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Abstract: Several single-column pier girder bridges have been involved in overturning accidents,
resulting in significant economic losses and casualties, thus necessitating a risk assessment of the
overturning stability. To date, the effect of structural degradation due to concrete creep on the
long-term stability of bridges has not been demonstrated. In this study, a full-scale nonlinear analysis
of the lateral overturning process of a collapsed concrete box girder based on the explicit dynamic
finite element method (EFEM) was conducted to verify the reliability of the numerical method. An
EFEM model incorporating concrete creep was developed to demonstrate the effect of structural
degradation on the long-term stability of bridges. The synthesis overturning axis method (SOAM)
was proposed to evaluate the long-term overturning stability of concrete continuous bridges, aiming
to address the deficiencies in existing methods, particularly for curved bridges, and was compared
with conventional methods. The results show that the variations in bearing reaction forces between
curved and straight bridges under creep and self-weight are minimal, staying within 2%. An increase
in the creep terminal coefficient results in the opposite trend in the ultimate vehicle weight of curved
bridges and straight bridges, but fluctuations remain within 2%, indicating that long-term creep
has a limited effect on the overall overturning stability. A failure analysis of 20 single-column pier
bridges reveals significant differences in the ultimate vehicle weight between the rigid overturning
axis method (ROAM) and folded overturning axis method (FOAM), with error ranges of −14.2%
to 567.4% and −99.1% to −32.1%, respectively. The SOAM results have the smallest error range
compared to those of the EFEM, with an error range of −38.8% to 33.9%. Despite these errors, the
SOAM demonstrates a significant improvement in characterizing the trend and assessment accuracy
of the overall overturning stability of single-column pier bridges.

Keywords: bridge engineering; single-column pier; collapse damage; overturning; creep; assessment
method

1. Introduction

The construction of single-column piers generally needs small sites, which is beneficial
to reducing environmental destruction, saving costs, and avoiding possible conflicts with
underground architectures [1]. However, there have been many overturning instances
of girder bridges with single-column piers in China and other locations as a result of
overloaded vehicles, resulting in significant casualties and property damage [2–4]. The
safety risks associated with these bridges have garnered widespread attention, making
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it imperative to conduct overturning risk assessments for heavy-duty vehicles traversing
single-column pier bridges [5].

Numerous scholars have extensively explored the bridge overturning issue through
comprehensive approaches involving on-site investigation, theoretical analysis, numerical
simulation, and testing. Fan [6] employed the qualitative data analysis package NVivo to
analyze the system-wide failures and actions involved in the Yangmingtan bridge accident
by collecting both texts and multimedia information from the web, newspapers, and videos.
The results showed that the poor structural design, lack of regulation, and gaps between
standards and practices were the primary causes of the accident. Peng [7] conducted
forensic investigations on Chunhui Bridge and Hongfu Road Viaduct, and the results
showed that the extrusion of the bridge bearings and the large eccentric compression failure
of the columns under the overweight vehicles induced the progressive collapse. Peng [8]
also reported that the mechanism of the overturning failure was a combination of a large
rigid body rotation and a deformable body rotation. Liu [5] developed a mechanical model
of a curved single-column pier bridge and derived analytical formulas for the bearing
reaction force and torque, considering the bearing stiffness based on the force method
principle. Lee [4] and Shi [9] developed a detailed solid or shell FE model of the accident
bridge using the explicit dynamic finite element method (EFEM) to replicate the overturning
damage process of the bridge due to vehicles. Wang [10] analyzed the two damage modes
of the box girder (the slip and the bearing extrusions) and established the special force
equilibrium system to determine whether or not the box girder was overturned through
the energy method and variation principle. The most detailed solid model was developed
by Song [11], which included the prestressing effect and diaphragms, and considered the
actual configuration and dimensions of the pot rubber bearing, the material properties
and boundary conditions of the rubber pads, and the contact properties between each part
of the bearings. Xu [12] conducted in-situ overturning stability tests on a single-column
pier bridge and verified the accuracy of the elastic model by comparing it with the field-
measured data. While some meaningful progress has been achieved in the study of the
overturning mechanism, it is important to note that bridge collapse is generally a very
complex process involving various nonlinear geometric, material, and contact behaviors.

In terms of anti-overturning safety assessment methods, there are mainly the sup-
port reaction method (SRM), the overturning stability coefficient (OSC) method, and the
EFEM [6,13]. In the past, engineers overly emphasized the strength of bridge structures
and had an insufficient understanding of the bridge anti-overturning theory under over-
loaded vehicles. Simple measures to limit bearing disengagement were used to prevent
overturning accidents [5]. However, the girder body exhibits nonlinear contact behavior
during rotation, and the bridge overturning may not necessarily occur if a single bearing is
detached. Therefore, it is not enough to judge the overturning of a bridge only through
the separation of the bearings. The overall anti-overturning performance of the structure
must be assessed in conjunction with the spatial characteristics of the girders. Subsequently,
scholars began to adopt the OSC to evaluate bridges’ anti-overturning stability [14]. The
OSC is obtained by the ratio of the anti-overturning moment to the overturning moment
relative to a certain overturning axis [15]. The OSCs vary depending on the overturning
axis used, making it crucial to establish a suitable overturning axis before calculating the
OSC. Wang [16] and Song [17] gave a method for determining the overturning axis based
on the rigid rotation theory. Song [11] numerically analyzed the whole process of collapse
of a continuous box girder bridge and found that the rotation axis gradually transited
from the sectional centroid axis to a folded line through the supporting points of all the
effective bearings; the analysis bridge exhibited a rigid-body rotation against the broken
line near the ultimate overturning failure. Xiong [1] and Shi [15] found that an OSC based
on rigid overturning axes overestimated the lateral stabilizing capacity of bridges without
considering the second-order effects under large rotations. Li [18] has updated the OSC
method by replacing the rigid axes with folded axes to account for the effects of deformed
bodies during rotation. The updated OSC method has been incorporated into the MTPRC18
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code and represents the most simplified method currently available. However, Zhou [19]
and Song [11] highlighted several drawbacks of the updated OSC method: (1) it does not
consider the anti-overturning effect of an individual support bearing during the girder
rotation; (2) deploying the vehicle based on the most unfavorable state of the failed bearing
may not ensure safety; (3) the direction of the moment vector on each fulcrum section of the
curved girder varies throughout, making summing according to the scalar lack mechanical
significance. The EFEM has been utilized to simulate structural collapse processes due
to its ability to account for the discontinuous nonlinearity of structures and to capture
transient behaviors during the collapse processes [9,20,21]. Despite its accuracy, the EFEM
is time-consuming and not suitable for engineering application and promotion.

In terms of adverse loads in addition to overloaded vehicles that affect the overturning
stability of bridges, temperature, foundation displacement, and earthquakes have also
received extensive attention due to their destructive effects on bridges. Zhou [19] reviewed
the effects and divergence of the above factors on bridges’ overturning stability. Wang [22]
analyzed the effect and mechanism of temperature on the overall overturning stability of
single-column pier bridges using the EFEM, pointing out that the torsion induced by the
gradient temperature exacerbates the overturning of curved bridges, while the upward
deflection induced by the gradient temperature facilitates the separation of the girder and
bearing. Deng [23] investigated the effect of a vehicle’s centrifugal force and earthquakes
on single-column pier bridges using the equivalent static load method and found that the
centrifugal force and earthquakes will reduce the stability coefficient in an approximately
linear manner. Peng [24] examined the effect of sound barriers on the stability of bridges
using a beam element model and found that wind loads caused an increase in the rotation
angle of the support. It is worth noting that the structural performance of the bridge
degrades over time during the service process and the most significant problem is concrete
creep. The creep can lead to additional deflection, cracking, prestress reduction, and internal
force redistribution in bridges during the construction and service phases, and even affect
the structure safety [25–28]. Some cases of bridge failure due to long-term creep have been
reported, such as the Sanmenxia Yellow River Highway Bridge, which had a mid-span
downward deflection of 22 cm after nine years of service [29]; the Koror-Babeldaob Bridge
in the Republic of Palau also failed due to excessive time-varying deflection [30]. The
additional deflection or internal force redistribution caused by concrete creep may decrease
the stability of the bridge that prevents overturning. To date, the effect of creep on the
lateral overturning stability of concrete bridges has not been demonstrated in detail.

In conclusion, the research on the overturning mechanism and calculation methods of
concrete continuous bridges has yielded significant results. However, there are still some
issues to address: (a) the effect of considering the performance degradation of concrete on
the long-term overturning stability of bridges has not been adequately explored; (b) the
updated OSC method is not able to analyze the long-term overturning stability of bridges
with a small curvature radius. In this study, a collapsed three-span continuous concrete
girder bridge was used as an example to simulate the entire overturning process under
eccentric overloaded vehicles and to verify the reliability of the numerical method. Further,
an EFEM numerical model considering concrete creep was developed to demonstrate
its effect on the long-term anti-overturning stability of bridges. Finally, a new method
was proposed to further update the OSC and improve the accuracy of the long-term
overturning stability assessment of continuous girder bridges, especially for curved bridges.
A comparison with the conventional method was made after considering the self-weight of
the girders, vehicles, and concrete creep.

2. Failure Analysis of the Accident Bridge
2.1. Accident Bridge

A concrete continuous girder bridge measuring 22 + 35 + 25 m reportedly collapsed in
China [31]. This unfortunate event led to three fatalities and two injuries, resulting in the
direct economic loss of RMB 8.231 million and significant social repercussions. The bridge,
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designed for a speed of 80 km/h, featured two lanes in each direction and a superstructure
made of variable section prestressed concrete box girders. The bridge had two side piers
with double bearings and two mid piers with single bearings. The bridge deck was 9.5 m
wide, with a clearance of 5.2 m underneath. Notably, the side piers utilized one-way
movable pot bearings with a 350 mm diameter, while the mid-pier bearings were two-way
movable pot bearings with a diameter of 670 mm [32]. The bridge had not been reinforced
before the accident. The detailed dimensions of the bridge are shown in Figure 1, and the
cross-sectional parameters are plotted in Figure 2.
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2.2. Numerical Simulation

The bridge overturned during an incident involving two heavy tractor–trailer trucks,
as detailed in the accident investigation report [31]. The front trailer was transporting
seven coils of steel, totaling 160.5 tons, exceeding the permitted weight by 128.5 tons
and overloading by 401.7%. Similarly, the rear trailer carried six coils of steel weighing
160.9 tons, surpassing the permitted weight by 131.9 tons and overloading by 454.7%.
Additionally, at the time of the accident, two heavy trucks of 29 tons and 32 tons were
present on the overturned bridge.

To investigate the behavior and mechanism during the collapse of the single-column-
pier bridge, an FE model was meticulously created using the ANSYS/LS-DYNA program.
In the FE model, the concrete girder was mainly made of a MAT1 material with elastic
constitutive properties, while a MAT159 material was chosen for the possible contact areas
between the girder and the bearings or piers. The rebar and beam elements were defined
with a MAT3 material for the simulation. The maximum concrete aggregate size was 12 mm,
and the Erode parameter was taken as 1.05. The modulus of elasticity of the rebars was
2.05 × 105 Mpa, and the standard value of tensile strength was 400 Mpa. The plastic strain at
failure was set at 0.12. The bond between the concrete and rebar was established by a fluid–
solid coupling connection using the keyword CONSTRAINED_LAGRANGE_IN_SOLID.
The anti-collision guardrail and girder were constructed of C50 (with a prismatic compres-
sive strength of 32.4 Mpa) concrete with a density of 2650 kg/m3, an elastic modulus of
34.5 GPa, and a Poisson’s ratio of 0.2. The piers were composed of C40 (with a prismatic



Buildings 2024, 14, 1987 5 of 24

compressive strength of 26.8 Mpa) concrete with a density of 2650 kg/m3, an elastic modu-
lus of 32.5 GPa, and a Poisson’s ratio of 0.2. The piers, bearings, and trucks were all made
of a MAT1 elastomeric material. The truck tires and bearings were made of elastic rubber
material. The diameter of the side-pier bearing was 350 mm and the height was 100 mm,
while the diameter of the mid-pier bearing was 670 mm and the height was 160 mm. The
bearing had an elastic modulus of 1.4 GPa, a Poisson’s ratio of 0.499, and a density of
2000 kg/m3. On the other hand, the tire’s elastic modulus was 1.1 GPa, with a Poisson’s
ratio of 0.47 and a density of 1400 kg/m3.

The bearings, girders, piers, wheels, and truck body were simulated by SOLID164
elements with grid sizes of 0.03 m, 0.1 m, 0.1 m, 0.1 m, 0.1 m, and 0.1 m. To avoid larger
hourglass effects, the mesh size for the wheels was set to 0.1 m. Reinforcing bars were mod-
eled using the beam elements, and a MAT3 material was chosen for the constitutive type.
The bond between the concrete and the bars was linked by a fluid–solid coupling with the
keyword *CONSTRAINED_LAGRANGE_IN_SOLID. The keyword for the contact between
the vehicle and the girder was *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID,
while the keywords for the contact between the girder and the bearing and the bearing and
the abutment were *CONTACT_ERODING_SURFACE_TO_SURFACE_ID. The tangential
contact relationship was modeled using a penalty function and the coefficient of friction
was taken as 0.3. The bearing disengagement can be identified by determining if contact
is maintained, specifically by checking if the contact force is zero. A more uniform hexa-
hedral mesh was utilized to delineate the FE model and to avoid applying concentrated
loads on the element nodes. The final control hourglass energy was lower than 10% of the
total energy to ensure the calculation accuracy. A total of 352,169 nodes and 277,627 solid
elements were established for the entire bridge. The established FE models of the bridge
and vehicle are shown in Figure 3.
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Figure 3. FE models of the accident bridge and vehicles.

The model’s load comprised two main factors: the weight of the structure itself and
of the trucks utilized. Gravity with an acceleration of 9.8 m/s2 was utilized to determine
the self-weight within the model. An arrangement of four trucks with six axles each was
used for the vehicle loading, organized closely together. The weight distribution ratios
for the initial six axles were as follows: 0.04, 0.19, 0.17, 0.21, 0.19, and 0.21. The total
vehicle length measured 15 m, with axle spacings being 3.4 m, 0.9 m, 4.6 m, 1.6 m, and
1.6 m. Figure 4 displays the precise vehicle location, positioned 0.5 m from the edge of the
curb. To ensure precision in the calculations and to avoid complications in convergence,
as well as structural oscillations, gravitational force was gradually administered to the
structure between a timespan of 0 s and 5 s. The bridge’s quasi-static impact incorporated
the implementation of substantial damping, where the damping coefficient equaled double
the angular frequency of the bridge. During the simulation process, firm control over
the model was dictated by the *CONTROL_HOURGLASS keyword, with the option of
rigid hourglass control activated, holding a coefficient of 0.04. Mass scaling was effectively
handled through the usage of the *CONTROL_TIMESTEP keyword being assigned a
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negative value, guaranteeing that the proportion of added mass to the energy within the
model was maintained under 5%.
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2.3. Overturning Process and Failure Characteristics

The analysis of vehicles crushing bridges was conducted. Some of the critical responses
of the bridge were captured, such as the bearing reactions, girder displacements, and girder
rotation angles. Figure 5a,b show the variation of the bearing reaction force of the bridge
over time. At 13 s, the vertical reaction forces of bearings A1-2, A2, and B3 decrease
significantly, while the horizontal forces of bearings B2 and B3 also decrease. In contrast,
the horizontal forces of bearings A1-2 and A4-2 increase. Due to the horizontal force exerted
by the vehicles being greater than the friction force between the bearing and the girder, the
girder body slips. This slip causes a brief moment of weightlessness in the bridge, leading
to a decrease in the vertical reaction force and horizontal force of the mid-pier bearing,
while the side-pier bearing must bear a larger horizontal force to resist the girder body from
sliding. During the bridge overturning, the vertical displacements on the non-overturned
side of the girder are in the opposite direction to that of the overturned side and both of
them increase gradually, as shown in Figure 5c. In Figure 5d, the rotation angles of each
girder cross-section exhibit similar trends and magnitudes, all of which develop in an
“S” shape, with a maximum difference of 0.12◦. Figure 6 illustrates the process of the bridge
overturning. During the rotation of the bridge, the vehicle slid 0.48 m transversely along
the bridge and the tires contacted the underside of the guardrail. In combination with
Figures 5 and 6, it can be seen that the accident vehicles were driving on one side of the
bridge, leading to significant deformation and rotation of the box girder. As the girder
rotates 5.8◦, the horizontal force on the bearing surpasses the contact friction, causing the
girder to slip. This results in the pier cap being cut and partially damaged, ultimately
leading to the girder slipping off the bridge. Figure 7 shows the site wreckage of the bridge
and the simulation results with the EFEM. The collapse posture of the girder aligns with
the on-site wreckage, and the collapse process observed is consistent with the description
provided in reference [32], thus validating the reliability of the numerical simulation.

Peng [7] pointed out that the sliding of the box girder, the bearing extrusion, or the
eccentric compression failure of the piers may occur first during the rotation process of
the box girder, and the overall overturning of the box girder is the upper limit of the anti-
overturning capacity of single-column pier bridges. Therefore, the following assumptions
were made during the overturning process: (1) the girders, bearings, and piers were in an
elastic state and no strength damage occurred; (2) no interface slip occurred between the
girder and bearings, bearings and piers, and vehicle and bridge deck. By adjusting the
friction coefficient of the contact between the girder and the bearing to 10 and canceling the
contact between the pier cap and the girder, the overall overturning mode of the bridge can
be achieved. The trucks’ weights were consistently modified to monitor the vertical reaction
force of the bearings and the condition of the girder. When a specific truck weight was
reached, the combined weight of the trucks at the moment of the bridge’s first overturning
is known as the ultimate vehicle weight for the overall overturning.

The weight of the vehicles was constantly adjusted until the bridge overturned.
Figure 8a shows the variation in the vertical reaction forces at each bridge bearing with
the vehicle weights. As the vehicle weight increases, the vertical reaction forces of the
bearings A1-2 and A4-2 gradually increase, while the reaction forces of the other bearings
decrease and eventually drop to zero. The sequence in which the bearings detach from
the girder is as follows: A1-1 and A4-1, B2, B3, and A1-2 and A4-2. When the bridge is
solely supported by bearings A1-2 and A4-2, the vertical reaction force of these side-pier



Buildings 2024, 14, 1987 7 of 24

bearings peaks, then sharply decreases until disengagement, ultimately leading to the
bridge’s overturning. Thus, the support system degenerating into two bearings can serve
as a mechanical criterion for determining the overall overturning of a bridge. Figure 8b
illustrates the relationship between the rotation angle of the girder and the vehicle weights.
The rotation angle of the girder is 0.004 rad when the bearings A1-1 and 4-1 are disengaged.
According to the MTPRC 2019 code for bearings [33], limiting the rotation angle of bearings
or girders within 0.02 rad may not prevent the bearings from detaching but can prevent
overall overturning. Due to the ultimate vehicle weight, the girder experiences significant
rotational deformation, reaching a rotation angle of 1.29 rad. It is demonstrated that rigid
rotation theory is not applicable, because the overturning of the girder does not occur for
rotation angles smaller than this angle.
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Figure 5. Overturning effects of the analysis bridge: (a) vertical reaction force of the bearings;
(b) horizontal reaction force of the bearings; (c) z-direction displacement of the girder; and (d) rotation
angle of the girder. Note that Li and Ri denote the left and right sides of the girder section located
above the ith pier position, respectively, while Si represents the girder section above the ith pier.
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3. Verification of the Creep Model
3.1. Mathematical Model of Creep

In the past, most scholars believed that concrete creep or shrinkage was only a matter
of material science [34]. However, the accumulation of test data and practical experience
have contributed to a more profound understanding of the effects of shrinkage and creep
on structures [35]. In practical structures, creep, shrinkage, and temperature strain are
usually mixed. To obtain the creep strain, the temperature strain and shrinkage strain
should be deducted from the measured strain. For a concrete member subjected to uniaxial
constant stress σ0(t0) at time t0, the total strain ε(t) at time τ can usually be decomposed
into the following [35,36]:

ε(τ) = εi(t0) + εc(τ) + εs(τ) + εT(τ)
= εσ(τ) + εn(τ)

(1)

where εi(t0) is the initial strain at the loading moment t0; εc(τ) is the creep strain at
the moment τ; εs(τ) is the shrinkage strain; εT(τ) is the temperature strain; εσ(τ) is the
stress-generated strain; and εn(τ) is the non-stress-generated strain.

The concrete creep is usually described by the creep coefficient, and its variation
pattern is shown in Figure 9. Currently, there are two different definitions of creep coefficient
internationally: the CEB-FIP specification uses the instantaneous elastic strain of concrete
at 28 days to define the creep coefficient (Equation (2)) [37], while the American ACI209
committee defines the creep coefficient as Equation (3).

φ(τ, t0) =
εc(τ, t0)

σ(t0)/E28
(2)
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φ(τ, t0) =
εc(τ, t0)

σ(t0)/E(t0)
(3)

where εc(t, τ) is the loading at time t0 and the creep strain that occurs at time τ; σ(t0) is the
loading stress at time t0; E28 is the modulus of elasticity at 28 days; and E(t0) is the elastic
modulus at loading time t0.
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The creep function J(t0, τ) is the total strain generated at time t0 after the uniaxial unit
stress is applied to the concrete at time τ. For the above two definition methods of creep
coefficient, the creep function can be expressed as follows [38]:

J(τ, t0) =
1

E(t0)
+

1
E28

φ(τ, t0) (4)

J(τ, t0) =
1

E(t0)
(1 + φ(τ, t0)) (5)

The creep rate, on the other hand, is the creep strain produced by unit stress, and its
expression is shown below:

C(t0, t) =
εc(τ, t0)

σ(t0)
=

φ(τ, t0)

E(t0)
(6)

Presently, there are two typical types of mathematical models for creep coefficients,
one of which expresses the creep coefficient as the sum of several different subsections,
while the other expresses the creep coefficient as the product of the coefficients of the
creep-influencing factors. For example, the CEB-FIP 78 code [39] adopts the former creep
coefficient expression:

φ(τ, t0) = βa(t0) + φd(τ, t0) + φr(τ, t0) (7)

where βa(t0) is the irrecoverable deformation coefficient-generated initial time of loading;
φd(τ, t0) is the recoverable elastic deformation coefficient; and φr(τ, t0) is the irrecoverable
rheology coefficient.

The creep coefficient expression of the CEB-FIP 90 [40] specification was revised to the
coefficient product form [37]:

φ(τ, t0) = φ0βc(τ, t0) = ΦRHBfcmβ(t0)βc(τ, t0) (8)

where φ0 is the nominal creep coefficient; ΦRH is the correction coefficient for the environ-
mental relative humidity; βfcm is the correction coefficient for the concrete strength; β(t0) is
the correction coefficient for the loading age; and βc(τ, t0) is the coefficient for the time of
the creep process.
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The creep of concrete increases monotonically with the loading time, but the increase
rate gradually decreases. Assuming that the creep coefficient has a limit, it can be expressed
as an exponential or a hyperbolic function [38]. When it is assumed that there is no limit to
the creep coefficient, the form of a power or logarithmic function is usually used. Creep
in concrete structures is a very complex phenomenon in which various uncertainties exist
concerning inherent material variations as well as modeling uncertainties [37]. Numerous
theoretical and experimental studies have been conducted in various creep prediction
models [41,42]. In this study, a simple and efficient power function model (Equation (9)) is
employed to consider the influence of creep. The effective stress–strain development curve
of this creep model is depicted in Figure 10 [43].

εc = Aσntm (9)

where A is the effective creep strain, m and n are constants, and t is the effective time.
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The effective stress σ is defined as follows:

σ =

√
3
2

σijσij (10)

3.2. Validation of the Creep Model

To explore the creep pattern of prestressed concrete structures under variable loads,
Zhao [44] conducted long-term experimental observation tests on model beams and ob-
tained relatively credible results. In this study, the relevant parameters A, m, and n of the
adopted mathematical model of creep were determined based on the experimental results
of reference [44]. The experiment involved a box-shaped C50 prestressed concrete beam
with a span of 3300 mm. At both ends of the beam, a 40 mm hole was reserved at the
center of the cross-section to accommodate an unbonded prestressed rebar with a diameter
of 32 mm. The dimensions of the experimental beam are shown in Figure 11, while the
experimental scheme is shown in Figure 12.
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Figure 12. Experimental scheme.

The FE model of the experimental beam considering creep was established using
ANSYS/LS-DYNA. The rebar and concrete were modeled using a decoupled approach.
The beam was constructed with C50 (with a prismatic compressive strength of 32.4 Mpa)
concrete with a density of 2650 kg/m3, an elastic modulus of 34.5 GPa, and a Poisson’s
ratio of 0.2. The modulus of elasticity of the rebars was 2.05 × 105 Mpa, and the stan-
dard value of tensile strength was 400 Mpa. The modulus of elasticity of the prestressed
rebar was 2.0 × 105 Mpa and the standard value of tensile strength was 930 Mpa. The
concrete and rebar were simulated by Solid164 and Beam161 elements, respectively. The
mesh size of the beams and rebars was 30 mm, while the mesh of the beam bottom pads
was set to 20 mm. The entire model had a total of 8640 solid elements and 1176 beam
elements. The bearing and beam adopted automatic surface contact with the keyword
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE, and the friction coefficient was set
to 0.3. The concrete was made of *MAT_UNIFIED_CREEP material that could be taken into
account for the creep effect. The material parameters A, m, and n determined the develop-
mental characteristics of the concrete creep. The entire FE model of the experimental beam
is shown in Figure 13.
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concrete elements.

The fitting creep curve was obtained from the experimental results, as shown in
Figure 14. The values of parameters A, m, and n were finally determined to be 2.21 × 10−6,
1.36, and 0.43, respectively. By adding the above parameters to the material keywords, the
fitted creep rate curves and total force strains of the experimental beams under incremental
loads were ultimately achieved, as depicted in Figure 14.
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roof plate; and (b) total force strain.

From the above figures, the calculated total strain aligns with the measured data trend,
showing a gradual increase in forced strain over time with a decreasing slope, indicating a
good simulation effect. This suggests that the creep material model can be further employed
in the analysis of vehicle-induced bridge overturning.

4. Overturning Effects Induced by Creep
4.1. Bridge Categories

During the overall overturning process of the single-column pier bridge, the boundary
conditions of the bridge continue to change, and each support fails one after another. Once
the number of effective bearings is less than three, the bridge will suffer overall overturning.
Previous studies have indicated that straight bridges and curved bridges exhibit different
overturning characteristics [3,9,45]. According to the location of the last failed bearings,
the distinguishing characteristics of the two types of bridges are as follows: the last two
failed bearings of the curved bridge are the mid-pier bearings located on the outermost
overturning side, providing effective torsional support (Figure 15a); whereas for the straight
bridge, the last two bearings of the straight bridge to fail are the side-pier bearings on the
overturning side, which serve as effective anti-torsional supports (Figure 15b).
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Figure 15. Schematic deformation of bridge overturning: (a) curved bridge; and (b) straight bridge.
Note that P represents the eccentric vehicle load.

The critical curvature radius, as an essential parameter for distinguishing bridges,
corresponds to the horizontal curvature radius of the bridge when the line connecting the
bearings on the overturning side of all the piers becomes a straight line (Figure 16). Bridges
with a radius smaller than the critical radius are considered curved bridges, whereas those
with a radius larger than the critical value are categorized as straight bridges. In this study,
curvature is a factor with both curved and straight bridges.
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Figure 16. Bridge categories: (a) curved bridge; (b) critical bridge; and (c) straight bridge. Note: The
blue dotted line represents the line connecting the bearings on the overturning side of all the piers.

Figure 17 illustrates the ultimate vehicle weights for bridges with a side-pier bearing
spacing of 2.8 m. The critical bridges, identified by their critical curvature radius, are
highlighted. The critical curvature radius gradually expands with the increase in the span
number. When all the other parameters are held constant, the ultimate vehicle weight of the
bridge decreases and then increases as the curvature radius varies, and extreme values can
be observed. It is worth noting that the minimum value of the ultimate vehicle weight is
associated with critical bridges. Overall, compared to curved bridges, straight bridges have
a smaller ultimate vehicle weight, indicating relatively poor overall overturning stability.
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4.2. Overturning Effect

Furthermore, the effect of creep on the overall overturning stability of single-column
pier bridges was analyzed. A “pseudo-time” analysis was performed during the first 20 s to
fully account for the effects of the terminal creep on the girder after 10 years. After 20 s, the
effects of the creep were no longer accounted for. Parameter A was adjusted to 2.22 × 10−6,
4.43 × 10−6, 6.63 × 10−6, and 8.84 × 10−6 to account for the creep terminal coefficients ψ
of 1.25, 1.5, 1.75, and 2. The bridges with a curvature radius of 80 m and 10,000 m were
classified as straight bridges and curved bridges, respectively. Additionally, three-span and
five-span single-column pier bridges were also considered. The girder material remained
consistent with the discussion in Section 3.1, while the materials for the other bridge
components matched those detailed in Section 2.2. For the bearings, A represents the side-
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pier bearing, while B represents the mid-pier bearing. Figure 18 presents the dimensions
of the cross-section of the bridge. The modeling process for the entire bridge followed a
similar approach to that outlined in Section 2.2. The vehicle location and number were
determined based on the influence surface, which was used to obtain the most unfavorable
effect of overturning through the fabric loads of the influence surface.
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Figure 19. Bearing vertical reaction forces for the curved bridges: (a) 3 × 25 m bridges; and (b) 5 × 25 
m bridges. 
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Figure 18. Girder cross-section (unit: cm): (a) girder section at side-pier location; and (b) girder
cross-section at mid-pier location.

The bearing reactions of the four bridges subjected to creep and self-weight are pre-
sented in Figures 19 and 20. After considering the creep, the variation ranges of the vertical
reaction forces for each bearing of the 3 × 25 m and 5 × 25 m curved bridges were −0.8%
to 1.4% and −0.2% to 0.3%, respectively. Similarly, for the 3 × 25 m and 5 × 25 m straight
bridges, the vertical reaction force variation ranges for each bearing were −0.8% to 1.4%
and −0.2% to 0.3%, respectively. Overall, it can be observed that the changes in the bearing
reaction forces due to creep are within 2% for both the curved and straight bridges.
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Figure 19. Bearing vertical reaction forces for the curved bridges: (a) 3 × 25 m bridges; and (b) 5 × 25 
m bridges. 
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Figure 19. Bearing vertical reaction forces for the curved bridges: (a) 3 × 25 m bridges; and
(b) 5 × 25 m bridges.
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Figure 20. Bearing vertical reaction forces for the straight bridges: (a) 3 × 25 m bridges; and
(b) 5 × 25 m bridges.
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The failure analysis of vehicles collapsing a bridge was conducted by placing vehicles
on a bridge for which creep had been considered. The degradation of the bridge into
two bearing support systems could be used as a supplementary criterion for the overall
overturning. Figures 21 and 22 show the ultimate vehicle weights obtained by the EFEM
for the 3 × 25 m and 5 × 25 m bridges. For curved bridges, the ultimate vehicle weights
gradually increase as the creep terminal coefficient increases. Specifically, when the creep
terminal coefficient was 2, the ultimate vehicle weights of 3 × 25 m and 5 × 25 for the curved
girder bridges increased by 0.1% and 0.2%, respectively. The ultimate vehicle weights for the
straight bridges decrease gradually as the creep terminal coefficient increases. Specifically,
when the creep terminal coefficient was 2, the ultimate vehicle weight of the 3 × 25 m and
5 × 25 m straight bridges were reduced by 1.6% and 1.1% respectively. Comprehensively,
it can be seen that the variation of the ultimate vehicle weights of both curved and straight
bridges caused by creep is within 2%. This indicates that the concrete creep has a limited
effect on the long-term overall overturning stability of the single-column pier bridge
compared to temperature and overloaded vehicles.
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by creep. In the design and maintenance stages of the bridge, a coefficient of 0.98 can be 
considered to discount the overall overturning stability of the bridge, which will simplify 
the design process and improve efficiency. 
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Figure 21. Ultimate vehicle weights of the overall overturning for the curved bridges: (a) 3 × 25 m 
bridges; and (b) 5 × 25 m bridges. 

Figure 21. Ultimate vehicle weights of the overall overturning for the curved bridges: (a) 3 × 25 m
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Figure 22. Ultimate vehicle weights of the overall overturning for the straight bridges: (a) 3 × 25 m
bridges; and (b) 5 × 25 m bridges.

Since the overall overturning is the upper limit of the overturning capacity of a bridge
and the influence of creep on the bearing reaction force and the ultimate vehicle weight is
within 2%, it can be inferred that the influence of creep on all other failure modes of the
bridge overturning is small, such as the girder sliding failure, bearing extrusion failure, and
pier failure. Many scholars have proposed many creep models, and different mathematical
models and different simulation software may cause calculation errors. Overall, concrete
creep has little effect on the overturning stability of curved and straight bridges. It is not
of practical significance to analyze the mechanism of bridge overturning caused by creep.
In the design and maintenance stages of the bridge, a coefficient of 0.98 can be considered
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to discount the overall overturning stability of the bridge, which will simplify the design
process and improve efficiency.

5. Assessment of Overturning Stability

Many scholars have highlighted the lack of code information as a significant reason
leading to the susceptibility of bridges to overturning accidents during their operation [13,17].
An accurate assessment method for the overturning stability of single-column pier bridges
can help provide guidance for bridge design or maintenance and provide early warning of
potential disasters.

Currently, measures to prevent the bridge from overturning collapse can be categorized
into three aspects: (1) preventing the bearing from disengagement or limiting the bearing
reaction force; (2) ensuring the girder or bearing angle does not exceed the limitation;
(3) enabling an OSC of greater than 1, resulting in more surplus.

There are definite provisions on the bearing disengagement state in several spec-
ifications. The Chinese specification MTPRC 2004 requires that the bearing remain in
compression under the basic combination of loads [45]. Both SIA 260 and EN 1990 specify
that the design value of the destabilizing action should be less than or equal to the value of
the stabilizing action [46]. Specifically, the AASHTO 2012 code [47] recommends that the
support reaction force of a multi-directional movable bearing should be at least 20% of the
vertical capacity of the bearing. The MTPRC 2018 code [48] mandates that bearings must
remain in compression under the basic load combinations, while the MTPRC 2005 code [49]
requires the minimum compressive stress of the bearing to be greater than 2 Mpa. The JRA
2012 code [50] considers twice the live load effect to be a factor in limiting the negative
reaction force of the bearing. Simply limiting the bearing and girder rotation angles is
insufficient. Following a series of bridge overturning accidents, the MTPRC 2018 code
introduced additional calculation methods and a requirement for the OSC to assess the
overturning stability of bridges. The OSC can be formulated in the following way [24,46]:

rq f =
Mb
Ms

(11)

where γq f is the lateral OSC of the bridge; and Mb and Ms are the stabilizing and overturn-
ing moments, respectively.

The results of the OSC depend on the choice of the overturning axis. Previous studies
have demonstrated that neither a rigid overturning axis nor a flexible overturning axis can
characterize the overturning deformation of a bridge. Observing the state of the overall
overturning of curved and straight bridges in Figure 15 and considering the effect of
long-term creep, a synthesis overturning axis and associated synthesis overturning axis
method (SOAM) were proposed to evaluate the overall overturning stability of bridges.
The SOAM still utilizes the expression form of the OSC, with the major difference being the
comprehensive overturning axis it relies on. Figures 23 and 24 illustrate the synthesis of
the overturning axes for the circular bridge and the straight bridge, respectively. Table 1
provides a list of the relevant parameters for both curved and straight bridges.

γq f =
∑ Mb

∑ Ms
ϕc (12)

∑ Mb = ∑ RGili (13)

∑ Ms = ∑ Rqili (14)

where ϕc represents the long-term performance degradation factor, with a value of 0.98; RGi
is the vertical reaction force of the ith bearing under gravity; li is the vertical distance of the
ith bearing from the synthesis overturning axis; and RGi is the vertical reaction force of the
ith support under a live load, which may be from vehicles, temperature, or a combination
of both. The synthesis overturning axes are determined by Table 1.
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Figure 23. Synthesis overturning axes for the curved bridges: (a) two-span continuous bridge; (b) 
three-span continuous bridge; (c) four-span continuous bridge; and (d) five-span continuous bridge. 

  

Figure 23. Synthesis overturning axes for the curved bridges: (a) two-span continuous bridge;
(b) three-span continuous bridge; (c) four-span continuous bridge; and (d) five-span continu-
ous bridge.
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Note that B represents the width of the bridge; L is the maximum value of the left and right spans; 
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The method of evaluating the overturning performance of a bridge using the OSC 
with a rigid overturning axis is known as the rigid overturning axis method (ROAM). On 
the other hand, the method that employs the OSC with a fold overturning axis is referred 
to as the fold overturning axis method (FOAM). It should be noted that the FOAM and 
ROAM employ Equation (11) to calculate the stability coefficient, whereas the SOAM uti-
lizes Equation (12). To compare the variability of the methods in the assessment of the 
overall overturning load capacity of bridges, overturning analyses were conducted on two 
types of bridges: curved bridges with a span of 80 m and straight bridges with a span of 
10,000 m. These bridges were typical single-column pier bridges that had not been rein-
forced. The factors of the side-to-mid span ratio (STMR), span length, and span numbers 

Figure 24. Synthesis overturning axes for the straight bridges: (a) two-span continuous bridge;
(b) three-span continuous bridge; (c) four-span continuous bridge; and (d) five-span continu-
ous bridge.
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Table 1. Parameters of the synthesis overturning axis.

Bridge Type Curved Bridge Straight Bridge

Two-span continuous bridge a1 = B
2L d1

b2 = b3 = 0.5he

ai = 0.5he
b2 = 0.5d

Three-span continuous bridge ai =
B

2L di
bi = 0.5he

ai = 0.5he
bi =

B
L d

Four-span continuous bridge
a1 = B

2L d1

a5 = B
2L d5

b2 = b3 = 0.5he

ai = 0.5he
b2 = B

L d
b3 = b4 = 0.5he

Five-span continuous bridge ai =
B
L di

b3 = b4 = 0.5he

ai = 0.5he
b2 = b5 = B

L d
b3 = b4 = 0.5he

Note that B represents the width of the bridge; L is the maximum value of the left and right spans; ai is the
distance between the ith side-pier bearing and the synthesis overturning axis; bi is the distance between the
mid-pier bearing and the synthesis overturning axis; di is the distance between the mid-pier bearing and the rigid
overturning axis; d is the distance from the side bearing to the central axis of the bridge; and he is the effective
height of the bearing, which is 0.75 times the bearing height.

The method of evaluating the overturning performance of a bridge using the OSC
with a rigid overturning axis is known as the rigid overturning axis method (ROAM). On
the other hand, the method that employs the OSC with a fold overturning axis is referred
to as the fold overturning axis method (FOAM). It should be noted that the FOAM and
ROAM employ Equation (11) to calculate the stability coefficient, whereas the SOAM
utilizes Equation (12). To compare the variability of the methods in the assessment of
the overall overturning load capacity of bridges, overturning analyses were conducted
on two types of bridges: curved bridges with a span of 80 m and straight bridges with
a span of 10,000 m. These bridges were typical single-column pier bridges that had not
been reinforced. The factors of the side-to-mid span ratio (STMR), span length, and span
numbers were adjusted to cover wider bridges. The calculation parameters of the bridges
are detailed in Tables 2 and 3. The form of bearing support, girder cross-section, and wheel
load distribution were consistent with Section 2.2. The vehicle loads were distributed in the
most unfavorable position according to the influence surface of the maximum overturning
effect. The evaluation index of the bridge stability performance obtained by the EFEM was
the ultimate vehicle weight, whereas the evaluation index obtained by the ROAM, FOAM,
and SOAM was the OSC. To facilitate the comparison, the ultimate vehicle weight was
used as the sole indicator of the bridge stability performance. Considering the effects of
gravity, vehicles, and the long-term performance degradation caused by concrete creep, the
ultimate vehicle weights for the ROAM, FOAM, and SOAM could be obtained by setting
the OSC to 1. The ultimate vehicle weights calculated by the EFEM were more accurate
due to the consideration of structural dimensions and nonlinearities, serving as a reference
for the other methods.

Table 2. Parameters of the curved bridges.

Curvature Radius (Unit: m) Bridge No. Ratio of Side-Span to Mid-Span Total Span Length (Unit: m)

80

1 0.6 15 + 25 + 15
2 0.8 20 + 25 + 20
3 1 25 + 25 + 25
4 1.2 30 + 25 + 30
/ Single-span length (unit: m) Total span length (unit: m)
3 25 25 + 25 + 25
5 30 30 + 30 + 30
6 35 35 + 35 + 35
7 40 40 + 40 + 40
/ Span number Total span length (unit: m)
8 2 25 + 25
3 3 25 + 25 + 25
9 4 25 + 25 + 25 + 25
10 5 25 + 25 + 25 + 25 + 25
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Table 3. Parameters of the straight bridges.

Curvature Radius (Unit: m) Bridge No. Ratio of Side-Span to Mid-Span Total Span Length (Unit: m)

10,000

1 0.6 15 + 25 + 15
2 0.8 20 + 25 + 20
3 1 25 + 25 + 25
4 1.2 30 + 25 + 30
/ Single-span length (unit: m) Total span length (unit: m)
3 25 25 + 25 + 25
5 30 30 + 30 + 30
6 35 35 + 35 + 35
7 40 40 + 40 + 40
/ Span number Total span length (unit: m)
8 2 25 + 25
3 3 25 + 25 + 25
9 4 25 + 25 + 25 + 25
10 5 25 + 25 + 25 + 25 + 25

Figure 25 presents the ultimate vehicle weights for bridge overturning obtained
through various methods under the influence of the STMR. The EFEM results indicate that
as the STMR increases, the ultimate vehicle weights for curved bridges gradually increase,
while those for straight bridges decrease. This indicates that the increase in the STMR is
beneficial to the stability of curved bridges and weakens the stability of straight bridges.
In terms of trends, the ROAM shows a similar pattern to the EFEM when evaluating the
anti-overturning performance of curved bridges. Similarly, the SOAM displays similar
trends to the EFEM in both curved and straight bridges. However, the FOAM does not
accurately represent the evolution pattern of the overall anti-overturning performance in
both types of bridges. Furthermore, the ROAM is unable to accurately characterize the
evolution law of the anti-overturning load-bearing capacity in straight bridges.
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curved bridges; and (b) straight bridges. 
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Figure 25. Ultimate vehicle weights for the bridges with various side-to-mid span ratios (STMR):
(a) curved bridges; and (b) straight bridges.

In terms of accuracy, the SOAM exhibits the least error compared to the EFEM, ranging
from −23.2% to −36.4%, followed by the ROAM with an error range of −14.3% to 66.4%.
The ultimate vehicle weight calculated using the FOAM is only 3.3%, compared to 13.8%
for the EFEM, which significantly underestimates the anti-overturning capacity of curved
bridges. For straight bridges, the SOAM shows the least error with −6.1%, compared
to −38.8% for the EFEM. The ultimate vehicle weights obtained by the FOAM are only
10.9%, compared to 44.8% for the EFEM, with errors ranging from −55.7% to −89.2%,
which indicates that the method underestimated the overturning load capacity of straight
bridges. On the other hand, the ultimate vehicle weight calculated using the ROAM is 1.4
to 4.1 times that of the EFEM, indicating an overestimation of the anti-overturning capacity
of straight bridges.
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Figure 26 shows the ultimate vehicle weight required for the overall overturning
of bridges under varying span lengths, as determined by different methods. The EFEM
results indicate that as the span length increases, the ultimate vehicle weight for curved
bridges gradually increases, whereas, for straight bridges, it initially decreases before
increasing. The increase in span length is advantageous for the stability of curved bridges,
while its influence on straight bridges is more intricate. In analyzing the anti-overturning
performance of curved bridges, the ROAM exhibits a pattern similar to the EFEM, while the
SOAM demonstrates comparable trends to the EFEM in both curved and straight bridges.
However, the FOAM does not effectively capture the overall evolution of anti-overturning
performance on both bridge types. Additionally, the ROAM fails to accurately depict the
evolution of anti-overturning load-bearing capacity of straight bridges.
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Figure 27. Ultimate vehicle weights for the bridges with various span numbers: (a) curved bridges; 
and (b) straight bridges. 

Although the FOAM has been incorporated into the specification, it still exhibits a 
significant dispersion in the evaluation of anti-overturning between curved and straight 
bridges, severely underestimating the anti-overturning of curved bridges. This ultimately 
results in material wastage and a limit on freight traffic. In contrast, the SOAM, despite a 

Figure 26. Ultimate vehicle weights for the bridges with various span lengths: (a) curved bridges;
and (b) straight bridges.

In terms of accuracy, for the curved bridges, the ROAM exhibits the least error in
comparison to the EFEM, ranging from −1.3% to −5.9%, followed by the SOAM with an
error range of −12.3% to −30.8%. For the straight bridges, the errors of the SOAM compared
with the EFEM are the minimum, ranging from −21.5% to 33.9%. The ultimate vehicle
weight obtained by the FOAM is 31.1%, compared to 58.6% with the EFEM, indicating an
underestimation of the anti-overturning capacity of straight bridges. On the other hand,
the ultimate vehicle weight obtained by the ROAM is 3.0 to 6.4 times that of the EFEM,
which overestimates the anti-overturning load-bearing capacity of straight bridges.

Figure 27 illustrates the ultimate vehicle weights for bridge overturning obtained by
different methods under the influence of the span number. The EFEM results indicate that
the ultimate vehicle weight for curved bridges gradually increases as the span number
increases, while that for straight bridges first decreases and then increases. Increasing the
span number enhances the stability of curved bridges, while its influence on straight bridges
is more intricate. When examining the anti-overturning performance of curved bridges, the
ROAM shows a similar pattern to the EFEM, while the SOAM displays comparable trends
to the EFEM in both curved and straight bridges. However, the FOAM does not adequately
capture the overall evolution of the anti-overturning performance in both types of bridges.
For curved bridges, the ROAM has a minimum error of −12.2% to 20.5% compared to
the EFEM, followed by the SOAM with an error of −20.7% to −32.4%. Conversely, the
FOAM shows a significant error range of −77.6% to −98.7%, leading to a substantial
underestimation of the anti-overturning capacity of curved bridges. For straight bridges,
the ultimate vehicle weights obtained by the SOAM have the smallest error, compared to
the EFEM results, with errors of −30.9% to 7.3%. The ultimate vehicle weight obtained by
the FOAM is 26.1%, compared to 47.8% with the EFEM, indicating an underestimation of
the anti-overturning capacity of straight bridges. Additionally, the ultimate vehicle weight
obtained by the ROAM is 1.5 to 6.7 times that of the EFEM, suggesting an overestimation
of the anti-overturning capacity of straight bridges.
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Although the FOAM has been incorporated into the specification, it still exhibits a
significant dispersion in the evaluation of anti-overturning between curved and straight
bridges, severely underestimating the anti-overturning of curved bridges. This ultimately
results in material wastage and a limit on freight traffic. In contrast, the SOAM, despite
a maximum error of 38.8%, has significantly improved the accuracy of assessing anti-
overturning capacity when compared to the FOAM and ROAM.

6. Conclusions

This study utilized a collapsed three-span continuous concrete girder bridge to repli-
cate the overturning process caused by eccentric overloaded vehicles, validating the relia-
bility of the numerical method. Furthermore, an EFEM model incorporating concrete creep
was developed to assess its impact on long-term stability against overturning. The synthesis
overturning axis method and related SOAM were proposed to improve the accuracy of the
stability assessment for continuous girder bridges, especially curved ones. The conclusions
drawn from this study are as follows:

(1) The analysis of eccentric vehicles crushing the accident bridges revealed that the
bridge is briefly weightless after the large deformation of the girder rotates and then
slips. During the girder’s overturning, the vertical displacements on the non-overturned
side and the overturned side become opposite and gradually increase, with the rotation
angle following an ‘S’-shaped development pattern. The simulation results align with
the on-site wreckage, validating the numerical simulation’s reliability in replicating the
collapse process.

(2) As the vehicle weight increases, the sequence in which the bearings detach from
the girder is as follows: A1-1 and A4-1, B2, B3, and A1-2 and A4-2. At the limit state of
the overall overturning, the girder undergoes significant rotational deformation, reaching
a rotation angle of 1.29 rad, where rigid rotation theory is not applicable. Limiting the
rotation angle of the bearings or girder to within 0.02 rad fails to prevent the bearing
disengagement but can prevent the overall overturning.

(3) Single-column pier bridges can be classified into curved, critical, and straight types
based on the critical curvature radius. As the curvature radius increases, the ultimate
vehicle weight of these bridges initially decreases and then increases, exhibiting minimal
values in the critical bridge. Overall, straight bridges generally have smaller ultimate
vehicle weights, indicating poorer overturning stability compared to curved bridges.

(4) Under the effects of creep and self-weight, the variations in the bearing reaction
force for curved bridges and straight bridges are minimal, staying below 2%. The ultimate
vehicle weight increases slightly with the increasing creep terminal coefficient for curved
bridges and decreases for straight bridges. Despite these differences, all variations are
within 2%. Therefore, the effect of concrete creep on the long-term overall overturning
stability of single-column pier bridges can be neglected.
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(5) Under the factors of the STMR, the SOAM results exhibit a similar trend to the
EFEM in both curved and straight bridges. The error ranges of the ROAM, FOAM, and
SOAM, compared with the EFEM, in terms of ultimate vehicle weight are −14.2% to
567.4%, −99.1% to −32.1%, and −38.8% to 33.9%, respectively. Despite the discrepancies,
the SOAM demonstrates improvements in accuracy compared to the ROAM and SOAM in
the overall anti-overturning assessment of single-column pier bridges.

(6) In this study, the effect of creep on the overall overturning stability of bridges
was only analyzed with a specific creep mathematical model combined with numerical
methods, and the conclusions need to be further verified by experiments. In addition, the
relationship between the creep, bearing type and arrangement, and overturning stability of
bridges should be further investigated.
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