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Abstract: Because of the improved physical, mechanical and crack-resistant properties, smart ce-
mentitious materials have garnered significant attention in civil engineering. However, the method
of predicting performance of smart cementitious materials remains a formidable task. To address
this issue, this study develops a neural network optimized by particle swarm algorithm, specifically
designed for predicting the strength of smart cementitious materials. Particle swarm optimiza-
tion is used to determine the initial weights and biases of the neural network in this algorithm.
Two types of smart cementitious materials, namely 3D printed fiber reinforced concrete and graphene
nanoparticles—reinforced cementitious composites, are studied as examples. Utilizing the PSO-BPNN
method and data gathered from the existing articles, the predictive models for the mechanical proper-
ties of these materials are developed. Five commonly used statistical metrics are applied to evaluate
the predictive performance. The results indicate suggest the PSO-BPNN outperforms the traditional
back propagation neural network. Thus, a reliable and robust performance predictive model can be
built for smart cementitious materials using the proposed approach.

Keywords: compressive strength prediction; neural network; particle swarm optimization; smart

cementitious materials; statistical metrics

1. Introduction

Cementitious materials have gained widespread use in construction engineering due
to their high compressive strength, good durability, straightforward production process
and low cost [1,2]. Nevertheless, due to the weak interfaces between aggregates and mortar
at mesoscale, cementitious materials commonly exhibit low tensile strength, high cracking
tendency and pronounced brittleness [3,4]. The characteristic of cementitious materials
that are vulnerable to cracking can compromise the load-bearing capacity and integrity
of engineering structures, presenting a serious threat to their safety and reliability [5,6].
Particularly, these issues become more pronounced in the context of large-scale, complex
structures subjected to extreme environmental conditions and multi-physics field coupling.
Given these challenges, smart cementitious materials, which have excellent mechanical
properties and multifunctional behaviors, have gained significant attention over the past
few years for their potential to improve the overall performance of complex structures [7-9].

Smart cementitious materials represent a new generation of construction materials that
have improved performance characteristics, including strength, durability, and adaptability
to environmental changes with inherent intelligence. In the late 1980s, Japanese researchers
firstly introduced the idea of smart cementitious materials [10,11]. The ‘smartness” of
cementitious materials is characterized by their capabilities such as self-sensing, self-
adapting, self-heating, self-cleaning and so on [12]. These intelligent properties are typical
achieved through specialized processing techniques, modification of material composition
and microstructures and introduction of other functional elements [9]. For instance, intrinsic
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self-sensing cementitious materials can be created through the incorporation of suitable
electrically active additives [6,7]. These additives can take various forms such as carbon
nanotube, conductive sheets, carbon fiber, and metal powder [13-17].

As the focus on smart cementitious materials increases, the methods for predicting
their mechanical performance warrant further investigation. Nonetheless, the complex
microstructures and functional components of these materials present a considerable chal-
lenge in the development of analytical models or empirical equations. Additionally, it is
expensive and time—consuming to conduct experimental tests on cementitious composites
to assess their properties. A potential solution could be the utilization of data—driven
methods, that is, machine learning (ML), to formulate prediction models for smart cementi-
tious materials. Indeed, multiple MI methods have recently been employed to evaluate
the properties of engineering materials. For instance, the random forest (RF) was utilized
by Farooq et al. [18] to estimate the mechanical strength of quasi-brittle concrete and the
results showed that good prediction can be achieved by the RE. Chou et al. [19] used mul-
tiple data—driven tools to estimate the uniaxial compressive strength of normal concrete,
confirming that prediction with high accuracy can be provided by ML models. Both the
RF method and the decision tree (DT) were used to forecast the strength of cementitious
composites by Sohaib et al. [20] and it was shown that higher prediction accuracy can be
achieved by the RF model. Moreover, extreme gradient boosting (XGB) algorithms was
utilized by Li et al. [21] to estimate the properties of quasi-brittle materials with carbon
nanotubes. The results indicated that the XGB technique can achieve superior performance
in predicting the mechanical properties of quasi-brittle materials. Similar results have also
been reported in [22,23].

The Artificial Neural Network (ANN) method has garnered significant attention as a
predictive tool for material performance among numerous ML strategies. Saleh et al. [24]
utilized ANN, nonlinear regression, Gaussian process regression, and multi-expression
programming to estimate the performances of engineering cementitious composites. Their
results indicated that higher accuracy can be achieved by the ANN model compared to other
approaches. Similarly, the results reported in [25] showed that the neural network exhibits
a superior performance in comparison with conventional regression methods in predicting
the characteristics of carbon nanotubes modified by cement paste. In [26], Hu et al. utilized
five machine learning tools to predict the triaxial properties of high—temperature treated
rock. They found that the back propagation neural network (BPNN) exhibited a superior
performance among the considered methods. These studies highlight the advantages of
neural networks (NN) in estimating the mechanical properties and behaviors of materials.
However, the initial weights and biases of NN are commonly determined by experience,
resulting a low convergence speed and predictive accuracy. Also, poor capability for
reproduction is found to be more common in the predictive models developed by traditional
ANN, particularly when multiple input parameters are involved. To address this issue, this
work introduces the particle swarm algorithm (one of the effective optimization algorithm)
to optimize the ANN such that the initial parameters can be determined automatically,
and then evaluates the performance of proposed PSO-BPNN algorithm for predicting the
strength of smart cementitious materials for the first time, to the best knowledge of authors.
The present results can help in developing models for accurate prediction of the properties
of smart cementitious materials.

This paper is organized as follows. Section 2 present the particle swarm optimized
back propagation neural network algorithm in detail. The developed prediction scheme is
applied for two typical smart cementitious materials in Section 3. The training and testing
results are presented and discussed. Finally, the conclusions and future work are drawn in
Section 4.

2. Methodology

A PSO-BPNN algorithm is presented in this section for performance prediction of
smart cementitious materials.
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2.1. Back Propagation Neural Network

BPNN is a typical machine learning technique that uses a supervised learning method
for training. The term ‘back propagation’ refers to the way by which the network learns
from the error, that is, by propagating the error backwards and adjusting the weights and
biases accordingly. Figure 1 presents a typical structure of the neural network.

Figure 1. BPNN structure.

BPNN training comprises three primary stages: the forward propagation of data, the
backward propagation of errors and the adjusting of weights and biases. During forward
propagation, the data is fed into the input layer, and then passed to the output layer through
the hidden layers. In the subsequent step, the error is computed and propagated back from
the output layer to the input layer. Then, the weights and biases are adjusted accordingly
to reduce the error level. This process would be repeated multiple times for all samples
until the error level is minimized.

Specifically, during the data forward propagation, the net input z; for layer i is calcu-
lated using the outputy,;_; from layer i — 1, and then the output y; for layer i is determined
by applying an activation function to z; which is expressed as

z; = (.Ul‘yl'71 +bl
{ yi = fi(zi) ’ 0

for which w; and b; are the weight and bias matrix from layer i — 1 to i, respectively; f;(-)
represents the activation function.

Backward propagation of error is a learning mechanism that adjusts the weights and
bias of neural networks to optimize the prediction performance. For a data point (x,y) put
into the BPNN with an output of §, the error for layer i is calculated by

6; = W = fi(zi) ® (wiTSi—1>/ @

where g(y, ¥) is the loss function; (-)" is the matrix transpose operator; f/(-) represents the
derivative of the activation function; and ® denotes the dot product operator of the vector,
indicating that each element is multiplied by its corresponding element.

Once the error is propagated from the output layer to the input layer through the
hidden layer, the weight and bias matrix for each layer can be updated accordingly, that is

wW; <— Ww; — lX(Siy;-r + /\wi) (3)
bi < bl' — Dcél‘ ’

together with the learning rate a and regularization factor A.
BPNN is widely used in many applications due to its ability to learn complex patterns
and relationships in data. When building a performance prediction model for smart
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cementitious materials, the following steps are commonly involved: (1) collecting training
and test data sets; (2) setting the structure of neural network and configuring model
parameters; (3) training the network using the training dataset; (4) validating the network
using the test dataset; (5) evaluating the predictive performance. It should be emphasized
that the effectiveness of training a BPNN is heavily dependent on the initial parameters,
which include the weights and biases. The random selection of initial parameters in the
traditional BPNN restricts its practical application.

2.2. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a global random optimization method that
relies on a population-based strategy. It was initially put forward by Kennedy and Eber-
hart [27]. PSO defines a group of potential problem solutions as a swarm of particles
that can navigate the problem space driven based on their own and nearby particles’ best
performance, enabling the achievement of an optimal solution. Algorithm 1 gives the
detailed computational scheme of the PSO algorithm [28].

Algorithm 1 Particle swarm optimization

1. Initialization. For each of the N particles:

a. Initialize the position and velocity x;(0) and v;(0) Vi€ 1:N;

b. Initialize the particle’s own best position p;(0) = x;(0);

c. Compute the fitness value of each particle and if f (xj(0)> > f(x;(0)) Vi# j, initialize
the global best solution as g = x;(0);

2. Repeat the following steps until the termination condition is met:

a. Update the particle velocity using the following equation:

vi(t+1) = wvi(t) + c1R1 (p; — xi(t)) + 2Ro(g — xi(1));

b. Update the particle position using the following equation:

xi(t+1) =x;(t) + vi(t +1);

c. Compute the fitness value of each particle f(x;(t +1));

d. If f(x;(t +1)) > f(p;), update the personal best position: p; = x;(t + 1);
e. If f(x;(t+1)) > f(g), update the personal best position: g = x;(f +1);
3. Output the optimal result.

Note that ¢; and c; in Table 1 are learning factors which are usually in the range of
[0,4]; Ry and R; represents two random variables which both satisfies a uniform probability
distribution in [0,1]; and w represents the inertia weight that is calculated by

Nc

< 4
Nmax ( )

W = Wmax — (wmax - wmin)
together with a maximum inertia weight wmax and minimum inertia weight wpin. In
Equation (4), Nmax is the total iteration number and N is the current iteration number.
Equation (4) suggests that with an increase in the number of iterations, the inertia weight
decreases progressively. This implies that during the initial stage, the PSO algorithm
exhibits a strong global exploration capability, while in the later stage it demonstrates a
robust local exploitation ability.

Table 1. Model parameters for the PSO algorithm.

N c1 () (Wmax Wmnin itermax
10 2 2 0.9 0.4 50
2.3. PSO-BPNN

As previously illustrated, appropriate initial parameters can enhance the prediction
performance of the BPNN as well as the learning speed. Therefore, we employ the PSO
method to optimize the initial weights and biases, with the aim of improving prediction
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accuracy and reducing learning time. Specifically, prior to the training of the neural
network, the particle swarm optimization approach is utilized to initialize the weights and
biases. The PSO search for the optimal positions by using the mean squared error of the
network as the fitness function. The optimized parameters is subsequently allocated to
the BPNN as the initial weights and biases. Algorithm 2 gives the detailed steps of the
PSO-BPNN.

Algorithm 2 PSO-BPNN

1. Design the network structure and set the involved parameters;
Initialize the positions and velocities of particles and define the fitness function of the
PSO algorithm;

3. Iterate using the PSO algorithm to locate the best positions;

=

Assign the optimized parameters to the BPNN;
5. Training and testing the prediction performance of the BPNN model in terms of accuracy
and error

3. Application Examples and Discussions

In this section, the proposed PSO-BPNN algorithm is employed for predicting the
strength of two typical smart cementitious materials, i.e., 3D printed fiber reinforced
concrete (3DP-FRC) and grapheme nanoparticles-reinforced cementitious composites
(GrN-CC) and relevant results are discussed. Note that a systematic review of relevant
experimental studies were conducted from Google scholar and web of science databases and
that satisfying the following criteria were included for data collecting: the selected studies
were scientific papers online and the material composition and experimental conditions
were clearly given.

A three-layer neural network is used for both examples. The learning rate « and
regularization factor A are set as 0.01 and 0.1, respectively. The initial parameters for the
particle swarm optimization algorithm are shown in Table 1. In addition, a traditional
BPNN with same structure and parameters is also utilized for the comparison of prediction
accuracy and error.

Five widely used statistical metrics are applied to evaluate the predictive accuracy of
the models, represented as Equations (5)—(9). A prediction model with a higher R? and
lower MSE, MAE, MAPE and RMSE can be considered to exhibit a superior performance.

Py (i — ]?i)z
R?=1-E! = (5)
Y (vi—y)
i=1
1o X
MAE = -} |yi — i, ©)
i=1
y L X
MSE = -} (vi = 91)%, 7)
i=1
10 X
RMSE = /) (yi - 7)?, ®)
i=1
1 |y — i
MAPE = — , )
mlzzl yi

in which y; denote the experimental data while ; is the predicted value; ¥ is the mean
value; 7 is the sample number.
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3.1. 3D Printed Fiber Reinforced Concrete
3.1.1. Data Collection and Description

Three dimensional printing technology, an additive manufacturing method, has been
an important tool for the creation of smart materials and structures. Herein the proposed
PSO-BPNN algorithm is employed to develop a predictive model for the compressive
strength (CS) of 3DP-FRC.Thus, a total of 268 experimental values are collected from
recently published articles [29-37]. Fifteen parameters, namely, water/binder ratio (W/B),
ordinary Portland cement (OPC, kg/m?), curing age (CA, days), water (W, kg/m?), fly
ash (FA, kg/ m?), sand (S, kg/ m?), fiber volume fraction (V¢, %), ground slag (GS, kg/ m?),
hydroxypropyl methylcellulose (HPMC, kg/m?), silica fume (SF, kg/m?), superplasticizer
(S, kg/ m3), loading direction (LD), fiber length (Lf, mm), fiber diameter (Df, um), and
fiber type (Fiype) are chosen as input variables. Accordingly, the number of neurons is
configured as 15, 13 and 1 for each layer. Three loading directions are usually involved in
the compressive experiments of 3D printed concrete, i.e., X, Y, Z. X denotes the direction
parallel to the 3D printing direction which is marked as 1. Y and Z represent the perpen-
dicular and vertical directions, and they are labeled as 2 and 3, respectively. Moreover,
five types of fiber are included in the database: polyethylene (PE), steel, polyvinyl alcohol
(PVA), polypropylene (PP) and basalt. They are labled as 1-5, respectively. To offer a
comprehensive understanding for the collected dataset, six statistical parameters for the
experimrntal dara are summarized in Table 2, including mean value, standard deviation,
maximum value, minimum value, kurtosis and skewness. Kurtosis represents the symme-
try of the variables, and skewness denotes whether the distribution of data is light—tailed
or heavy-tailed in comparison with Gaussion distribution.

Table 2. The statistical parameters of the collected experimental data for SDP-FRC.

. Mean Standard Maximum Minimum .
Variables Value Deviation Value Value Kurtosis Skewness

OPrC (kg/m3) 534.00 194.92 1112.3 285.30 4.07 1.16

W/B 0.21 0.055 0.35 0.16 2.82 0.87

S (kg/m3) 804.04 414.72 1902 246 2.61 0.10

FA (kg/m3) 315.98 42454 1141.4 0 1.96 0.81
GS (kg/m3) 170.00 170.84 450 0 1.18 0.077
SF (kg/m?) 182.46 128.41 377.80 0 1.71 —-0.27

SP (kg/ md) 6.98 4.95 20 0 2.47 0.43

HPMC (kg/m3) 0.83 1.26 3.8 0 3.39 1.30

\Y (kg/m3) 258.54 84.49 427.90 182 1.61 0.45

V£ (%) 0.01 0.0073 0.02 0 1.65 0.23
CA (days) 24.25 8.76 28 1 4.86 —1.94
LD (x,y, z) 2.14 0.81 3 1 1.56 —0.26

D¢ (um) 45.64 52.54 200 15 7.62 2.52

L (mm) 7.20 3.57 18 0 3.98 0.95

Ftype 243 0.99 5 1 2.94 0.58

CS (MPa) 67.95 37.65 153.40 8 1.93 0.13

Further, it is crucial to standardize the data before fed into the neural network to
ensure that all parameters are consistent and any potential bias can be prevented in the
machine learning algorithms. In Matlab, the function mapminmax is utilized to scale the
feature values within a specific range, and thereby the performance of the models can
be enhanced. In addition, the data collected from the previous articles is divided into a
training set containing 218 data points and a testing set containing 50 data points to build
and assess the prediction model.

3.1.2. Results and Discussions

Figures 2 and 3 compare the prediction performance of BPNN and PSO-BPNN models
on the training and testing datasets, respectively. It is shown that the prediction values of
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the PSO-BPNN model follow the experimental values more closely than those of BPNN. It
can be observed that PSO-BPNN provides predictions for nearly all samples within an error
level of +20% on the training set and an error level of 10% on the testing dataset, which
indicates that all predictions with PSO-BPNN match the experimental values reasonably
well. The model errors in Figures 2b and 3b clearly show that the proposed PSO-BPNN
algorithm yields less error and higher accuracy compared to the traditional BPNN model.
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Figure 2. Prediction performance of BPNN and PSO-BPNN for the training set: (a) compressive
strength of 3DP-FRC; (b) error analysis.

The regression slope is an effective tool for assessing the performance of machine
learning models. In a regression plot, the prediction values are plotted against the experi-
mental values. The regression slopes of the BPNN and PSO-BPNN models are depicted
in Figures 4 and 5, respectively. As shown, the BPNN model yields a regression slope of
0.96 in training set and 0.91 in testing set, while the PSO-BPNN model obtains a regression
slope of 0.99 and 0.97 for the corresponding sets, respectively. The regression slopes of the
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PSO-BPNN model are closer to one compared to those of the BPNN model, indicating a

better prediction performance.
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Figure 3. Prediction performance of BPNN and PSO-BPNN for the testing set: (a) compressive
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Figure 4. Regression plots of BPNN for 3DP-FRC: (a) training set; (b) testing set.

100 120 140

Five statistical measures, i.e., RZ, MSE, MAE, MAPE and RMSE, are computed and
summarized in Table 3. It can be observed that the PSO-BPNN model yields a higher index
of R? and lower scores for MSE, MAPE, MAE and RMSE on the training dataset as well
as the testing dataset compared to the BPNN model, which indicates that the proposed
PSO-BPNN demonstrates a better performance for predicting the mechanical strength of
3D printed concrete. Moreover, the R? values of PSO-BPNN for training and testing are
both 0.99, demonstrating its strong capability for generalization. The error indicators of
PSO-BPNN are further improved on the testing dataset.



Buildings 2024, 14, 2033 9of 16

Training: R=0.99001 Testing: R=0.9913

140t | ° ?f;“a . 140
v I o qfe
- Y=T =
S 120+ © + 120
:t O o 45
I =
50100 5 £100 1
& =
% o %
% 80 r ® @® 5 80t
T 7 I
l{ 60 . 60+
E H
«5‘ 40 ° © s 40+
o o ©

20 20
20 40 60 80 100 120 140 20 40 60 80 100 120 140
Target Target
(a) (b)

Figure 5. Regression plots of PSO-BPNN for 3DP-FRC: (a) training set; (b) testing set.

Table 3. Various statistical parameters of the BPNN and PSO-BPNN models for SDP-FRC.

Model R? MAE MSE RMSE MAPE
Training

BPNN 0.98 5.03 49.25 7.02 8.97%
PSO-BPNN 0.99 4.86 28.95 5.38 7.25%
Testing

BPNN 0.96 6.76 98.24 9.91 9.94%
PSO-BPNN 0.99 3.72 22.66 4.76 6.72%

In addition, Alyami et al. [38] have utilized the same experimental data to develop
prediction models for compressive strength of 3D-FRC using various machine learning
techniques, including support vector regression (SVR), decision tress (DT), random forest
(RF), SVR-Bagging, gradient boosting (GB), SVR-Boosting and gene expression program-
ming (GEP). Some statistical parameters for these models are provided in Table 4. The
comparison between Tables 3 and 4 confirms that the proposed PSO-BPNN model exhibits
a superior performance in predicting the strength of 3D-FRC.

Table 4. Various statistical parameters for the developed models in [38].

Model R MAE RMSE
SVR 0.84 10.245 18.717

DT 0.987 4.644 6.589

RF 0.986 3.989 7.134
SVR-Bagging 0.897 10.771 19.007
GB 0.986 3.901 7.211
SVR-Boosting 0.961 9.491 12.833
GEP 0.985 5.691 6.405

3.2. Graphene Nanoparticles Reinforced Cementitious Composites
3.2.1. Data Collection and Description

Graphene nanoparticles reinforced cementitious composites (GrN-CC) have gained
significant attention because of their improved physical, mechanical and crack-resistant
properties. Nevertheless, the development of computational models for the properties
of GrN-CC using conventional methods is quite challenging, due to their intricate mul-
tiscale structures. Now the proposed PSO-BPNN is utilized for the construction of a
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prediction model for the compressive strength of GrN-CC. A series of experimental results
is gathered from recently published articles [39-68] that consists of 172 data points for
the CS of GrN-CC. Seven parameters, namely curing age (CA, days), sand content (SC),
water/cement ratio (w/c), GrN diameter (GD, um), GrN content (GC, wt%), GrN thickness
(GT, nm) and ultrasonication (US, hr) are considered as input variables. Accordingly, a
neural network of 7-11-1 is designed for the prediction model. Table 5 gives the statistical
parameters for the collected experimental results to aid data comprehension. During data
pre—processing, the data is standardized to prevent the potential bias in training. Moreover,
the experimental data is also divided two subsets, i.e., a training data set consisting of
142 data points and a testing dataset consisting of 30 data points, to build and assess the
prediction model, respectively.

Table 5. The statistical parameters of the collected experimental data for GrN-CC.

Variables \l\g ell?:; Is)::/ri“ai;:)‘i M;‘;:ln]: :m M;I;alllz :m Kurtosis Skewness
SC 1.37 1.49 3 0 —-1.99 0.16
GD (um) 3.38 6.87 50 0.07 35.55 5.60
GT (nm) 3.39 5.19 27.6 0.7 14.18 3.63
GC (wt%) 0.26 0.94 6.4 0.01 31.12 5.44
w/c 0.40 0.11 0.72 0.2 143 1.24
US (h) 0.49 0.82 3 0 4.66 2.37

CA (days) 19.70 10.82 28 1 —1.49 —0.62

CS (MPa) 48.51 19.10 94.26 14.59 —0.60 0.20

3.2.2. Results and Discussions

Figures 6 and 7 depict the prediction performance of BPNN and PSO-BPNN models
on the training and testing datasets, respectively. As shown, the PSO-BPNN model exhibits
a superior predictive performance compared to the traditional BPNN. The PSO-BPNN
yields predictions for nearly all samples within a £15% error range on the training dataset
and a +10% error range on the testing dataset, which demonstrates that the experimental
and predictive values are agree well.
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Figure 6. Cont.
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Figure 6. Prediction performance of BPNN and PSO-BPNN for the training set: (a) compressive
strength of GrN-CC; (b) error analysis.
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Figure 7. Prediction performance of BPNN and PSO-BPNN for the testing set: (a) compressive
strength of GrN-CC; (b) error analysis.

Figures 8 and 9 display the regression plots of the BPNN and PSO-BPNN predictive
models, respectively. The BPNN model shows a regression slop of 0.81 for the training
dataset and 0.7 for the testing dataset that is lower than the suggested threshold of 0.80,
indicating a poor prediction performance. The PSO-BPNN model provides slops of 0.96
and 0.93 in training and testing, respectively. Once again, the ideal fit line confirms the
reliability and robustness of the proposed PSO-BPNN algorithm.

Table 6 lists the quantitative indicators of BPNN and PSO-BPNN for both the training
and testing datasets. The R? value of BPNN for training is 0.92 while for testing is just 0.77,
indicating a poor performance for predicting the mechanical properties of GrN-CC. The R?
value as well as the other error scores of PSO-BPNN are all in a reasonable range, which
strongly suggests the excellent predictive performance of PSO-BPNN.
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Figure 9. Regression plots of PSO-BPNN for GrN-CC: (a) training set; (b) testing set.
Table 6. Various statistical parameters of the BPNN and PSO—BPNN models for GrN—CC.
Model R? MAE MSE RMSE MAPE
Training
BPNN 0.92 5.80 59.63 7.72 13.81%
PSO-BPNN 0.98 2.71 16.54 4.07 6.24%
Testing
BPNN 0.77 8.68 141.91 11.91 16.51%
PSO-BPNN 0.97 3.49 21.96 4.69 6.32%

Table 7 gives the statistical parameters of the prediction models for the compressive
strength of GrN-CC in [69] including the decision tree (DT), AdaBoost regressor (AR)
and bagging regressor (BR) models. It can be seen from Tables 6 and 7 that the proposed
PSO-BPNN models exhibit a superior predictive performance again.
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Table 7. Various statistical parameters for the developed models in [69].

Model R MAE RMSE
DT 0.87 4.60 5.44
AR 0.82 4.54 6.44
BR 0.80 5.42 6.73

4. Conclusions

Although the traditional back propagation neural network has been used in many
studies for the prediction of material properties, its accuracy and robustness need fur-
ther investigation. This work presents a back propagation neural network optimized
by particle swarm algorithm (PSO-BPNN) for predicting the mechanical performance of
smart cementitious materials. Specifically, the particle swarm method is introduced to
determine the initial weights and bias such that the accuracy and robustness of neural
network can be enhanced. The proposed algorithm is then applied to predict the mechani-
cal strength of two typical smart cementitious materials, i.e., 3D printed fiber reinforced
concrete and grapheme nanoparticles-reinforced cementitious composites. The results
indicate that a performance prediction model with a high degree of accuracy and strong
generalization capabilities can be developed using the PSO-BPNN methodology. Also,
the comparative analysis demonstrates that the developed PSO-BPNN outperforms the
traditional neural network in terms of the prediction accuracy, which means that the use
of PSO-BPNN can provide more reliable and accurate predictions for the performance of
smart cementitious materials.

The present findings of this work confirm the effectiveness of PSO-BPNN and can
promote its use in predicting the mechanical properties of smart cementitious materials.
However, the current study is built upon only two kinds of smart cementitous materials.
More data for other smart materials should be gathered to validate the effectiveness of the
PSO-BPNN method. In addition, other mechanical and physical properties, e.g., the shear
strength, should be considered in future work. Finally, further research can investigate
the performance of other popular soft computing techniques in improving the accuracy
of BPNN.
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