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Abstract: Predicting soil deformation is critical for the success of building construction projects.
The traditional methods used for this task, which rely on theoretical calculations and numerical
simulations, require detailed information on soil characteristics and geological conditions. These
essential details are often challenging to obtain in practical engineering, thereby limiting the accuracy
of these methods in building construction contexts. Deep learning (DL) provides a direct approach
for modeling soil deformation without having a detailed understanding of the soil properties and
geological conditions. However, the existing DL algorithms mainly focus on modeling deformation
directly. With advancements in monitoring technology, integrating diverse monitoring data has
become crucial for accurately predicting deformation, a need often overlooked in current practices.
This paper introduces a monitoring data fusion (MDF) model aimed at enhancing the utilization
efficiency of diverse monitoring data. Validated against real-world engineering scenarios, this model
significantly outperforms traditional single-feature and multi-feature long short-term memory (LSTM)
models. It achieves a mean absolute percentage error (MAPE) of approximately 2.12%, representing
reductions of 30% and 63%, and a root mean square error (RMSE) of around 12.5 mm, with reductions
of 36% and 77%. Additionally, the DL interpretability method, Shapley additive explanations (SHAP),
is utilized to elucidate how various model features contribute to generating predictions.

Keywords: soil deformation; deep learning; monitoring data; LSTM; SHAP

1. Introduction

Soil deformation predictions are crucial in geotechnical engineering to ensure the
stability and safety of buildings [1]. The traditional methods used for this task have
relied on theoretical calculations and numerical simulations to predict soil behavior under
various loading conditions [2,3]. Theoretical calculations typically involve Darcy’s law
and classical one-dimensional consolidation theory [4,5], employing the soil parameters
derived from geotechnical tests and then calculating deformations through analytical
solutions. However, these methods incorporate numerous assumptions and uncertainties.
In numerical simulations, soil deformation is modeled through finite element software,
necessitating detailed knowledge of the soil properties and geological conditions, which
are often challenging to ascertain with accuracy [6].

The emergence of machine learning (ML) has significantly transformed soil deforma-
tion prediction techniques. ML has the capability to directly learn deformation patterns
from data, providing a new avenue for addressing the limitations of traditional meth-
ods. ML techniques such as genetic algorithm (GA), support vector machines (SVM),
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extreme gradient boosting (XGboost), random forest regression (RFR), and extreme learn-
ing machine (ELM) have demonstrated potential in simulating soil behavior [7–10]. These
techniques have shown promise as they do not require extensive information on soil
properties and geological conditions [11,12].

Despite the successes of ML in modeling soil behavior, traditional ML techniques
struggle to capture the temporal dynamics inherent in soil deformation processes [13]. Deep
learning (DL) models, particularly long short-term memory (LSTM) networks [14], have
emerged as powerful solution for modeling time-series data. LSTM is adept at compre-
hending the temporal correlation between data points, making it particularly suitable for
predicting time-varying soil behaviors such as landslide displacement [15,16], deformation
during the excavation of foundation pits [17], and tunnel deformation [18].

A key limitation of earlier DL models was their focus on single-point deformation
data, so they overlooked the spatial variability in soil properties and deformation patterns.
In practice, monitoring data from multiple points are usually available, and prediction
accuracy can be improved by utilizing multipoint monitoring data. Recent developments
have focused on this, and authors have proposed integrated models that utilize multipoint
monitoring data. For instance, CNN–LSTM hybrid models leverage both convolutional
neural network (CNN) and LSTM to analyze data from multiple monitoring points, offering
a comprehensive view of soil behavior over time and space [19]. Song et al. further extended
this approach with a multipoint recurrent convolutional neural network (RCNN) model,
specifically designed to be trained on monitoring data to achieve accurate soil deformation
predictions in deep foundations [20].

While DL models are valuable in various engineering applications, they often focus
primarily on deformation monitoring data [21]. The rise in advanced monitoring techniques
has enabled the collection of multidimensional monitoring data, such as stress data and
pore water pressure data [22]. The existing DL methods typically do not use multiple types
of monitoring data, thereby limiting further improvements in model accuracy. Moreover,
traditional modeling methods usually adopt a standard train–test split (assigning 80% of the
initial data as the training set and the remaining 20% as the test set) [20,23]. However, soil
deformation data often lack periodicity, and the volume of such data is usually relatively
small. In many cases, the deformation observed during the testing period tends to stabilize.
Consequently, test sets divided in this manner may not reflect the distribution of the data
or adequately demonstrate the model’s performance.

This paper introduces a monitoring data fusion (MDF) model, which was designed
to integrate the features from multiple types of monitoring data, aiming to enhance the
accuracy of soil deformation predictions. Employing a dynamic training–testing approach,
this model adapts to the limited and dynamically updated nature of geotechnical monitor-
ing data. To verify the reliability of the proposed model, an engineering case containing
150 days of monitoring data was used to validate the model. Additionally, the importance
of different features in the proposed model was evaluated using the Shapley additive ex-
planations (SHAP) method, which provided insights into how different features contribute
to the model’s predictions.

2. Methods
2.1. Problem Statement

In building construction, monitoring data are crucial for guiding project decisions.
For a specific construction project, diverse monitoring data can be obtained. In this study,
three monitoring features—total stress, effective stress, and deformation—were selected
to predict deformation. The aim was to amalgamate features from multiple data sources,
thereby enhancing the model’s predictive accuracy.

The relationship between deformation and its monitoring sequence is dynamic and
complex. Additionally, the monitoring data obtained in civil engineering are often limited
in volume. As a result, it is imperative for the model to be regularly updated with new
data to adeptly adjust to these changes.
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2.2. Monitoring Data Fusion Model

This paper proposes a deformation prediction model that is based on a DL model. The
model excels in extracting features individually from monitoring data. The fundamental
framework of the MDF model is illustrated in Figure 1. The MDF model was designed to
enhance the application of DL techniques to monitoring data. We utilized all data collected
during the construction period, including effective stress σ, total stress P, and deformation
S. The DL model automatically extracts various features; thus, specific features are not
selected: all monitoring data are directly input into the model for comprehensive training.
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Figure 1. Structural diagram of MDF model.

LSTM networks are used as the feature extraction module for each type of monitoring
datum. Prior to entering the LSTM networks, a self-attention mechanism processes the
data, enabling the model to assess the significance of various data points. Subsequently,
the extracted features are integrated using vector splicing techniques. Additionally, to
counteract model forgetting, residual structures are incorporated, allowing the model to
utilize deformation data from previous time steps.

2.3. Feature Extraction Module of MDF Model

LSTM models have become indispensable tools for analyzing soil deformation [24].
Figure 2 demonstrates the inputs and outputs of the LSTM units. As depicted, each LSTM
unit processes a composite input, which includes three critical elements: the memory state
from the preceding moment (denoted as Ct−1), the current input data (represented as xt),
and the previous output of the hidden layer (denoted as Ht−1). The output of an LSTM
unit comprises two principal components: the output of the hidden layer at the current
time (Ht) and the memory state at that moment (Ct).
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Mathematically, the computation procedure of an LSTM unit is described through the
following equations:

It = σ(Wixt + UiHt−1 + bi) (1)

Ft = σ
(

W f xt + U f Ht−1 + b f

)
(2)

Ot = σ(Woxt + UoHt−1 + bo) (3)

Ct = Ft
⊙

C
t−1

+ It
⊙ ∼

Ct (4)

Ht = Ot
⊙

tanh(C
t

)
(5)

where It, Ft, and Ot denote, respectively, the input gate, the forget gate, and the output gate.
The weight matrices for these gates are represented by W, while U signifies the weights of
the hidden layer in the preceding time step. The bias terms for different gating mechanisms
are denoted by b. The sigmoid activation function is denoted by σ, and tanh denotes the
hyperbolic tangent activation function. The symbol

⊙
represents the element-wise product

of vectors, and
∼
Ct denotes the candidate cell state.

2.4. Feature Fusion Module

Our model includes a feature fusion module, which is essential for integrating in-
formation from multiple input sources effectively. This module is pivotal for capturing a
comprehensive representation of the input data. The extracted feature vectors are concate-
nated along the feature dimension to form a unified feature representation, denoted as

Hconcat = {Hσ, HP, Hs} (6)

where Hσ, HP, and Hs represent the features extracted by the LSTM models from input
sources σ, P, and S, respectively. The concatenated feature vector Hconcat is then passed
through a fully connected layer to perform linear transformation and nonlinear mapping.

2.5. Residual Module

Our model incorporates a residual module to enhance the effects of feature fusion
and improve the predictive performance. This module promotes effective information
transmission and stabilizes model training by directly adding the output of the model to
the input features from the previous timestep. This methodology ensures the preservation
of the original input feature information and facilitates smoother gradient propagation,
thereby augmenting the overall model performance. Notably, the residual module in our
study uses deformation features from the prior timestep as its inputs. This is expressed as

O f inal = O + XT−1 (7)

where O represents the output feature vector after processing through a fully connected
layer, and XT−1 denotes the value of the input feature in the last time step.

2.6. Attention Mechanism of the Model

In this study, a self-attention mechanism was employed to capture the long-distance
dependencies within monitoring data [25]. The architecture of the self-attention mechanism
was designed to enhance the correlation between monitoring data sequences at different
time points by weighting and summing these sequences [26], as illustrated in Figure 3. As
detailed in Equations (8)–(11), the initial step involves the input data undergoing three
linear mappings to produce matrices Q (query), K (key), and V (value). The similarity
between Q and K is determined through matrix multiplication. To ensure the similarity
scores do not become overly large, the results are divided by the scaling factor Dk. The
resulting similarity matrix is then normalized using the SoftMax function, which converts
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it into an attention weights matrix. The final output is derived through the weighted
summation of the V, based on the attention weight matrix.

Q = WqX (8)

K = WkX (9)

V = WvX (10)

OUTPUT = Vso f tmax
(

KTQ√
Dk

)
(11)

where Q is the query matrix, K is the key matrix, V is the value matrix, and Dk is the
scaling factor.
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2.7. Prediction Procedure of the Dynamic Training–Testing Method

As depicted in Figure 4, the process of predicting soil deformation using a DL model
involves several key steps. Initially, monitoring data are collected to create a complete
dataset. These data are then normalized using a maximum–minimum normalization
technique to ensure consistency across all measurements. Subsequently, the normalized
data are trained using the MDF model. It is important to note that the collected data are
utilized not only for training but also for evaluating the model’s performance. As the
monitoring data are updated, the accuracy of the model’s predictions is reassessed. With
continuous updates to the dataset, the training data must be refreshed, necessitating the
retraining of the model to accurately predict future soil deformation.

The method proposed in this paper emphasizes the continuity and dynamism of
dataset updates in the field of soil monitoring. Figure 5 compares this dynamic updating
process with traditional dataset delineation methods. In method (a), which represents
the general data division approach, a certain portion of the data is selected for training,
followed by another portion for testing. However, in engineering contexts, where the
focus is often on monitoring dynamic deformations throughout a construction project, this
method may not sufficiently reflect the data distribution. Consequently, using method (a)
to assess model accuracy might not yield a true representation of the data.

Conversely, method (b) illustrates a dynamic training–testing approach. As the dataset
evolves, the model is continuously trained with newly updated data, with the subsequent
day’s data selected for testing. This method more effectively captures the dynamic nature of
engineering datasets and provides a more realistic assessment of the model’s performance
over time.
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2.8. SHAP

DL models, which are currently the most popular nonlinear models, have been widely
applied in various domains. However, DL models are often considered black-box mod-
els with poor interpretability. SHAP [27], which is based on game theory, provides an
interpretable method of explaining the output of any DL model [28]. The SHAP method
can measure the impact of features on the dependent variable in DL models, assigning an
importance value (SHAP value) to each feature. Its expression is

φi = ∑
S⊆N{i}

|S|!(|N| − |S| − 1)!
|N|! [ f (S ∪ {i})− f (S)] (12)

where N is the set of all features, S is a subset of N that does not include feature I, f (S)
is the model prediction when only the feature set S is involved, f (S ∪ {i}) is the model
prediction when feature i is added to feature set S, and |S|!(|N|−|S|−1)!

|N|! is a combinatorial
coefficient used to assign weights to each feature subset.

3. Experimental Example
3.1. Project Overview

This study involved the data measured during the construction of a high-speed
railway roadbed, focusing on a test section treated with the vacuum precompression
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method to reinforce a soft foundation. The soils in this test section were identified as
normally consolidated (NC) based on their stress history. A vacuum gauge was strategically
positioned at the center of the reinforced area to measure the vacuum degree beneath the
membrane. Concurrently, settlement pipes and magnetic rings were utilized to monitor
the layered settlement, and a pore water pressure gauge was embedded to record the pore
water pressure.

Figure 6 shows the position of the different measurement points CJ1–CJ6 at various
depths in the soil; the depths of the measurement points were 1.5 m, 3.5 m, 5.5 m, 8.5 m,
11.5 m, and 14.5 m, respectively. For the model inputs, deformation was assessed from the
stratified settlement data gathered at points CJ1 to CJ6, effective stress was calculated from
the pore water pressure recorded at these depths, and total stress was determined using
the vacuum levels measured with the vacuum gauges.
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3.2. Experimental Details

Our model was implemented in PyTorch v2.0, a DL framework written in Python, and
ran on an NVIDIA 4070 GPU. The configuration of the MDF model, as detailed in Table 1,
was determined through a series of iterative tests. Each hyperparameter was systematically
varied within a predetermined range to ascertain the optimal performance of the model.
The model’s weights were updated using the Adam optimizer, with the batch size, learning
rate, and epoch set to 32, 0.01, and 200, respectively. Dropout was employed to mitigate
overfitting.

Table 1. Details of different models.

Model MDF Single-Feature LSTM Multi-Feature
LSTM

Epoch 200 200 200
Batch size 32 32 32

Learning rate 0.01 0.01 0.01
Activation function Tanh Tanh Tanh

Drop out 0.5 0.5 0.5
Optimizer Adam Adam Adam

For comparative analysis, two LSTM models were also tested. One model used a
single feature input (deformation), and the other was a multi-feature LSTM incorporating
deformation, effective stress, and total stress inputs. Both LSTM models were configured
with the same hyperparameters as the MDF model to ensure consistency for comparison.
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The model’s performance was evaluated using a loss function that measures the
agreement between actual and predicted values. Specifically, the mean squared error (MSE)
function was employed, which is defined as

MSE =
1
N

N

∑
i=1

(yi
p − yi)

2 (13)

where N represents the total number of data sets; yi
p and yi are the predicted and measured

values, respectively.

3.3. Model Performance Criteria

The mean absolute percentage error (MAPE) and root mean square error (RMSE) were
employed to analyze the performance of the various models. The higher these values, the
worse the prediction performance. The definitions of the MAPE and RMSE are as follows:

MAPE =
1
N

N

∑
i=1

|yi
p − yi|
yi

× 100% (14)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi
p − yi)

2 (15)

where N represents the number of samples, yi represents the target data of the ith set of
samples, and yi

p represents the output of the ith set of samples.

3.4. Results

In this study, the proposed MDF model was employed to predict soil deformation,
and its performance was compared with that of the traditional single-feature LSTM and
multi-feature LSTM models. Figure 7 shows the results of the comparison of these three
models at the CJ1–CJ6 measurement points. The deformation data of six measurement
points, CJ1–CJ6, over approximately 150 days, demonstrate different deformation varia-
tions, revealing the strong nonlinear characteristics of the deformations. It is evident that
all models—MDF, single-feature LSTM, and multi-feature LSTM—adequately captured
the fundamental deformation trends. Nonetheless, the MDF model demonstrated superior
accuracy in capturing deformations. Although LSTM-based models are adept at feature ex-
traction, their predictive accuracy diminishes significantly at points of abrupt deformation
changes. To highlight this, insets showing these deformation changes are incorporated into
each plot. The analysis showed that the MDF model surpassed the LSTM models in terms
of prediction accuracy at deformation mutation points CJ1–CJ6.

Although the multi-feature LSTM model considers several parameters, including
stress features, it failed to deliver the expected superior results. Several factors contributed
to this outcome: Firstly, the measured data inevitably contained noise, and the increased
dimensionality of the input features exacerbated the issue of data quality, making it more
challenging for the model to learn effective patterns, resulting in performance degradation.
Secondly, the correlation between the dimensions of multiple input features introduced
multicollinearity problems, further deteriorating model accuracy. This results in a signifi-
cant performance degradation of the LSTM model when multiple features were extracted.
In contrast, the MDF model boosts feature extraction capabilities by separately extracting
features before fusing them, significantly enhancing model accuracy.
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Figure 7. Comparison of three prediction models at different measurement points.

4. Discussion
4.1. Error Analysis

To more clearly reflect the prediction accuracy of each model, the daily prediction
errors were analyzed concurrently. As the models were updated, daily predictions were
compared against actual monitoring data to assess errors, as illustrated in Figure 8. The
MAPE results for CJ1–CJ6 demonstrated that the MDF model consistently recorded the
lowest errors in the scatter plot relative to both the single-feature and multi-feature LSTM
models, indicating a substantial enhancement in prediction accuracy.

Moreover, the MDF model consistently exhibited uniform error distribution, in con-
trast to the single-feature and multi-feature LSTM models, which displayed more volatile
error distributions. Particularly, multi-feature LSTM had the most uneven prediction error
distribution, with large dispersion, further revealing its limitations in handling multifea-
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ture data. Conversely, the MDF model, specifically designed to handle multifeature data,
showed more stable and robust prediction performance.
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Figure 8. Daily prediction errors for three different models.

Figure 8 also reveals that at the onset of the monitoring period, all models—including
the MDF, single-feature LSTM, and multi-feature LSTM—exhibited large errors due to the
initially limited data available. DL models typically require a substantial amount of data to
ensure high generalization performance. As the dataset grew and the models underwent
continual updates and training, their performance improved progressively. By the 25th day,
the prediction errors of the MDF model were decreased significantly, indicating improved
accuracy and stability.

To gain a comprehensive understanding of the prediction errors, the probability
density function (PDF) of the normalized error distribution was employed, as outlined
in Equation (16). As depicted in Figure 9, the prediction errors generated by the MDF
model for all measurement points were predominantly concentrated within a 10% range,
with a probability of approximately 90%. In contrast, the probability for errors within
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10% for single-feature LSTM was approximately 80%; for multi-feature LSTM, it was
approximately 74%. This indicated that the MDF model had a higher probability of having
fewer errors. Additionally, the average error value for the MDF model was approximately
zero, suggesting that its errors mainly concentrated at zero. In comparison, the average
error values of single-feature LSTM and multi-feature LSTM were noticeably far from zero,
indicating a more dispersed error distribution.

πi = PDF
{

yi
p − yi
yi

}
(16)
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Figure 9. The PDF of three types of prediction model.

In order to illustrate the performance of the different models more clearly, Table 2
presents the MAPE and RMSE values for each model at various measurement points, along
with the probability of each model maintaining an error rate within 10%. The MAPE
and RMSE values were calculated by comparing the predictions from the MDF models
against actual field measurements, as detailed in Section 3.3. Additionally, the probability of
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sustaining an error rate within 10% was computed based on the described error distribution.
Specifically, the MAPE of the MDF model was lower by approximately 30% compared
with that of single-feature LSTM and about 63% compared with that of the multi-feature
LSTM model. Additionally, the RMSE was reduced by approximately 36% compared
with that of the single-feature LSTM model and by about 77% compared with that of the
multi-feature LSTM model. Furthermore, the probability of error within 10% was higher by
approximately 13% than that of the single-feature LSTM model and by about 20% compared
with that of the multi-feature LSTM model.

Table 2. Indicators of different measurement points on the test set.

Metric MAPE (%) RMSE (mm) Probability of Error within 10% (%)

Models MDF Single-Feature
LSTM

Multi-Feature
LSTM MDF Single-Feature

LSTM
Multi-Feature

LSTM MDF Single-Feature
LSTM

Multi-Feature
LSTM

CJ1 1.81 2.52 5.49 17.63 26.98 81.11 98 86 78
CJ2 1.81 2.68 5.76 14.30 23.49 68.34 96 84 76
CJ3 2.08 3.16 5.73 13.88 22.03 60.88 90 77 75
CJ4 2.17 3.27 5.99 11.07 18.13 49.83 87 76 72
CJ5 2.35 3.31 6.38 9.65 14.49 43.61 82 75 69
CJ6 2.51 3.28 5.36 8.39 12.19 26.83 82 76 75

The accuracy improvement primarily arises from the MDF model’s ability to effectively
integrate diverse monitoring data and accurately capture the complex interdependencies
among the factors that influence soil deformation. This comprehensive data integration
allows the model to describe soil behavior more precisely, an accomplishment that single-
feature or multi-feature LSTM models fail to achieve due to their limited utilization of the
available monitoring data.

The model proposed in this paper demonstrated high predictive accuracy in the pro-
vided examples. Currently, the MDF model requires the availability of all three specified
types of monitoring data for training. It is crucial to acknowledge that the MDF model
cannot automatically adjust to the absence of any data type. Moreover, the model’s perfor-
mance in other scenarios remains untested, which not only identifies a key limitation of
this study but also directs future research efforts.

In subsequent studies, we will address scenarios where one or more data type is
missing. The MDF model will be applied across a variety of cases. These enhancements are
anticipated to refine our deformation prediction techniques, resulting in more precise risk
assessments. The MDF model is projected to offer a comprehensive solution for effectively
managing excessive deformation. By proactively predicting significant deformations,
timely and appropriate mitigation measures can be implemented. This proactive strategy
will significantly enhance our capacity to minimize the impacts of both human-made and
natural disasters.

4.2. SHAP Analysis of Feature Importance in the MDF Model

The MDF model proposed in this study integrates various monitoring data features to
enhance prediction accuracy. To understand how the model operates, the SHAP method
was employed. This method involves calculating the SHAP values for different features,
which are subsequently aggregated to determine the outcomes of predictions.

Analyzing these values elucidates how a model derives its predictions from the
contributions of distinct features. As presented in Figure 10, the horizontal axis represents
the SHAP values, where higher values indicate a greater influence on the dependent
variable. Notably, the deformation feature’s SHAP value substantially surpasses those
of other data features, emphasizing its critical role. This significant impact stems from
the MDF model’s ability to autonomously learn from historical data, confirming that past
deformation data are crucial for accurate future deformation predictions.
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Furthermore, the analysis showed that the effective stress feature had a more pro-
nounced impact than the total stress feature. Each data feature provides a unique contribu-
tion, showcasing the sophisticated integration of various monitoring data by the proposed
model. This intricate integration allows the MDF model to deliver highly accurate predic-
tions, demonstrating its utility in practical applications of deformation monitoring.

5. Conclusions

We addressed the inefficiencies of existing DL models in effectively utilizing multiple
types of monitoring data for predicting soil deformation by proposing the MDF model.
Specifically, three LSTM layers were designed to extract the features from various monitor-
ing data types, employing data feature fusion and residual structures to enhance prediction
accuracy. A dynamic training–testing method was also developed to address the short-
comings of traditional dataset partitioning strategies. The effectiveness of this method was
validated using a dataset containing 150 days of strain –time history measurements, and a
comparative analysis was conducted against traditional single-feature and multi-feature
LSTM models.

The results showed that the MAPE of the MDF model were lower by approximately
30% than that of the single-feature LSTM model and by about 63% than that of the multi-
feature LSTM model. Additionally, the RMSE was reduced by approximately 36% com-
pared to that of the single-feature LSTM model and by about 77% compared to that of
the multi-feature LSTM model. These findings underscored the MDF model’s superior
ability in predicting soil deformation. The model accurately forecasted nonlinear soil
deformation during construction, enabling the implementation of pre-emptive measures to
mitigate risks and prevent catastrophic damage, thus enhancing public safety and reducing
economic losses.

Furthermore, SHAP analysis highlighted the contributions of various factors to the
predictions. This analysis showed that the MDF model’s predictions primarily stem from
three types of monitoring data: deformation characteristics, effective stress characteristics,
and total stress characteristics. Deformation characteristics were identified as the most
critical, followed by effective stress characteristics, with total stress characteristics being the
least influential. This understanding of the relative importance of the different factors not
only enhances the model’s interpretability but also provides valuable guidance for future
monitoring and data collection strategies.

Author Contributions: Conceptualization: J.L. and Y.W.; methodology: H.W. and Y.W.; software:
H.W.; validation: L.Z. and Y.W.; formal analysis: Y.Z., L.Z. and Y.W.; investigation: H.W. and
Y.Z.; resources: Y.W. and C.L.; data curation: C.L. and H.W.; writing—original draft preparation:
H.W.; writing—review and editing: Y.W.; visualization: H.W.; supervision: Y.W.; project administra-



Buildings 2024, 14, 2055 14 of 15

tion: J.L.; funding acquisition: H.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Postgraduate Research & Practice Innovation Program of
Jiangsu Province (No. KYCX23-0686).

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Qi, Y.; Tian, G.; Bai, M.; Song, L. Study on Construction Deformation Prediction and Disaster Warning of Karst Slopes Based on

Grey Theory. Bull. Eng. Geol. Environ. 2023, 82, 62. [CrossRef]
2. Cui, J.; Yang, Z.; Azzam, R. Field Measurement and Numerical Study on the Effects of Under-Excavation and Over-Excavation on

Ultra-Deep Foundation Pit in Coastal Area. J. Mar. Sci. Eng. 2023, 11, 219. [CrossRef]
3. Yin, J.H.; Chen, Z.J.; Feng, W.Q. A General Simple Method for Calculating Consolidation Settlements of Layered Clayey Soils

with Vertical Drains under Staged Loadings. Acta Geotech. 2022, 17, 3647–3674. [CrossRef]
4. Li, P.L.; Yin, Z.Y.; Song, D.B.; Yin, J.H.; Pan, Y. Axisymmetric Finite Strain Consolidation Model for Soft Soil Consolidation

with Vertical Drains under Combined Loading Considering Creep and Non-Darcy Flow. Geotext. Geomembr. 2024, 52, 241–259.
[CrossRef]

5. Lei, M.; Luo, S.; Chang, J.; Zhang, R.; Kuang, X.; Jiang, J. The Influences of Vacuum-Surcharge Preloading on Pore Water Pressure
and the Settlement of a Soft Foundation. Sustainability 2023, 15, 7669. [CrossRef]

6. Yin, J.H.; Feng, W.Q. A New Simplified Method and Its Verification for Calculation of Consolidation Settlement of a Clayey Soil
with Creep. Can. Geotech. J. 2017, 54, 333–347. [CrossRef]

7. Zhang, R.; Wu, C.; Goh, A.T.C.; Böhlke, T.; Zhang, W. Estimation of Diaphragm Wall Deflections for Deep Braced Excavation in
Anisotropic Clays Using Ensemble Learning. Geosci. Front. 2021, 12, 365–373. [CrossRef]

8. Zheng, G.; Zhang, W.; Zhang, W.; Zhou, H.; Yang, P. Neural Network and Support Vector Machine Models for the Prediction of
the Liquefaction-Induced Uplift Displacement of Tunnels. Undergr. Space 2021, 6, 126–133. [CrossRef]

9. Park, H.I.; Kim, K.S.; Kim, H.Y. Field Performance of a Genetic Algorithm in the Settlement Prediction of a Thick Soft Clay
Deposit in the Southern Part of the Korean Peninsula. Eng. Geol. 2015, 196, 150–157. [CrossRef]

10. Kong, F.; Lu, D.; Ma, Y.; Li, J.; Tian, T. Analysis and Intelligent Prediction for Displacement of Stratum and Tunnel Lining by Shield
Tunnel Excavation in Complex Geological Conditions: A Case Study. IEEE Trans. Intell. Transport. Syst. 2022, 23, 22206–22216.
[CrossRef]

11. Chen, J.H.; Cui, D.W. A multi-step prediction model of ROA-ELM dam deformation based on wavelet packet transform. J. Three
Gorges Univ. (Nat. Sci. Ed.) 2022, 44, 21–27. [CrossRef]

12. Ray, R.; Kumar, D.; Samui, P.; Roy, L.B.; Goh, A.T.C.; Zhang, W. Application of Soft Computing Techniques for Shallow Foundation
Reliability in Geotechnical Engineering. Geosci. Front. 2021, 12, 375–383. [CrossRef]

13. Zhang, P.; Wu, H.N.; Chen, R.P.; Chan, T.H.T. Hybrid Meta-Heuristic and Machine Learning Algorithms for Tunneling-Induced
Settlement Prediction: A Comparative Study. Tunn. Undergr. Space Technol. 2020, 99, 103383. [CrossRef]

14. Zhang, N.; Shen, S.L.; Zhou, A.; Jin, Y.F. Application of LSTM Approach for Modelling Stress–Strain Behaviour of Soil. Appl. Soft
Comput. 2021, 100, 106959. [CrossRef]

15. Xie, P.; Zhou, A.; Chai, B. The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-
Induced Landslides. IEEE Access 2019, 7, 54305–54311. [CrossRef]

16. Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time Series Analysis and Long Short-Term Memory Neural Network to Predict Landslide
Displacement. Landslides 2019, 16, 677–694. [CrossRef]

17. Zhang, S.J.; Tan, Y. Prediction of pit deformation based on LSTM algorithm. Tunn. Constr. 2022, 42, 113–120. [CrossRef]
18. Lv, Q.F.; Li, Y.; Niu, R.; Xui, H.X.; Mao, N.; Kang, Q.Y. Deep learning-based prediction of surrounding rock deformation in tunnels

with special geotechnical conditions. J. Appl. Basic Eng. Sci. 2023, 31, 1590–1600. [CrossRef]
19. Hong, Y.C.; Qian, J.G.; Ye, Y.X.; Cheng, L. Application of spatio-temporal correlation feature-based CNN-LSTM model in

deformation prediction of foundation pit engineering. J. Geotech. Eng. 2021, 43, 108–111. [CrossRef]
20. Song, F.; Zhong, H.; Li, J.; Zhang, H. Multi-Point RCNN for Predicting Deformation in Deep Excavation Pit Surrounding Soil

Mass. IEEE Access 2023, 11, 124808–124818. [CrossRef]
21. Zhang, J.; Phoon, K.K.; Zhang, D.; Huang, H.; Tang, C. Deep Learning-Based Evaluation of Factor of Safety with Confidence

Interval for Tunnel Deformation in Spatially Variable Soil. J. Rock Mech. Geotech. Eng. 2021, 13, 1358–1367. [CrossRef]
22. Chen, R.; Liu, J.; Li, J.H.; Ng, C.W.W. An Integrated High-Capacity Tensiometer for Measuring Water Retention Curves

Continuously. Soil Sci. Soc. Am. J. 2015, 79, 943–947. [CrossRef]
23. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence

Time-Series Forecasting. AAAI 2021, 35, 11106–11115. [CrossRef]
24. Chen, X.X.; Yang, J.; He, G.F.; Huang, L.C. Development of an LSTM-Based Model for Predicting the Long-Term Settlement of

Land Reclamation and a GUI-Based Tool. Acta Geotech. 2023, 18, 3849–3862. [CrossRef]

https://doi.org/10.1007/s10064-023-03074-x
https://doi.org/10.3390/jmse11010219
https://doi.org/10.1007/s11440-021-01318-2
https://doi.org/10.1016/j.geotexmem.2023.10.008
https://doi.org/10.3390/su15097669
https://doi.org/10.1139/cgj-2015-0290
https://doi.org/10.1016/j.gsf.2020.03.003
https://doi.org/10.1016/j.undsp.2019.12.002
https://doi.org/10.1016/j.enggeo.2015.07.012
https://doi.org/10.1109/TITS.2022.3149819
https://doi.org/10.13393/j.cnki.issn.1672-948x.2022.06.003
https://doi.org/10.1016/j.gsf.2020.05.003
https://doi.org/10.1016/j.tust.2020.103383
https://doi.org/10.1016/j.asoc.2020.106959
https://doi.org/10.1109/ACCESS.2019.2912419
https://doi.org/10.1007/s10346-018-01127-x
https://doi.org/10.3973/j.issn.2096-4498.2022.01.014
https://doi.org/10.16058/j.issn.1005-0930.2023.06.015
https://doi.org/10.11779/CJGE2021S2026
https://doi.org/10.1109/ACCESS.2023.3330858
https://doi.org/10.1016/j.jrmge.2021.09.001
https://doi.org/10.2136/sssaj2014.11.0438n
https://doi.org/10.1609/aaai.v35i12.17325
https://doi.org/10.1007/s11440-022-01749-5


Buildings 2024, 14, 2055 15 of 15

25. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017. [CrossRef]

26. Feng, J.; Yan, L.; Hang, T. Stream-Flow Forecasting Based on Dynamic Spatio-Temporal Attention. IEEE Access 2019, 7, 134754–
134762. [CrossRef]

27. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [CrossRef]

28. Baptista, M.L.; Goebel, K.; Henriques, E.M.P. Relation between Prognostics Predictor Evaluation Metrics Andlocal Interpretability
SHAP Values. Artif. Intell. 2022, 306, 103667. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/ACCESS.2019.2941799
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1016/j.artint.2022.103667

	Introduction 
	Methods 
	Problem Statement 
	Monitoring Data Fusion Model 
	Feature Extraction Module of MDF Model 
	Feature Fusion Module 
	Residual Module 
	Attention Mechanism of the Model 
	Prediction Procedure of the Dynamic Training–Testing Method 
	SHAP 

	Experimental Example 
	Project Overview 
	Experimental Details 
	Model Performance Criteria 
	Results 

	Discussion 
	Error Analysis 
	SHAP Analysis of Feature Importance in the MDF Model 

	Conclusions 
	References

