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Abstract: Urban public transport line formulation has its appeal in promoting public convenience and
developing environmentally friendly cities. During the bus line planning stage, the line frequency and
stop location determination is a key issue for decision makers. Our study focuses on the integrated
formulation problem between line frequency and stop planning featuring multi-type vehicles. The
multi-type vehicles are able to accommodate the various passenger demands at either peak hours or
off-peak hours. The a priori magnitudes of user demands are investigated by drone-based technique
methods in the tactical-level plan. The collected geospatial data can assist the public transport
user forecast. A mixed-integer linear programming (MILP) model is proposed. The objective is to
minimize the walking cost of passengers, the building cost of stops, and the operation cost of service
frequency. The effectiveness of the model is validated by a real case in Nantong, China. CPLEX is
used to resolve the MILP model. Yielding to the budget constraint, in high-price, medium-price,
and low-price scenarios, the optimal high-quantity stop scheme can save 3.04%, 3.11%, and 3.38% in
overall cost compared with the medium-quantity stop scheme, respectively; their cost savings are
8.53%, 8.70%, and 9.09% more than the costs of the low-quantity stop scheme.

Keywords: public transport; line formulation; construction planning; multi-type vehicle; stop plan

1. Introduction

China is enthusiastic about reducing carbon emissions by actively developing public
transport (PT) buildings. Pure electric PT featuring its public convenience and environ-
mentally friendly low-pollution merits is credited for its green development. A majority
of megacities, such as Beijing, Hong Kong, Singapore, and Tokyo, prioritize supporting
policy that supports facilitating the public in favoring and becoming accustomed to rid-
ing buses/subways. The PT mode-sharing ratio accounts for about 70–90% [1]. For this
purpose, most cities in China are positively developing PT infrastructure construction, the
basis of which is formulating the optimal stop location and line frequency. The nature of
the line planning work should match the user-oriented passenger demand distributions
well. Thus, the potential passenger demand points play a core role in the line formulation
stage. Specifically, the origin and destination of the passenger demand points are defined
as the origin-destination (OD) pairs, such as home, workplace, schools, leisure, and shop-
ping. In other words, the stop locations mean different walking distances between stops
and these centers, which lead to heterogeneous travel costs for passengers. Furthermore,
the reasonable bus line frequency and stop planning have a considerable contribution to
aggrandizing PT’s attractiveness by a valid alternative to private cars.
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Typically, PTs are confronting temporal variations of passenger demand between peak
hours and off-peak hours. This variability entails us to employ multi-type vehicles to
deal with the demand distribution fluctuation challenges. On the other hand, the increase
in service frequency is indeed able to reduce users’ waiting times but also means more
operation cost and carbon emission. Thus, it is necessary to implement an integrated opti-
mization between line frequency and stop plan featuring multi-type vehicles in facilitating
the geospatial data application.

Our study aims to determine the reasonable number and locations of stops along a fixed
bus route. To be clear, PT routing does not belong in this work. In other words, the routing
trend is determined and the incumbent formulating task is to examine the locations/number
of stop candidates. For the sake of convenience, the set of candidate stops is not groundless,
but rather depends on the land use property. In this study, we define the different land
modules as the demand points (or the so-called interest points). A tactical drone-based survey
that needs to be fulfilled before the formulation provides a data estimation basis for the PT
passenger demand. In particular, ‘the PT passenger demand’ refers to the number of users
who choose the PT mode depending on the urban PT mode-sharing calculation. Thus, private
transport demands are not accounted for in the paper.

The aim of a building plan is to seek for the trade-off in net public interests between
users and operators. These interests are defined in a quantized manner as threefold:
(i) users’ walking costs from centers to stops, (ii) new building costs for entire stops, and
(iii) operation costs of service frequencies. This integrated programming model will help
the planners to examine the adaptive schemes based on the real investigation information.
Since the PT stop plan featuring multi-type vehicle outcomes is limited in the literature, we
hereinafter focus on this topic as per the programming model.

1.1. Literature Review

This section introduces three directions of urban PT infrastructure construction plan-
ning: stop determination, line frequency, and transport accessibility. They provide a solid
research basis for our work.

1.1.1. Stop Determination Problem

The methodology of stop determination in the railway study field provides an essential
base for bus stop formulation. Some state-of-the-art modelling approaches have inspired
us to develop our study concept. Yang et al. [2] propose a collaborative optimization
method for both stop planning and train schedules with different speeds, specifically that
refer to the maximum velocities of 250 km/h and 300 km/h, respectively. To handle this
integration problem, an MILP model is built and resolved by a CPLEX solver availably.
Repolho et al. [3] construct a strategic planning model for a high-speed rail corridor. A
mixed-integer optimization model with two decision variables, i.e., station location and
train type, is proposed. Throughout, a real case of #8 line involving a high-speed rail
project in Portugal, the model is solved through the commercial software to validate its
effectiveness. On the operation level, Yuan et al. [4] propose a skip-stop strategy schedule
optimization model to cope with the congestion demand in rail transit. Multi-criteria
on passengers’ waiting times and station crowding are taken into consideration in the
model. A decomposition and approximate dynamic programming approach is devised to
resolve the model. Chang et al. [5] propose a multi-objective programming model for the
high-speed rail station schemes. The ternary minimum objectives are to reduce the rolling
stocks, the running distances of trains, and total travel times of passengers. The model
is handled by a fuzzy mathematical programming approach and clarified by a Taiwan’s
high-speed rail case.

Tang et al. [6] propose a skip-stop strategic electrical bus schedule optimization model.
A heuristic algorithm invoking a left-shifting trip arrival time pretreatment is designed to
handle the model yielding to nonlinear objectives and nonlinear constraints. A Dandong
bus case in China demonstrates that the overall operation cost savings is 15.09% more and
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the energy use ratio is increased by 9.02%. Given OD passenger demand pairs along a high-
speed railway line, Cacchiani et al. [7] focus on the sequence of trains’ departures/arrivals
and simultaneously determine the stop locations. The robustness at the planning level is
carried out to handle the uncertain passenger demand fluctuation problem. The funda-
mental model and the extended robust models are solved by CPLEX and testified by the
real data of the Wuhan–Guangzhou high-speed railway corridor. Shao et al. [8] focus on
an equity opportunity for users who board from different stations. An integration model
between stop planning and timetabling is constructed with a focus on exploring fairness
considerations. An adaptive large-scale neighborhood search algorithm is used and verified
based on the Chinese Shanghai–Jinshan suburban railway.

1.1.2. Line Frequency Problem

Canca et al. [9] developed a line frequency and transport capacity optimization model
for a dense railway network. In this model, the OD passenger demand is fixed as the input.
The model assigns the reasonable line frequencies and capacities over the same open tracks.
The multi-objectives are to minimize the average trip time of all trains, the costs of operation,
maintenance, and fleet acquisition, synchronously. The model is solved by the extended
cutting plane method. Shi et al. [10] balance the non-equilibrium user aggregation as per a
timetable and stop plan collaborative optimization model. An efficient iterated local search
algorithm is tailored to deal with a large case on the Fangshan line of the Beijing metro.
In order to control the passenger flow density in the COVID-19 pandemic period, Weert
and Gkiotsalitis [11] present a mixed-integer quadratic programing model to optimize bus
line frequencies to conform public health security. Their approach deals with high-demand
bus lines in the Netherlands. The results indicate that short turning can help in reducing
the social distance. Liang et al. [12] developed a self-equalizing bus headway-control and
stop-skipping model to eliminate the bunching phenomenon. An optimal holding time
calculation algorithm is proposed to guarantee high-frequency regulation.

Considering crowding discomfort experiences, time-dependent demand, left-behind
users, and random travel times, Sadrani et al. [13] built a service frequency and vehicle size
integration optimization model for automated bus systems. An automated bus deployment
case demonstrates the model’s effectiveness in reducing in-vehicle passenger crowding
ranging from 20% to 60%. Fei et al. [14] focus on the profitability of electric bus development
and power grid services. The ‘Frequency Control Reserve’ contract is examined, with
a focus on how discharge power responds to immediate grid requests. The analysis
delves into both summer and winter frequency optimization, drawing insights from data
pertaining to a Japanese city.

1.1.3. Public Transport Accessibility

In their paper, Tong et al. [15] present a quantitative estimation method to measure
urbanization. Walking distance and bus travel time are taken into account. An integrated
algorithm between Dijkstra and Monte Carlo simulation is proposed to resolve the model.
Kim and Kim [16] optimized two key operational tactics: distance-based fares and head-
way. With maximizing the interest of bus operators, the budget, demand, and maximum
headway constraints were taken into consideration. The fixed PT line case testifies the
feasibility of the proposed method in Springfield, USA. Yang and Liang [17] focus on the
connectivity metrical approach between rail and PT. An entropy weighting method is used
to derive the connection indicators. A case study of Wuxi, China, rail and PT, was validated
to find that 57.5% of rail stations in Wuxi possess low connectivity. Nadimi et al. [18]
strike the trade-off for school bus service between social equity and sustainable operations.
Grounded theory and structural equation model quantitatively examined the influence
factors, i.e., cost, walking times, waiting times, running times, and fixed/flexible route.
Li et al. [19] developed an on-demand PT service for a faraway community. A bi-level
programming model is proposed where the upper level determines an optimized frequency
and ticket price schemes while the lower level formulates the travelers’ choosing probability.
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Risso et al. [20] devise a multi-level PT network in Montevideo, Uruguay. CPLEX and the
evolutionary algorithm are utilized to resolve the proposed multi-objective model. The
objective is to minimize the overall cost of flow paths. Su et al. [21] present an advanced PT
accessibility estimation technique. The users’ choice preferences for different PT modes are
analyzed based on the data of Shenzhen.

Here, we distinguish the stop planning problem and line frequency problem as follows.
The former decides the number and locations of stop along the bus corridor. The latter refers
to the number of trips in a certain period, e.g., one hour or one day. The difference between
them lies in the space assignment and time schedule. They are important aspects for public
transport formulation. On the other hand, ‘stop’ directly impacts users’ accessibility (that
highly depends on the walking distance to stops) and potential demands. ‘Frequency’
means the amount of service supplies. Thus, the three modules—stop, frequency, and
accessibility—jointly compose the study framework.

1.2. Contributions and Features

Concentrating on the above three modules, our study integrates them together into
a fundamental collaborative optimization model, in which the objective function is to
minimize the costs of (i) building stops, (ii) users’ walking, namely, accessibility, and
(iii) operation for service frequency; explicitly, they are one-to-one correspondences for
Sections 1.1.1–1.1.3, respectively. To date, a limited amount of literature has studied this
integrated optimization problem.

Drone-based investigation enlightens us to adapt a priori passenger flow estimation for
facilitating PT line formulation projects. Another significant insight is that the programming
model is expected to cope with the integrated line planning problem at the tactical level.
The problem covers stop patterns, multi-type vehicle schedules, and service frequency
subject to the budget constraints.

This work aims to make the following contributions for PT line formulation as per
drone-acquired data. (1) Our work innovatively adapts the drone-based demand investiga-
tion method to obtain the order of magnitudes of potential users. During the planning stage,
either a hundred-level or thousand-level of demands are feasible for precision to direct a
brand-new PT line formulation/construction. We refer to this stage as the pre-feasibility
estimation. (2) We integrate the stop plan with multi-type vehicle and service frequency
jointly in a programming model. The objective is to minimize (i) the building cost of new
stops, (ii) the walking time costs of all users, and (iii) the operation cost for service fre-
quency, simultaneously. Yielding to the different budgets, high-quantity, medium-quantity,
and low-quantity stop schemes are derived to analyze the trade-off between supplies and
demands. Distinct from previous studies, we build an integrated optimization model
between multi-type vehicle assignment and departure frequency. To the best of the authors’
knowledge, it is the first time to provide a joint optimization method to facilitate the stop
location formulation problem.

The rest of this paper is organized as follows. Section 2 introduces the bus line
formulation problem statement involving with the number of and location of stops, and
service frequency. Section 3 proposes a mixed-integer linear programming model to achieve
the integrated optimization. Section 4 testifies the effectiveness of the model and analyzes
the applicability of multiple schemes. Section 5 draws the study conclusions and extends
the future directions.

2. Problem Statement

In 2023, Nantong, as a mid-size Chinese city, opened the first subway line No. 1. At
the same time, Nantong public transport agency had been transforming diesel buses to
electric bus vehicles. In order to facilitate an optimal geospatial data application for urban
infrastructure construction, the new line formulation is addressed for accommodating the
new passenger flow demand. In this regard, a formulation model is supposed to determine
the reasonable number of and locations of stops for a new bus line building. Furthermore,
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the service frequency scheme of the line is optimized subject to different budgets. Herein,
the multi-type vehicles are taken into consideration in this study to accommodate different
level of demands. The appearance and interior of multi-type vehicles are exhibited in
Figure A1 in Appendix A. In detail, Types 1, 2, and 3 refer to the larger, medium, and
small vehicle, respectively. It means the load capacity is different from its in-vehicle space.
Simultaneously, their purchase costs are considerably distinguished. Thus, our study seeks
for the optimal trade-off between service spaces and operation costs.

Allowing for the accessibility of public transport’s serviceability, both the number
and locations of stops contribute to the attractiveness of choosing the PT mode. The
former focuses on the coverage scale of the bus service while the latter concerns the multi-
legged walking distances. In detail, the number of stops are subject to the construction
cost budget and land usage. The spacing distance between two adjacent stops needs to
be considered. On the other hand, the stop locations are key elements on whether the
convenience of choosing the bus service is available for the surrounding demand users. If
walking times/distances are too long, un-timely travel and large baggage would become
the passengers’ hurdles on riding buses. On the contrary, the short walking times mean
a considerable cost and resource supply, i.e., a majority of stops. A questionnaire-based
survey is a feasible technique to investigate the walking times of common passengers.
However, the absence of incumbent bus stops makes us unable to follow this means. Thus,
the distances from the formulated stop candidates and walk speed of comment users can
help to approximately compute the walking times.

Concentrating on the new line formulation problem, we seek for an interest trade-off
between the number of and locations of stops, shown in Figure 1. In the following case
(Section 4), we define and compare the high-quantity, medium-quantity, and low-quantity
stop schemes. The green points (demand points) refer to the residential districts and schools
as well as hospitals that usually accommodate a high density of users. Without loss of
generality, we need to provide and ensure that one bus stop (red circle) can serve two to
five demand points. The blue circles are the start and end points, defined as depots. The
above works jointly make up the PT route formulation.
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At the planning stage, the available line frequency is the other important service
supply basis. Typically, it mirrors the average waiting times, the in-vehicle crowding
degrees, and the operation costs. Over-crowding and left-behind phenomena resulting
from full-load capacity would frustrate the users. Indeed, different vehicle types play a key
role in crowing comfort and left-behind possibilities. Hence, our study further focuses on
the integration optimization between line frequency and multi-type vehicle options. For a
fixed-line case, the travel demands derived from demand points/centers are investigated
by drone-based technique methods. The OD pairs are derived based on the OD distribution
rate in this programming problem.

To summarize, there are three core concerns to deal with in this study so as to strike
the demand–supply balance problem as follows:

(a) How many stops are supposed to be built to cover the accessibility of the surrounding
residents (as the potential users)?

(b) Where are the stop locations which achieve a short walking distance?
(c) What are the schemes of the vehicle types yielding to different budgets?
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2.1. Assumption

In order to facilitate this real-world problem, the related assumptions, terminologies,
and modelling are proposed.

(I) The multiple stop patterns yielding the different budget scenarios obtained in the
programing model are analyzed based on the trade-off between users and operators.

(II) The planned stops do not warrant to serve all neighboring demand points as per one-
to-one correspondence. Although the stop candidate locations are considered to
accommodate these demand points a priori, in general, they are partially elected by
the criteria-based estimation. Both the economy and operation efficiency have a real
impact on the number of stops.

(III) The fleet sizes are assumed to be sufficient. In other words, vehicle procurement is
not considered in this work.

2.2. Formulation Scale

The OD trajectory means the process of passengers from the origin to the destination.
Although most of the travel is served by buses, a walking process is necessary. Typically,
the origin and the destination refer to home, workplace, schools, leisure, shopping and
so on. In this study, we do not consider the discrete passenger demands but rather use
passenger flow derived from the potential demand points in a cluster manner. Individual
travel users are distributed randomly and hard to track. The item of ‘demand points’ helps us
to focus on major demand sources either from the origins or at the destinations, namely, qoi
and qid, respectively. Quantitatively, the order of magnitudes of passengers in the demand
points are feasible for PT line planning level. The radius covered by the demand points
refers to ranging from 500 m to 1000 m, which allows passengers to walk from 5 min to
10 min.

The formulation problem focused on in this study covers how many demand points are
along the PT line and where they are as well as what is the departure frequency and which
vehicle types to choose.

2.3. Terminologies
2.3.1. Sets

I: Set of stop candidates, I = {i: i = 1,. . ., j,. . .A}, where A is the upper bound of the
number of stop candidates.

V: Set of vehicle types, V = {v: v = 1,. . ., B}, where B is the upper bound of the number
of vehicle types.

F: Set of service frequencies, F = {f : f = 1,. . ., N}, where N is the upper bound of the
number of service frequencies.

O: Set of origin points, O = {o: o = 1,. . ., E}, where E is the upper bound of the number
of demand points.

D: Set of destination points, D = {d: d = 1,. . ., E}, where E is the upper bound of the
number of demand points, which is similar to set O.

R: Set of stop plans, R = {γ:γ=1,. . ., ℜ}, where ℜ is the maximum of stop patterns.

2.3.2. Parameters

qod: The number of passengers from origin o (o ∈ O) to destination d (d ∈ D).
toi: Walking time from origin o to boarding stop i.
tjd: Walking time from alighting stop j to destination d.
Cv: Passenger-load capacity of vehicle type v.
nv: Maximum service frequency of vehicle type v.
Ω1: Unit cost of building one stop.
Ω2: Unit cost of passengers’ walking times.
Ωv

3: Unit cost of service frequency for vehicle type v.
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2.3.3. Decision Variables

• xγv f = 1 if stop plan γ with vehicle type v and service frequency f is adapted;
=0 otherwise.

• αi = 1 if stop plan includes candidate i; =0 otherwise.
• γij = 1 if stop plan γ includes candidate i and j; =0 otherwise.

3. Method
3.1. Accessibility Constraint

Basically, a reasonable stop plan is supposed to ensure a desired walking time for the
surrounding residents, such as 5 min or 8 min. In fact, a long walking distance is defined
as beyond the scope of bus accessibility. Then, walking times Twalk between stops and O/D
are defined as per Equation (1).

Twalk = ∑
o ∈ O,
d ∈ D,
o < d

∑
i ∈ I,
j ∈ I,
i < j

qod · (toi + tjd), (1)

where qod is the number of passengers from origin o (o ∈ O) to destination d (d ∈ D). toi is
the walking time from origin o to stop i to board. tjd is the walking time from alighting stop
j to destination d.

3.2. Stop Plan Constraint

A stop pattern γij includes a series of stops that accommodate the circumambient
residents. The greater the ridership, the greater the number of stops that are needed
to supply service accessibility. Yielding to the building cost, the judgment whether one
particular stop αi is to choose or not mainly depends on the number of demands. The
corresponding constraints are formulated as follows:

γij = αi · αj, ∀i ∈ I, j ∈ J, (2)

γij ≤ αi, ∀i ∈ I, j ∈ J, (3)

γij ≤ αj, ∀i ∈ I, j ∈ J, (4)

αi ≤ 1, ∀i ∈ I, (5)

αi ≥ 0, ∀i ∈ I, (6)

αj ≤ 1, ∀j ∈ J, (7)

αj ≥ 0, ∀j ∈ J, (8)

where Equation (2) ensures stop pattern γij is equal to 1 only when stop candidates αi and
αj are 1, simultaneously. Equations (3) and (4) specify the relationship between the stop
pattern γij and stop candidates αi, αj. Equations (5)–(8) indicate decision variables αi and
αj are binary variables.

3.3. Service Capability Constraint

Multi-type vehicles allow us to precisely improve service supply to attain an optimal
PT source plan. The line frequency not only represents the operation costs but also deter-
mines users’ waiting times. Furthermore, the multi-type load capacities impact whether
the left-behind demands exist and how many. That is,
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∑
γ∈R

∑
v∈V

∑
f∈F

xγv f · Cv ≥ ∑
o ∈ O,
d ∈ D,
o < d

qod, (9)

nv − ∑
γ∈R

∑
f∈F

xγv f ≥ 0, (10)

N = ∑
v∈V

nv, (11)

where Equation (9) indicates that all service supply is equal to or more than all the OD
demand. Equation (10) validates the relationship between maximum frequency of vehicle
type nv and decision variable xγv f . Equation (11) refers to the overall service frequency N,
which helps for determining the headway value for an initial even-headway timetable. In
practice, a basic even-headway timetable is usually employed at the planning level.

3.4. Objective Function

We propose an overall objective function that integrates the net interests of operators
and users. In detail, three items are considered simultaneously: (i) building cost of new
stops, (ii) walking time costs of all users, and (iii) operation cost for service frequency. All
costs are transformed in the same unit, U.S. dollars. The objective function (12) is given as

Z = min[Ω1 · ∑
i∈I

αi + Ω2 · Twalk + ∑
v∈V

Ωv
3 · nv], (12)

where the three items in Equation (12) correspond to the above sub-objectives (i), (ii) and
(iii). The monetary coefficients Ω1, Ω2, and Ωv

3 can help transfer the number of stops ∑
i∈I

αi,

overall walking times Twalk, and frequency N to the uniform cost unit.

3.5. Model Framework

Based on the model structure, the proposed optimization problem is a mixed-integer
linear programming (MILP) model. The MILP model framework for the formulation
problem reads as follows:

Minimize (12),

Subject to (2)–(11).

The above model is a basic mathematical framework for devising a new public trans-
port line. It should be noted that this MILP model is able to apply for the planning level
without timetabling the design. Thus, this fundamental model owns the potential expan-
sion sphere for meeting more particular requirements, for example, (i) one particular stop
is located on one certain location although its demand is not booming now; and perhaps, it
mainly depends on the future development direction or policy support; (ii) one stop that
serves for the transfer passengers from airports; rail stations should be taken into consid-
eration as one candidate. In summary, the fundamental model proposed has a capable of
handling the specific and demand-oriented stop planning problem.

3.6. Computation Complexity

Concentrating on the proposed MILP model, two pre-specified decision variables
lead to a complex computation, namely, stop location judgment αi and vehicle type v.
Theoretically, in order to cover the reasonable number of demand points, the stop candidate
set tends to consider considerable locations to testify. For example, a single line with 30 stop
candidates and two vehicle types will produce 230 × 22 possibilities. They are derived from
two aforesaid variable sets {I} and {V}. In what follows, Table 1 exhibits the overall number
of decision variables and key constraints involved in the proposed model. To be clear, this
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incumbent problem turns out to be a large-scale binary-variable linear programming model
with a total number of 109 variables.

Table 1. Number of numeration involved with related-variables and constraints.

Variables or Constraints Number of Numeration

αi A
γij A · (A − 1)

xrv f A · (A − 1) · B · N
Walking time constraint (1) E + E
Stop planning constraint (2) A · (A − 1)

Passenger demand constraint (9) A · (A − 1) · B · N+ E
Frequency constraint (10) A · (A − 1) · B

4. Results

In order to validate the availability of the proposed model in Section 3, we put it into
use to a real case that belongs to a Nantong airport shuttle project in Nantong, China. The
shuttle bus line is planned to be about 30 km as the total length. The line alignment is
determined a priori but the possible stop locations along the line need to be formulated.
Moreover, the service frequency and multiple vehicle types are supposed to be optimally
devised to accommodate the various demand distribution.

The implementation of the developed model has two categories of data as the input:
(i) data on cost, i.e., stops’ building cost, travel cost for users, operation cost for multi-
vehicle types; and (ii) data on the passenger demand desired to take the bus. In particular,
the fundamental passenger investigation allows us to use drones to handle the demand
magnitudes in Section 4.1.

4.1. Drones-Implemented Demand Investigation

For a brand-new public transport line formulation, the passenger flow does not yet
generate. Essentially, the current passenger flow demand survey is a kind of forecast.
Drones’ application helps for surveying the geospatial information, i.e., area, land status,
plot ratio, and the number/property of buildings. Thereby, we can estimate the number of
potential users based on the travel intensity. Indeed, drones are used to handle the basic
demand magnitude as one auxiliary analysis technique. On the other hand, traditional
survey approaches, i.e., questionnaire survey or household surveys, are supposed to be
executed at the next stage. They are more precise than drones’ primary investigation.
However, they require more surveying times, more investigators and higher costs than
that of drones-based estimation. Thus, drones can be carried out at the initial stage of
formulation, while traditional surveys further enhance their precision.

Given one candidate stop as the center, we manipulate the drones to investigate its
circle region with its radius equal to 1000 m. Commonly, the formulation fields, prior to
the real building, are ‘unlimited height’ areas. It means that the drones can fly free without
the negative impacts and control constraints. On the contrary, the ‘height-permitted’ areas
spur us to further survey by artificial approaches. In particular, the drone-based geospatial
data survey needs to execute twice in one-round investigation for one identical demand
area, i.e., in the day and at night. With regard to the day survey, aerial photos derived
from drones can clearly demonstrate the accommodation capacity of residential quarters,
factories, schools and so on. On the other hand, the night aerial photos can make us
know the occupancy situations as per the lights being on or off. It should be noted that
drone-based geospatial data investigation is for figuring out the order of magnitudes of the
user demands rather than one kind of precise survey. Indeed, at the planning level, this
precision level in knowing the primary demand amount is feasible at an early stage. These
approximate data can be used as auxiliary data for proofreading.

Clearly, the drone-implemented investigation can not only save the survey duration,
but also considerably reduce the human cost that is a significant expenditure component.
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Drones were used to help with the pre-estimate passenger demand, which is one way for
demand surveys. A drone-based geospatial data survey was executed by normal processes
rather than relying on the particular hardware (cameras, zoom capability, etc.). Fair weather
conditions are feasible for drone-based surveys. In this empirical investigation, the drones
were purchased by the authors’ institution, i.e., Nantong University, shown in Figure 2.
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Typically, the PT operation schedule is divided per 1 h as the period unit. PT are
expected to operate between 05:00 and 21:00, which corresponds to 16-h intervals. We
surveyed the number of floors for each building. The number of households for each floor
relies on the manual interview. In general, the number of residents for one household
is assumed to be three. The geospatial information is recorded by the means of pictures
stored in drones, preliminarily obtaining the order of magnitudes of potential users. In the
planning level, either a hundred-unit or thousand-unit of demands are feasible precision
for assisting a brand-new line formulation. The basic demand magnitude data derived
from drones are settled as the third row of Table 2.

Table 2. Number of numeration involved with related-variables and constraints.

Candidate Stops
(Corresponding to

Figure 3)

Index of Demand
Points

Number of Demand
Passegers (Pax)

Walking Distance
between Stops and
Demand Points (m)

1
1 45 480
2 30 440
3 50 520

2

4 35 740
5 40 760
6 55 680
7 30 590

3
8 60 590
9 75 630

10 35 720
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Table 2. Cont.

Candidate Stops
(Corresponding to

Figure 3)

Index of Demand
Points

Number of Demand
Passegers (Pax)

Walking Distance
between Stops and
Demand Points (m)

4
11 46 550
12 50 390

5
13 35 410
14 45 510
15 30 350

6
16 50 420
17 55 360

7
18 50 380
19 35 510

8 20 30 400

9
21 36 850
22 40 750

10
23 38 780
24 42 750
25 40 480

11
26 36 300
27 39 320
28 45 350

12 29 20 680

13
30 36 480
31 35 710

14
32 39 560
33 42 680
34 45 480

15 35 38 360

16
36 39 380
37 42 410

17 38 45 480

18
39 36 380
40 47 560

19
41 45 640
42 51 710
43 36 860

20 44 42 560

21
45 45 580
46 33 360

22
47 36 310
48 45 730
49 21 640

23
50 63 680
51 54 710
52 37 630

24 53 46 610

25
54 53 520
55 38 450
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Table 2. Cont.

Candidate Stops
(Corresponding to

Figure 3)

Index of Demand
Points

Number of Demand
Passegers (Pax)

Walking Distance
between Stops and
Demand Points (m)

26
56 45 340
57 31 710

27
58 47 750
59 58 640
60 62 810

28
61 35 720
62 42 650
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4.2. Public Transport Line Formulation Scenario

Figure 3 exhibits a planned bus line with a 30 km length in Nantong. The line includes
28 candidate stops as the available infrastructure positions to determine, which are depicted
by red circles. There are some demand points, depicted as the second row of Table 2. In
general, residential/office buildings, factories, or schools are defined as the demand points.
These demand points are investigated by the use of drones. They are too miscellaneous to
intuitively identify, so no points are depicted in Figure 3 but rather the data of the demand
points are described in Table 2. Commonly, the average walking speed is 1 m/s. Indeed,
Nantong buses always have a low service sharing rate. Cars and electric bicycles account
for the first and second larger proportion for transport modes. Xingdong Airport project
tends to facilitate passenger demand growth based on a reasonable stop formulation. Thus,
the case scenario is available to validate the effectiveness of the proposed model.

Generally speaking, the costs of different items fluctuate subject to local economics,
tax rates, or other real-life uncertainties. In this case, owing to the NDA (non-disclosure
agreement) of this project, some cost values are derived from hypothetical estimation. In
order to cover different budget situations, we propose three price-level budget expectations
in Table 3. We name them as the high-price scenario, the medium-price scenario, and
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the low-price scenario; the capacities of one vehicle type are 20 pax, 30 pax, and 40 pax,
respectively. The cost of building/maintaining one stop Ω1 is 7300 US dollars. The
travel cost of passengers Ω2 is USD 13 per hour [2]. Yielding to the pure electric motor
or alternatively diesel traction, the operation cost Ωv

3 for vehicle type v is illustrated in
Table 3, which is derived from full-life circle estimations. The passengers’ OD distribution
is demonstrated in Figure 4. For the sake of convenience, the OD matrix is recorded by
distribution rate, in which the unit is percentage (%). For example, we focus on OD12 equal
to 1.84%. It means that for the overall 125 users (derived from 45 + 30 + 50, in Table 2)
board from the first stop candidate, 1.84% of them are about to alight at the second stop
candidate. The stop candidate set is I = {i: i = 1, 2, 3,. . ., 28}. Clearly, with regards to the
data from Table 2 and Figure 4, simultaneously, the OD demand can be precisely calculated
and applied into Equation (1).

Table 3. Operation cost Ωv
3 for vehicle type v in different price-based scenarios.

Vehicle Type v Vehicle Capacity
(Pax)

Daily Operation Cost (USD) Per Trip
High-Price
Scenario

Medium-Price
Scenario

Low-Price
Scenario

Small (S) 20 96.4 75.4 58.6
Medium (M) 30 112.8 94.9 73.4

Large (L) 40 146.2 128.7 99.2
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Subject to the budget for building the stops, we provide three scenario-based schemes
regarding financial uncertainties. The budget hypotheses are given to depict different
scenarios, that is, an overall USD 100,000 budget for the high-price scenario, USD 97,000
for the medium-price scenario, and USD 94,000 for the low-price scenario. The different
budgets have a considerable impact on the number of selectable stops. This inference is
clarified in the calculation results in Table 4.

Table 4. Configurations of different stop schemes.

Index High-Quantity
Stop Scheme

Medium-Quantity
Stop Scheme

Low-Quantity
Stop Scheme

Elected stop locations 25 22 18
The number of skipped stops 3 6 10

Service
frequency per

operation hour

5:00–6:00 5 (S) 5 (S) 5 (S)
6:00–7:00 8 (L) 8 (M) 8 (S)
7:00–8:00 12 (L) 12 (L) 12 (L)
8:00–9:00 10 (L) 10 (L) 10 (L)

9:00–10:00 7 (M) 7 (M) 7 (M)
10:00–11:00 6 (M) 6 (M) 6 (M)
11:00–12:00 6 (S) 6 (S) 6 (S)
12:00–13:00 6 (S) 6 (S) 6 (S)
13:00–14:00 6 (S) 6 (S) 6 (S)
14:00–15:00 6 (S) 6 (S) 6 (S)
15:00–16:00 7 (M) 7 (M) 7 (S)
16:00–17:00 8 (L) 8 (M) 8 (M)
17:00–18:00 10 (L) 10 (L) 10 (L)
18:00–19:00 10 (L) 10 (L) 10 (L)
19:00–20:00 8 (M) 8 (M) 8 (M)
20:00–21:00 6 (S) 6 (S) 6 (S)

Average load factor (%) 68.03 70.97 73.97
Note: The abbreviations of small, medium, and large vehicle type are S, M, and L, respectively.

4.3. Computation Results

Given the linear programming problem, we adapt the IBM ILOG CPLEX MIP to
handle this large-scale searching problem to derive the optimal scheme. This section
executes the necessary numerical experiments based on a personal computer. Based on the
preconditioning excavation, the computation is supposed to deal with 67,108,864 binary
judgment decisions. As per global traversal, an optimized scheme is archived in less than
2 h running times. The gap between computation results for more than 10 times repeatedly
is less than 0.5%, which is an acceptable calculation deviation. The three stop schemes
are achieved and demonstrated in Figure 5. The numerical comparison is deployed in
Tables 4 and 5.
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Table 5. Computation results for different stop schemes.

Objective Function ($) High-Quantity Stop Scheme Medium-Quantity Stop Scheme Low-Quantity Stop Scheme
88,220 90,899 98,655

High-price scenario
Optimization percentage 3.04% 8.53%

85,969 88,641 96,351
Medium-price scenario

Optimization percentage 3.11% 8.70%
82,775 85,575 93,355

Low-price scenario
Optimization percentage 3.38% 9.09%
Note: The abbreviations of small, medium, and large vehicle type are S, M, and L, respectively.

The results derived for determining the number and locations of stops as well as
the number and types of vehicles are exhibited in Figure 5 and Table 5. There are two
dimensions to analyze the features of the solution schemes: (i) the regulated number of
stops and (ii) the budget constraint. The former refers to high-quantity, medium-quantity,
low-quantity stop schemes while the latter works out high-price, medium-price, low-price
scenarios. Explicitly, the optimal scheme is the high-quantity stop scheme that possesses
the greatest number of stops: 25 stops with eliminating 3 stop candidates. During the
full-life cycle of the PT operation, the greater number of stops means the lower walking
times. Although both the building cost of stops (USD 1606) and operation cost (USD 15,012)
are the maximum values, the passengers’ travel cost are a minimum, which is USD 71,383.
Clearly, compared with the medium-quantity (USD 74,815), and low-quantity stop schemes
(USD 83,109), the results also indicate that the high-quantity scheme achieves a 4.81%
and 16.43% improvement in total passengers’ travel cost, respectively. The fewer number
of stops yield the more walk/travel cost, leading to the inferior results in medium- and
low-quantity stop schemes, as expected.

On the other hand, given the overall budget threshold, the high-quantity stop scheme
employed more big-type vehicles, whose frequency is 58 veh/day (about 31.82%) more
than 44 veh/day in the other two schemes. Thus, its average load factor, i.e., 68.03%, is less
than that of the medium-quantity stop scheme (70.97%), and low-quantity stop scheme
(73.97%) with a 5.94% and 2.94% reduction. Yielding to the budget constraint, in high-price,
medium-price, and low-price scenarios, the optimal high-quantity stop scheme can save
3.04%, 3.11%, and 3.38% in overall costs compared with the medium-quantity stop scheme,
respectively; their cost savings are 8.53%, 8.70%, and 9.09% more than the costs of the
low-quantity stop scheme.

Subject to the budget for building the stops, we provide three scenario-based schemes
regarding financial uncertainties. It is assumed that high, medium, and low budgets refer
to USD 100,000, USD 97,000, and USD 94,000, respectively. This hypothesis can be changed
as the parameter input according to the real economy finances. The predetermined budgets
play a key role in the number of stops. The case results indicate that 25, 22, and 18 stops are
allowed to be built for the three budgets. During the full-life cycle of the PT operation, the
greater number of stops means lower walking times, which indeed facilitates the public
transport service to be more attractive. Thus, real equilibrium between budget investment
and users’ travel cost determines the optimal trade-off for supply and demand.

The results demonstrate that the increase in passenger travel time is approximately 1%
according to reducing one stop location candidate. The total travel times of users is closely
related to the number of stops to build. Thus, there is a trade-off for the policymakers to
consider between travel efficiency and service accessibility. Herein, the hard constraint is
derived from the budget. Along with the increasing number of passengers, the majority
of users’ travel cost during the long-term operation horizon, more stops (if the budget
is available) are expected to achieve the service accessibility for the local residents for a
sustainable PT career. Even though the incumbent PT company stakeholders are anticipated
to incur a high expense, from the perspective of users, they benefit from the PT service
convenience (i.e., the short walking distance) over the long haul.
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5. Conclusions
5.1. Findings

In this paper, we developed a mixed-integer linear programming (MILP) model for
facilitating an optimal strategic decision involved in the launch of a new public transport
(PT) line. The formulation problem covered the number and the locations of stops, and the
vehicle types, even though the two problems were often independent in the literature. Our
study attained their consistency in a uniform objective function to minimize the passengers’
travel costs, stop building costs, and operation costs. Explicitly, yielding to different budget
scenarios, the relationship between the two main stakeholders inspired us to seek out the
high-quantity, medium-quantity, and low-quantity stop schemes in high-price, medium-
price, and low-price scenarios. Oriented by a real project, this study generated and analyzed
a multi-dimensions budget-based stop location plan.

The case results demonstrated the effectiveness of CPLEX solver and the proposed
MILP model. One study challenge we combated was how to build a programming model
according to the passenger demands and transport resources; simultaneously, another
challenge was what solution method to handle with this model. In an actual urban cir-
cumstance, public transport line formulation yields urban master planning. Our study
provided a line scheme candidate set to urban designers. Considering the existing trans-
portation systems, the new PT mode shared a reasonable percentage for all-mode travels.
The percentage was derived from the empirical survey, as a new task. The socio-economic
impact analysis/estimation was a valuable insight, which could help in reducing conges-
tion, facilitating low carbon, saving travel cost, and so on. It was a significant concept
which was considered in future studies. New PT line formulation in other regions was
expected to share a compatible modelling approach for this study.

Drones were used to investigate the probable demand magnitude for assisting the PT
passenger flow forecast. Then, a real case in Nantong, China was performed to testify the
effectiveness of the model and CPLEX. The calculation results indicated the CPLEX solver
availably handled the proposed MILP model within a reasonable commutating time. It is
worth noting that the formulation model innovatively integrated with stop planning and
multi-type vehicle frequency optimization together. The outcomes reproduced as per the
model, i.e., the number and the locations of stops, the service frequency in hourly operation,
and the three sub-objective function values were useful estimation criteria for decision
makers. In light of different stop schemes that apply to different budget scenarios, the
PT operation company was able to make system-optimal decisions about purchasing the
multi-type fleet sizes, determining the locations of stops, and number.

Planning activities and practical operations interacted with each other. The practical
operation effectiveness could be reflected at the level of service, i.e., the waiting times of
passengers, the number of left-behind users, and the load rates. This direct feedback would
motivate the service frequency adjustment and future formulation.

5.2. Future Work and Discussions

In the real world, the user demand is dynamic rather than fixed. However, the land
status (i.e., land use property) is determined a priori. We can know an approximate order
of magnitudes for potential passengers by investigating the data from the area of lands,
plot ratio, and the number/property of buildings. We are focusing on a brand-new public
transport line formulation, so the real passenger flow has not been generated yet. Essentially,
the current passenger flow demand survey is a kind of forecast. In fact, we cannot assert
the passenger demand is 100% accurate. However, we propose a good way: drones-based
investigation, so as to enhance the precision of the survey/forecast. On the other hand, the
contribution of this study is a ‘urban public transport line formulation model’. The user
demand data are the input of the model. In fact, the proposed model/solution is proven
valid based on the input data. In future work, we can pay more attention to improving the
forecast precision further.
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The model that was built was not special for public transport line structure, vehicle
type (electric or fuel-driven), city size, and so on. Thus, for a new public transport line
formulation in a medium-sized city, the model and solution is well matched, because
Nantong, China belongs to a medium-sized city. Without testing as per other cities’ data, it
is uncertain to assess how adaptable our model would be, especially for megacities. From
the authors’ perspective, the detailed information of the different land modules as the
demand points (or the so-called interest points) should be principally known. An empirical
survey strategy is necessary to carry out. A feasible real survey that needs fulfilling before
the formulation provides a data estimation basis for the PT passenger demand. It can
facilitate an optimal formulation solution by the means of the proposed model.

5.3. Limitations

With regards to the limitations from our incumbent work developed, future work will
focus on the following aspects to enrich the programming study.

• Limitation (i): A PT hub or transfer stop allows the feeder accessibility to connect
aircraft terminals and high-speed rail stations. Thus, multi-type PT stops and multi-
type PT vehicles would be taken into consideration in the study plan.

• Limitation (ii): Our study aimed to determine the reasonable number and locations
of stops along a fixed bus route. To be clear, PT routing does not belong in this work.
The current formulating stage is that only the routing trend is determined and the
locations/number of stops are not yet determined. A line formulation study has the
potential to extend to a network level plan.

• Limitation (iii): Multi-type and multi-depot vehicle scheduling integration optimiza-
tion is not taken into account. In addition, for the proposed MILP model, as the scale
of the resolving problem increases, the computation efficiency tends to be lower.

• Limitation (iv): Robustness and flexibleness are not taken into consideration for the
study. A special circumstance (such as COVID-19 pandemic) impact was not observed
for the current research work. The model proposed in the study is a generalized
approach for ordinary operation in the environment. The robustness study for special
events will be considered in the next paper.
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Appendix A

The appearance and interior of three vehicle types are exhibited in Figure A1.
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The appearance and interior of three vehicle types are exhibited in Figure A1. 
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Figure A1. Stop planning problem formulation scenario to accommodate surrounding demands. 
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