Adaptability Analysis of Integrated Project Delivery Method in Large- and Medium-Sized Engineering Projects: A FAHP-Based Modeling Solution
Abstract
:1. Introduction
2. Development of the IPD Method
2.1. Research Trends of Project Management
2.2. Development of the IPD Method
2.2.1. Introduction of the IPD Method
- The EPC method.
- The OCM method.
- The OR method.
- The IPD method.
2.2.2. Benefits of the IPD Method Compared to Other Methods
2.2.3. Integration of IPD and Other Methods
2.2.4. Research Necessity of the IPD Method in Engineering Projects
3. Modeling Methods
3.1. FAHP-Based Evaluation Indicators
3.1.1. A Brief Description of FAHP Theory
3.1.2. FAHP-Based Indicators
- Cost control.
- Risk control.
- Management control.
- Schedule control.
3.2. FAHP-Based Modeling Process
3.3. Decision-Making Score Evaluation Method
4. Results and Case Application
4.1. Mathematical Expressions for IPD Adaptability
4.2. Case Application
4.2.1. Description of the Case Project
4.2.2. Application of the IPD Method
4.2.3. Comprehensive Benefit Analysis between the IPD Method and OR Method
4.3. Limitations and Future Directions
4.3.1. Contributions
4.3.2. Limitations
4.3.3. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IPD | Integrated Project Delivery |
FAHP | Fuzzy Analytic Hierarchy Process |
DBB | Design–Bid–Build |
DB | Design–Build |
CM at Risk | Construction Manager at Risk |
BOT | Build–Operate–Transfer |
EPC | Engineering Procurement Construction |
OR | Owner’s Representative |
OCM | Owner’s Construction Management |
PPP | Public–Private Partnerships |
AHP | Analytic Hierarchy Process |
DC | Development Cost |
PCC | Purchase Cost |
PDC | Production Cost |
SC | Selling Cost |
SR | Schedule Risk |
QR | Quality Risk |
PR | People Risk |
CR | Cost Risk |
QM | Quality Management |
IM | Investment Management |
HRM | Human Resources Management |
HSEM | Health, Safety, and Environment Management |
CM | Communication Management |
IP | Initiation Phase |
EP | Exploration Phase |
CP | Construction Phase |
AP | Acceptance Phase |
OMP | Operation and Maintenance Phase |
Appendix A
References
- Locatelli, G.; Ika, L.; Drouin, N.; Müller, R.; Huemann, M.; Söderlund, J.; Geraldi, J.; Clegg, S. A Manifesto for project management research. Eur. Manag. Rev. 2023, 20, 3–17. [Google Scholar] [CrossRef]
- Guo, K.; Zhang, L. Multi-objective optimization for improved project management: Current status and future directions. Autom. Constr. 2022, 139, 104256. [Google Scholar] [CrossRef]
- Kadenic, M.D.; Tambo, T. Resilience of operating models: Exploring the potential of agile project management as enabler. Int. J. Manag. Proj. Bus. 2023, 16, 521–542. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. A BIM-data mining integrated digital twin framework for advanced project management. Autom. Constr. 2021, 124, 103564. [Google Scholar] [CrossRef]
- Mavi, R.K.; Standing, C. Critical success factors of sustainable project management in construction: A fuzzy DEMATEL-ANP approach. J. Clean. Prod. 2018, 194, 751–765. [Google Scholar] [CrossRef]
- Müller, R. Exploring the future of research in project management. Rev. Gestão Proj. 2023, 14, 14–26. [Google Scholar] [CrossRef]
- Hallowell, M.; Toole, T.M. Contemporary Design-Bid-Build Model. J. Constr. Eng. Manag. 2009, 135, 540–549. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, X.; Zhang, N. Comparison of Project Objectives and Critical Factors between DBB and DB in China; IEEE: Piscataway, NJ, USA, 2009; Volume 12, pp. 583–587. [Google Scholar] [CrossRef]
- Carpenter, N.; Bausman, D.C. Project Delivery Method Performance for Public School Construction: Design-Bid-Build versus CM at Risk. J. Constr. Eng. Manag. 2016, 142, 05016009. [Google Scholar] [CrossRef]
- Huang, Y.L.; Pi, C.C. Real-Option Valuation of Build-Operate-Transfer Infrastructure Projects under Performance Bonding. J. Constr. Eng. Manag. 2014, 140, 04013068. [Google Scholar] [CrossRef]
- Sholeh, M.N.; Fauziyah, S. Current state mapping of the supply chain in engineering procurement construction (EPC) project: A case study. MATEC Web Conf. 2018, 195, 06015. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, J.; Guo, M. Evaluating the Engineering-Procurement-Construction Approach and Whole Process Engineering Consulting Mode in Construction Projects. Iran. J. Sci. Technol. Trans. Civ. Eng. 2023, 47, 2533–2547. [Google Scholar] [CrossRef]
- Abe, R.; Saito, Y.; Shide, K. Research on each actor’s awareness of procurement methods involving contractors and consultants in the design phase: Based on interviews with persons in charge. Jpn. Archit. Rev. 2023, 6, e12384. [Google Scholar] [CrossRef]
- Vasilenko, M.A.; Drozdov, N.A.; Tagiltseva, J.A.; Kuzina, E.L.; Kuzina, M.A. Systematic Approach and Advanced Marketing in Public-Private Partnerships; IEEE: Piscataway, NJ, USA, 2017; Volume 9, pp. 27–31. [Google Scholar] [CrossRef]
- Santolini, M.; Ellinas, C.; Nicolaides, C. Uncovering the fragility of large-scale engineering projects. EPJ Data Sci. 2021, 10, 36. [Google Scholar] [CrossRef]
- Jadidoleslami, S.; Saghatforoush, E.; Heravi, A.; Preece, C. A practical framework to facilitate constructability implementation using the integrated project delivery approach: A case study. Int. J. Constr. Manag. 2022, 22, 1225–1239. [Google Scholar] [CrossRef]
- Trach, R.; Polonski, M.; Hrytsiuk, P. Modelling of Efficiency Evaluation of Traditional Project Delivery Methods and Integrated Project Delivery (IPD). IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 112043. [Google Scholar] [CrossRef]
- Choi, J.; Yun, S.; Leite, F.; Mulva, S.P. Team Integration and Owner Satisfaction: Comparing Integrated Project Delivery with Construction Management at Risk in Health Care Projects. J. Manag. Eng. 2019, 35. [Google Scholar] [CrossRef]
- Demirel, T.; Çetin Demirel, N.; Kahraman, C. Fuzzy Analytic Hierarchy Process and its Application. In Fuzzy Multi-Criteria Decision Making; Springer: Boston, MA, USA, 2008; pp. 53–83. [Google Scholar] [CrossRef]
- Chih, Y.Y.; Hsiao, C.Y.L.; Zolghadr, A.; Naderpajouh, N. Resilience of Organizations in the Construction Industry in the Face of COVID-19 Disturbances: Dynamic Capabilities Perspective. J. Manag. Eng. 2022, 38, 04022002. [Google Scholar] [CrossRef]
- Bypaneni, S.P.K.; Tran, D.Q. Empirical Identification and Evaluation of Risk in Highway Project Delivery Methods. J. Manag. Eng. 2018, 34. [Google Scholar] [CrossRef]
- Koolwijk, J.S.J.; van Oel, C.J.; Wamelink, J.W.F.; Vrijhoef, R. Collaboration and Integration in Project-Based Supply Chains in the Construction Industry. J. Manag. Eng. 2018, 34, 04018001. [Google Scholar] [CrossRef]
- Han, J.; Lee, S.H.; Kim, J.K. A process integrated engineering knowledge acquisition and management model for a project based manufacturing. Int. J. Precis. Eng. Manuf. 2017, 18, 175–185. [Google Scholar] [CrossRef]
- Kabirifar, K.; Mojtahedi, M. The impact of Engineering, Procurement and Construction (EPC) Phases on Project Performance: A Case of Large-scale Residential Construction Project. Buildings 2019, 9, 15. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J. Research on Key Risk Factors and Risk Transmission Path of Procurement in International Engineering Procurement Construction Project. Buildings 2022, 12, 534. [Google Scholar] [CrossRef]
- Institute, P.M. Construction Extension to the PMBOK Guide; Project Management Institute, Inc.: Newtown Square, PA, USA, 2016. [Google Scholar]
- Council, F.F. Federal Facilities Council Technical Report, Number 149: Reducing Construction Costs: Uses of Best Dispute Resolution Practices by Project Owners: Proceedings Report; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Forcael, E.; Rodríguez, C.; Vargas, S.; Álvarez, P.; Ponce, L. Role of the Owner’s Representative Within the Construction Industry: Case Study of Chile. Iran. J. Sci. Technol. Trans. Civ. Eng. 2020, 44, 197–208. [Google Scholar] [CrossRef]
- Mesa, H.A.; Molenaar, K.R.; Alarcón, L.F. Exploring performance of the integrated project delivery process on complex building projects. Int. J. Proj. Manag. 2016, 34, 1089–1101. [Google Scholar] [CrossRef]
- Sherif, M.; Abotaleb, I.; Alqahtani, F.K. Application of Integrated Project Delivery (IPD) in the Middle East: Implementation and Challenges. Buildings 2022, 12, 467. [Google Scholar] [CrossRef]
- Kahvandi, Z.; Melhado, S.; Viana, M.L. Solutions to Overcome Integrated Project Delivery Implementation Barriers: A Meta-Synthesis Approach. J. Constr. Dev. Ctries 2023, 28, 63–89. [Google Scholar] [CrossRef]
- Hall, D.M.; Scott, W.R. Early Stages in the Institutionalization of Integrated Project Delivery. Proj. Manag. J. 2019, 50, 128–143. [Google Scholar] [CrossRef]
- Barutha, P.J.; Jeong, H.D.; Gransberg, D.D.; Touran, A. Evaluation of the Impact of Collaboration and Integration on Performance of Industrial Projects. J. Manag. Eng. 2021, 37, 04021037. [Google Scholar] [CrossRef]
- Salleh, R.M.; Mustaffa, N.E.; Rahiman, N.A.; Ariffin, H.L.T.; Othman, N. The Propensity of Building Information Modelling and Integrated Project Delivery in Building Construction Project. Int. J. Built Environ. Sustain. 2019, 6, 83–90. [Google Scholar] [CrossRef]
- Jünger, H.C.; Hofmann, A.; Schneebecke, J.; Scharpf, S.; Auch, N. Die Erweiterung der Integrierten Projektabwicklung auf den Lebenszyklusansatz/The expansion of Integrated Project Delivery to the life cycle approach. Bauingenieur 2022, 97, 298–305. [Google Scholar] [CrossRef]
- Mesa, H.A.; Molenaar, K.R.; Alarcón, L.F. Comparative analysis between integrated project delivery and lean project delivery. Int. J. Proj. Manag. 2019, 37, 395–409. [Google Scholar] [CrossRef]
- Dzhusupova, R.; Bosch, J.; Olsson, H.H. Challenges in Developing and Deploying AI in the Engineering, Procurement and Construction Industry; IEEE: Piscataway, NJ, USA, 2022; Volume 6, pp. 1070–1075. [Google Scholar] [CrossRef]
- Sangroungrai, S.; Sukchareonpong, P.; Witchakul, S. Engineering, Procurement and Construction (EPC) Project Management for Reducing Cost and Time: A Case Study of Petrochemical Plant; IEEE: Piscataway, NJ, USA, 2018; Volume 5, pp. 402–406. [Google Scholar] [CrossRef]
- Pishdad-Bozorgi, P.; Austin, R.; Garza, J.M.D.L. Flash Track Practices Distilled via Structured Interviews from EPC Projects. Am. Soc. Civ. Eng. 2016, 5, 168–178. [Google Scholar] [CrossRef]
- Kahvandi, Z.; Saghatforoush, E.; ZareRavasan, A.; Viana, M.L. A Review and Classification of Integrated Project Delivery Implementation Enablers. J. Constr. Dev. Ctries 2020, 25, 219–236. [Google Scholar] [CrossRef]
- Ling, F.Y.Y.; Teo, P.X.; Li, S.; Zhang, Z.; Ma, Q. Adoption of Integrated Project Delivery Practices for Superior Project Performance. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12, 05020014. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, H. Utilization of a cognitive task analysis for integrated project delivery application: Case study of constructing a campus underground parking facility. Cogn. Syst. Res. 2018, 52, 579–590. [Google Scholar] [CrossRef]
- Ashcraft, H. Transforming project delivery: Integrated project delivery. Oxf. Rev. Econ. Policy 2022, 38, 369–384. [Google Scholar] [CrossRef]
- Saaty, R. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Saaty, T. The negotiation and resolution of the conflict in South Africa: The AHP. ORiON 2003, 4. [Google Scholar] [CrossRef]
- Huang, G.; Sun, S.; Zhang, D. Safety Evaluation of Construction Based on the Improved AHP-Grey Model. Wirel. Pers. Commun. 2018, 103, 209–219. [Google Scholar] [CrossRef]
- Lyu, H.M.; Sun, W.J.; Shen, S.L.; Zhou, A.N. Risk Assessment Using a New Consulting Process in Fuzzy AHP. J. Constr. Eng. Manag. 2020, 146, 04019112. [Google Scholar] [CrossRef]
- Saaty, T.L.; Tran, L.T. Fuzzy Judgments and Fuzzy Sets. Int. J. Strateg. Decis. Sci. 2010, 1, 23–40. [Google Scholar] [CrossRef]
- Zhang, X.L.; Wang, L.H. Choosing an Appropriate Construction Project Delivery Method Using FAHP in China; IEEE: Piscataway, NJ, USA, 2009; Volume 10, pp. 78–82. [Google Scholar] [CrossRef]
- Kerzner, H. Project Management: A Systems Approach to Planning, Scheduling, and Controlling, 12th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Sears, S.K. Construction Project Management: A Practical Guide to Field Construction Management, 6th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Liu, L.; Lin, Y.; Xiao, Y.; Xue, P.; Shi, L.; Chen, X.; Liu, J. Quantitative effects of urban spatial characteristics on outdoor thermal comfort based on the LCZ scheme. Build. Environ. 2018, 143, 443–460. [Google Scholar] [CrossRef]
- Benson, C.; Obasi, I.C.; Akinwande, D.V.; Ile, C. The impact of interventions on health, safety and environment in the process industry. Heliyon 2024, 10, e23604. [Google Scholar] [CrossRef] [PubMed]
- Saaty, T.L. Correction to: Some mathematical concepts of the analytic hierarchy process. Behaviormetrika 2021, 48, 193–194. [Google Scholar] [CrossRef]
- Hand, D.J. Statistical Concepts: A Second Course, Fourth Edition by Richard G. Lomax, Debbie L. Hahs-Vaughn. Int. Stat. Rev. 2012, 80, 491. [Google Scholar] [CrossRef]
- Song, D. Analysis and Discussion on Management Modes of Large-scale Petrochemical Engineering Projects. Pet. Petrochem. Today 2018, 26, 48–52. [Google Scholar] [CrossRef]
Target Level | Criterion Level | |||||
---|---|---|---|---|---|---|
Cost control | Process control | Management control | Schedule control | |||
Cost control | 0.5 | |||||
Risk control | 0.5 | |||||
Management control | 0.5 | |||||
Schedule control | 0.5 | |||||
Criterion Level | Sub-Criteria Level | |||||
Cost control | DC | PCC | PDC | SC | ||
DC | 0.5 | |||||
PCC | 0.5 | |||||
PDC | 0.5 | |||||
SC | 0.5 | |||||
Risk control | SR | QR | PR | CR | ||
SR | 0.5 | |||||
QR | 0.5 | |||||
PR | 0.5 | |||||
CR | 0.5 | |||||
Management control | QM | IM | HRM | HSEM | CM | |
QM | 0.5 | |||||
IM | 0.5 | |||||
HRM | 0.5 | |||||
HSEM | 0.5 | |||||
CM | 0.5 | |||||
Schedule control | IP | EP | CP | AP | OMP | |
IP | 0.5 | |||||
EP | 0.5 | |||||
CP | 0.5 | |||||
AP | 0.5 | |||||
OMP | 0.5 |
Indicators | Weighting Calculation | Scale |
---|---|---|
3.60 | ||
3.71 | ||
3.10 | ||
3.37 | ||
3.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Gan, X.; Liu, L.; Zhang, X. Adaptability Analysis of Integrated Project Delivery Method in Large- and Medium-Sized Engineering Projects: A FAHP-Based Modeling Solution. Buildings 2024, 14, 1999. https://doi.org/10.3390/buildings14071999
He H, Gan X, Liu L, Zhang X. Adaptability Analysis of Integrated Project Delivery Method in Large- and Medium-Sized Engineering Projects: A FAHP-Based Modeling Solution. Buildings. 2024; 14(7):1999. https://doi.org/10.3390/buildings14071999
Chicago/Turabian StyleHe, Huiyu, Xiwei Gan, Lin Liu, and Xing Zhang. 2024. "Adaptability Analysis of Integrated Project Delivery Method in Large- and Medium-Sized Engineering Projects: A FAHP-Based Modeling Solution" Buildings 14, no. 7: 1999. https://doi.org/10.3390/buildings14071999
APA StyleHe, H., Gan, X., Liu, L., & Zhang, X. (2024). Adaptability Analysis of Integrated Project Delivery Method in Large- and Medium-Sized Engineering Projects: A FAHP-Based Modeling Solution. Buildings, 14(7), 1999. https://doi.org/10.3390/buildings14071999