standard deviation is CNY 254.072, the lowest and highest prices of the
year are CNY 3860 and CNY 4586.67, respectively, and the extreme deviation is CNY 726.67.

4.2. Model Identification
4.2.1. SARIMA

The SARIMA model can be represented as SARIMA (ps, d, qs) (Ps, D, Qs) [S], which
has seven parameters and can be determined as follows.

First, the number of seasons S is determined. In the seasonality test of the time series,
it is assumed that a season has 30 days. The seasonality test indicates that the time series
has six seasons in the case of a stable sequence of residuals going out of the trend factor.
Thus, the value of S is determined as 6.

The time series detection in Section 2 indicates that a first-order differential white
noise can detect the time series so that the value of the parameter d can be obtained as 1.

The remaining parameters are chosen in an appropriate range, as shown in Table 4
and an iterative method is adopted to find the optimal AIC values.

Table 4. Interval of values of the remaining parameters.

Min Max

ps 0 4
qs 0 4
Ps 0 3
Qs 0 3
D 0 2

By traversing the method to construct all of the models with different parameters, the
ACI values of the models are calculated for different parameters, and the model with the
minimum AIC value is chosen as the optimal model. Figures 3–7 and Table 5 show the
final calculation results.
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Table 5. The results of the SARIMA model prediction testing.

RMSE MAE MAPE

59.43 36.28 0.83%

According to the above calculations, the SARIMA model parameters were chosen as
(1, 1, 1, 0, 1, 1, 6).

4.2.2. GM (1.1)

The model adopts the price data for June 2023 to create a shadow equation with the
following data:

X0 = (3860, 3896.67, 3903.34, 3910.01, 3916.67, 3916.67, 3916.67, 3903.33, 3920, 3927.78,
3935.56, 3943.33, 3943.33, 3966.67, 3966.67, 3973.33, 3976.66, 3980, 3983.33, 3983.33, 3976.67,
3966.002, 3955.33, 3944.67, 3934, 3923.33, 3930, 3930, 3950, 3973.33).

A 1-AGO sequence is generated based on the original and immediate sequences X1
and Z1, respectively. The following parameters are chosen based on the generated sequence:

Q =

[
a
u

]
=

[
−0.00054
3906.16

]
,

Taking the above parameters, the following response function can be obtained for this
time series:

x̂1(k + 1) = 7237489.630e0.00054k − 7233629.630 (13)

Now, the prediction function for this time series can be derived as follows:

x̂0(k + 1) = x̂1(k + 1)− x̂1(k) = (1 − e−0.00054)(x0(1) + 7233629.63)e0.00054k (14)

Table 6, Figures 8 and 9 shows the prediction results obtained with the GM (1.1) model.

Table 6. GM (1.1) model prediction result testing.

RMSE MAE MAPE

23.82 19.27 0.49%
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4.3. Evaluation of the Combined Model Results

The SARIMA and GM (1.1) models have been established for rebar price forecasting,
and the methodology for combining these models has been determined. Accordingly, the
following formulas can be obtained for combining the models:

x̂c(t) = x̂sarima ∗ 0.683269 + x̂gm(1.1) ∗ 0.316731 (15)

Table 7 shows the predicted results obtained based on this combination.

Table 7. Predicted results.

Day Price SARIMA GM (1.1) Combinational Model

1 Jul 23 3973.33 3977.86 3973.44 3976.46
2 Jul 23 3973.33 3978.62 3975.59 3977.66
3 Jul 23 3973.33 3986.86 3977.75 3983.98
4 Jul 23 4003.33 3989.11 3979.91 3986.19
5 Jul 23 4003.33 3990.54 3982.07 3987.86
6 Jul 23 4003.33 3990.27 3984.23 3988.36
7 Jul 23 4003.33 3989.30 3986.39 3988.38
8 Jul 23 3998.89 3996.15 3988.55 3993.74
9 Jul 23 3994.44 3992.73 3990.71 3992.09

10 Jul 23 3990.00 3992.03 3992.88 3992.30
11 Jul 23 3963.33 3983.30 3995.05 3987.02
12 Jul 23 3963.33 3983.12 3997.21 3987.58
13 Jul 23 3970.00 3974.75 3999.38 3982.55
14 Jul 23 3993.33 3967.93 4001.55 3978.58
15 Jul 23 3993.33 3970.28 4003.72 3980.87
16 Jul 23 3993.33 3969.11 4005.89 3980.76
17 Jul 23 3993.33 3968.44 4008.07 3980.99
18 Jul 23 3993.33 3965.84 4010.24 3979.90
19 Jul 23 3993.33 3963.15 4012.42 3978.75
20 Jul 23 4000.00 3967.17 4014.59 3982.19
21 Jul 23 4000.00 3963.54 4016.77 3980.40
22 Jul 23 4008.89 3962.31 4018.95 3980.25
23 Jul 23 4017.78 3955.65 4021.13 3976.39
24 Jul 23 4026.67 3956.91 4023.31 3977.94
25 Jul 23 4046.67 3949.21 4025.49 3973.37
26 Jul 23 4051.67 3943.02 4027.68 3969.84
27 Jul 23 4056.67 3946.09 4029.86 3972.62
28 Jul 23 4073.33 3945.99 4032.05 3973.25
29 Jul 23 4073.33 3946.32 4034.23 3974.16
30 Jul 23 4073.33 3943.97 4036.42 3973.25
31 Jul 23 4073.33 3941.51 4038.61 3972.27
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Tables 8–10 compare the accuracy of the prediction results of the three models based
on the evaluation indices, including the RMSE, MAE, and MAPE.

Table 8. Evaluation indices for the predicted results in 10 days.

SARIMA GM (1.1) Combination Model

RMSE 9.90 13.44 10.77
MAE 8.39 10.45 9.04

MAPE 0.21% 0.26% 0.23%

Table 9. Evaluation indices for the predicted results in 20 days.

SARIMA GM (1.1) Combination Model

RMSE 18.60 17.66 13.89
MAE 15.83 14.80 12.44

MAPE 0.40% 0.37% 0.31%

Table 10. Evaluation indices for the predicted results in 31 days.

SARIMA GM (1.1) Combination Model

RMSE 61.99 21.39 46.96
MAE 43.99 17.85 33.12

MAPE 1.09% 0.44% 0.82%

As shown in Table 9, the accuracy of the combined prediction model has been im-
proved compared with that of the single prediction model, demonstrating the superiority of
the combined prediction model in 20-day prediction. However, as shown in Tables 8 and 10,
the SARIMA model achieved the best forecasts in the short-term 10-day price forecasts,
and GM (1.1) achieved the best forecasts throughout the July price forecasts.

Figure 10 compares the predicted results of the combinational model with the GM
(1.1) and SARIMA models. After analyzing the above charts, the GM model successfully
predicts the upward trend of the rebar price in early and mid-July. In contrast, the SARIMA
model predicts the fluctuation trend of the rebar price. Although the time of price change
in the prediction model has a deviation of 1–2 days, the predicted trend is compatible with
the actual price trend. More accurate prediction results can be obtained in the short- and
medium-term rebar price prediction when combining the GM prediction model with the
SARIMA model through the residual inverse method.
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5. Conclusions

This study gathered data on the price of rebar in the first half of 2023 in Guangdong
Province, China, with a focus on the price of HRB400E ϕ25 rebar as a representative sample.
The data underwent a process of cleaning and interpolation and were complemented to
perform the nature detection. The time series indicated the suitability of the SARIMA and
GM models, established through the mentioned data, for modeling and forecasting the
rebar price. AIC indicators were adopted to determine the SARIMA model parameters.
The rebar price data level ratio test results and grey correlation test results were employed
to determine the GM model selection for the GM (1.1) model. The price data of the previous
month were utilized as the basis to establish the prediction model to predict the next
month’s price data.

Taking the completed SARIMA and GM (1.1) models fitted to the price data in June
2023, the suitability of the SARIMA model for volatility prediction is combined with that of
the GM (1.1) model for short-term trend prediction to establish a new model. According to
the June prediction of price data residuals of the size of the characteristics of the residuals,
the residuals of the inverse method of the two models predicted the first half of July 2023
and the middle of the weighted combination of prices. The weighted combination of the two
forecasting models in early and mid-July 2023 has improved the accuracy in the short- and
medium-term rebar price prediction compared with a single statistical forecasting model.

The model proposed in this paper is primarily employed in the preparation stage of
the monthly material procurement plan during the construction phase of a project. By
forecasting the price of rebar, it can provide invaluable decision support for planning,
mitigate the risk of construction costs resulting from material price fluctuations, and reduce
the impact of market price fluctuations on the project.

The model is not subject to any specific restrictions with regard to the materials and
regions in question. However, the application of the data in question prior to the detection
and trend analysis will yield more precise results. The main limitation is whether the data
in question meets the conditions of the SARIMA model and the GM (1.1) model. The
analysis of rebar price data in the region indicates that, following a sustained decline in
March–May, a period of stability will inevitably ensue. The application of the GM model of
the trend of the change in the complementary capture, combined with the SARIMA model
for price fluctuations in the combination of forecasts, allows for the generation of accurate
predictions.

This model also has some limitations. Firstly, SARIMA models price by a certain mean
shift, with results in a lag in predicting the trend. Secondly, in order to be applicable to
this model the model must predict the data through white noise detection, grey correlation
detection and rank ratio detection, the original data requirements for which are high.

This model offers a more precise representation of data trends than the traditional
ARIMA series model, integrating trend and volatility forecasts to provide more accurate
forecasting results under specific market price conditions. In the future, the deep learning
model can be integrated into this model to replace the GM model and SARIMA model for
combined modelling, which can then be used in steel bar price prediction.

The autocorrelation of the sequence is an important reason for the lag in predicting
the trend, and to eliminate the autocorrelation one must perform the difference operation,
that is, one can take the difference between the current moment and the previous moment
as the regression target. This provides a research direction for further optimization of the
model, with the objective of improving prediction accuracy in the future.
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Appendix A

Jan Feb Mar Apr May Jun Jul

1 4091.00 4084.00 4216.00 4122.00 3570.50 3446.00 3593.67
2 4077.00 4042.00 4225.00 4083.00 3566.33 3491.00 3602.33
3 4063.00 4055.00 4272.00 4044.00 3562.17 3499.67 3611.00
4 4027.00 4053.00 4251.33 4018.00 3558.00 3508.33 3623.00
5 4017.00 4051.00 4230.67 3999.50 3542.00 3517.00 3608.00
6 4107.00 4049.00 4210.00 3981.00 3566.67 3525.00 3606.00
7 4102.33 4018.00 4033.00 4033.00 3591.33 3496.00 3511.00
8 4097.67 4055.00 4249.00 4014.67 3616.00 3503.00 3518.00
9 4093.00 4085.00 4313.00 3996.33 3588.00 3558.00 3525.00

10 4124.00 4074.00 4314.00 3978.00 3537.00 3544.67 3532.00
11 4164.00 4047.00 4333.00 3984.00 3480.00 3531.33 3550.00
12 4136.00 4020.00 4352.00 3956.00 3415.00 3518.00 3586.00
13 4173.00 3993.00 4371.00 3933.00 3437.33 3588.00 3588.00
14 4146.33 4027.00 4373.00 3945.00 3459.67 3594.00 3630.00
15 4119.67 4066.00 4332.00 3950.00 3482.00 3611.00 3612.00
16 4093.00 4146.00 4205.00 3955.00 3524.00 3654.00 3594.00
17 4119.00 4167.00 4262.00 3960.00 3595.00 3643.00 3576.00
18 4165.00 4172.67 4239.33 3971.00 3574.00 3632.00 3627.00
19 4196.00 4178.33 4216.67 3949.00 3535.00 3621.00 3623.00
20 4179.00 4184.00 4194.00 3928.00 3508.00 3595.00 3678.00
21 4181.20 4254.00 4156.00 3828.00 3481.00 3555.00 3698.00
22 4183.40 4237.00 4153.00 3794.67 3454.00 3538.00 3694.00
23 4185.60 4228.00 4070.00 3761.33 3478.00 3538.00 3690.00
24 4187.80 4224.00 4107.00 3728.00 3390.00 3538.00 3686.00
25 4190.00 4213.00 4106.33 3700.00 3352.00 3538.00 3742.00
26 4192.20 4202.00 4105.67 3698.00 3399.00 3538.00 3746.00
27 4194.40 4191.00 4105.00 3679.00 3406.33 3590.00 3782.00
28 4196.60 4174.00 4136.00 3583.00 3413.67 3594.00 3786.00
29 4198.80 4151.00 3578.83 3421.00 3582.00 3776.33
30 4201.00 4167.00 3574.67 3372.00 3585.00 3766.67
31 4143.00 4161.00 3374.00 3757.00
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