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Abstract: In order to investigate the analysis and processing methods for nonstationary signals
generated in bridge health monitoring systems, this study combines the advantages of complete
ensemble empirical mode decomposition (CEEMD) and wavelet threshold denoising algorithms to
construct the CEEMD–wavelet threshold denoising algorithm. The algorithm follows the following
steps: first, add noise to the monitoring data and obtain all the mode components through empirical
mode decomposition (EMD), denoise the mode components with noise using the wavelet threshold
function to remove the noise components, select the optimal stratification for denoising the monitoring
data of the Guozigou Bridge in Xinjiang in January 2023, determine the wavelet type and threshold
selection criteria, and reconstruct the denoised intrinsic mode function (IMF) components to achieve
accurate extraction of the effective signal. By referencing the deflection, temperature, and strain data
of the Guozigou Bridge in Xinjiang in January 2023 and comparing the data cleaned by different
mode decomposition and wavelet threshold denoising methods, the results show that compared
with empirical mode decomposition (EMD)–wavelet threshold denoising and variational mode
decomposition (VMD)–wavelet threshold denoising, the signal-to-noise ratios and root-mean-square
errors of the four types of monitoring data obtained by the algorithm proposed in this study are the
most ideal. Under the premise of minimizing reconstruction errors when processing a large amount
of data, it has better convergence, verifying the practicality and reliability of the algorithm in the field
of bridge health monitoring data cleaning and providing a certain reference value for further research
in the field of signal processing. The computational method constructed in this study will provide
theoretical support for data cleaning and analysis of nonstationary and nonlinear random signals,
which is conducive to further promoting the improvement of bridge health monitoring systems.

Keywords: bridge engineering; monitoring data; numerical calculation; complete ensemble empirical
mode decomposition; wavelet threshold

1. Introduction

The “Implementation Plan for the Construction of Structural Health Monitoring Sys-
tem for Long Highway Bridges” issued by the Ministry of Highway and Transport of
the People’s Republic of China lists 11 bridges across the country as pilot projects for the
construction of structural health monitoring system and includes 401 highway long bridges
across the country in the scope of real-time health monitoring, requiring real-time moni-
toring of the structural health of long bridges across rivers, seas, and valleys. A dynamic
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grasp of the operation status of long-span bridge structures focuses on preventing and
resolving major safety risks in the operation of long-span highway bridges and further
improving the monitoring and safety guarantee capabilities of highway bridges. During
the operation of the bridge health monitoring system, a variety of different kinds of raw
data will be generated. Due to the influence of environmental factors or the system itself, a
large amount of distorted data will appear in these raw data, which will have a great impact
on the real-time analysis of the bridge condition. Therefore, it is of great significance to
conduct cleaning research on the original monitoring data [1–3]. In the process of big data
acquisition and import, a deviation or error between the measured and real values is easy to
occur. These abnormal data are called noise data, and the data containing noise will affect
the quality of the data and the prediction and analysis of bridge maintenance to different
degrees. For the noise data of bridge health monitoring, the denoising methods commonly
used at present are as follows: wavelet transform (WT), empirical mode decomposition
(EMD), variational mode decomposition (VMD), complete ensemble empirical mode de-
composition (CEEMD), complete ensemble empirical adaptive mode decomposition with
noise (CEEMDAN), etc. [4–6]. In order to explore more effective monitoring data denoising
methods, many scholars have carried out a series of studies.

Luo [7] introduced empirical wavelet transform into bridge monitoring signal noise
reduction, and combined with practical engineering application requirements, he proposed
a bridge structural response adaptive noise reduction method based on noise-assisted
analysis theory to achieve noise reduction of bridge monitoring signals under complex
environment excitation. Based on the principle of EMD and wavelet noise reduction, Shi [8]
proposed an EMD–wavelet adaptive run value function noise reduction method to reduce
the background noise of a full waveform three-dimensional laser mapping radar (light
detection and ranging—LiDAR) in a digital topographic survey. Wang [9] proposed a
digital filter denoising method based on wavelet transform combined with empirical mode
decomposition to denoise low-concentration second-harmonic signals collected by tunable
diode laser absorption spectroscopy. Xiong [10] proposed a combined CEEMDAN–WT
denoising method to reduce GNSS-RTK monitoring signals of bridges. Paroli [11] proposed
a frequency-dependent threshold method for denoising seismic maps using the S transform.
The test results in this article indicate that this method performs better than traditional
band-pass methods and can be used well even in situations with low signal-to-noise ratios.
Rocco [12] proposed a band variable filter based on the nonlinear changes in the corre-
sponding characteristics of soil and buildings under transient forcing in order to accurately
evaluate the damage mechanism of the two under transient forcing and more accurately
locate the damage on the structure. Mo [13] used a data processing method based on
CEEMDAN and an adaptive threshold wavelet filtering method composed of the mean
and variance of wavelet coefficients in each layer to denoise BDS displacement monitoring
data. The results showed that the proposed method can effectively suppress random noise
and multipath noise and effectively obtain the true response of a bridge displacement.
Chen [14] used the wavelet packet energy rate index (WPERI) as a new metric for detecting
cracks in curved bridge sections of rivers and found that the WPERI exhibited a nonlinear
response related to an increase in crack severity, indicating its sensitivity to changes in
damage strength. Jian [15] utilized the dynamic response of a tractor-trailer vehicle model
to identify the bridge modal shape. Subsequently, wavelet analysis was employed to
iteratively determine the bridge modal shape from the subtracted accelerations of adjacent
trailers. The findings indicate that employing the wavelet denoising algorithm enhances
the accuracy of identification, especially in the presence of measurement noise. Zhang [16]
introduced an intelligent damage detection method for steel–concrete composite beams,
which leverages deep learning and wavelet analysis and is built upon ResNet-50. The
results indicate that wavelet denoising enhanced the prediction accuracy of ResNet-50 by
1.18%, thereby improving the precision of structural damage identification. Zhang [17]
proposed an optimal wavelet basis design principle based on the minimum Shannon en-
tropy, with regard to wavelet ridges and wavelet skeletons. Taking large-span cable-stayed
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bridges and large-span suspension bridges as engineering backgrounds, the improved
continuous wavelet transform (CWT) was applied to modal parameter identification of
bridges under environmental excitation, verifying the reliability of CWT in identifying
modal parameters of large-span bridges under environmental excitation.

In summary, the research on the algorithm combining modal decomposition and
wavelet threshold for monitoring data in various fields has been widely carried out, but
the research on the processing of nonstationary and complex signals in bridge monitoring
systems is still incomplete. The combined methods of various denoising algorithms have
the following shortcomings: the method combining EDM and WT has good temporal local-
ization characteristics [18–20], but in practice, the most suitable decomposition scale [21]
needs to be found to achieve the best noise reduction effect. The limitations of VMD
technology mainly lie in the processing of burst signals and signals with large amounts of
data [22,23]. Combined with WT, mode aliasing can be avoided more effectively [24], but it
has great limitations in the processing of complex signals [25]. This paper aims to study
the analysis and processing methods of nonstationary noise signals generated in a bridge
health monitoring system. Combining the advantages of CEEMD and wavelet threshold
methods in data processing, a CEEMD–wavelet threshold denoising algorithm is proposed
to clean the real-time data of bridge health monitoring. This algorithm is used to clean the
temperature, deflection, and strain data of Guozigou Bridge in Xinjiang and to accurately
evaluate the service status of the bridge.

2. CEEMD–Wavelet Threshold Denoising Method Principle
2.1. Wavelet Denoising Method

Compared with the Fourier transform, the wavelet transform has higher efficiency in
denoising data signals. Based on the short-time Fourier transform, wavelet transform not
only has the advantage of localization but also has the characteristic that the time–frequency
window can change with the change of frequency [26]. This wavelet analysis method can
subdivide time at high frequency and frequency at low frequency. It has good sensitivity
and accuracy and is more suitable for stationary data signal processing. Based on this,
DONOHO et al. proposed a wavelet threshold filtering method.

However, the temperature and strain data are too stable, and the wavelet threshold
denoising is not obvious to the noise processing, which is too close to the actual data.
Moreover, wavelet threshold denoising cannot process data containing jump points and
drift, and the form of data processing is too simple. For the large amount of deflection data,
the cleaning effect is not significant in the process of noise cleaning. In general, the effect of
wavelet threshold denoising on nonstationary and nonlinear signals is not ideal.

2.2. Denoising Reduction Method Based on CEEMD Decomposition

CEEMD is a major improvement of the EMD method. At the same time, it borrows
the idea of adding Gaussian noise to the EEMD method and cancels noise through multiple
superposition and environmental monitoring management and technology to effectively
solve the problem of the residual noise signal and low extraction efficiency after EMD
decomposition and low decomposition efficiency of EEMD and difficult-to-remove noise.
The IMF component of white noise is added to each decomposition of the CEEMD method,
and the noise is reduced step by step. The noise residue in the inherent mode is less, and
the reconstruction error is reduced. There is a global stop standard for each decomposition
stage, and the efficiency is high.

However, CEEMD still has two problems: stray mode and residual noise.

2.3. Principle of CEEMD–Wavelet Threshold Denoising Algorithm

Wavelet threshold and CEEMD methods have advantages and disadvantages in
cleaning noisy data, and they can complement each other. CEEMD method has the com-
pleteness of time–frequency addition, adding Gaussian noise and multiple superpositions
and averages to offset noise, and strong application adaptability, so it can make up for
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the shortcomings of wavelet basis decomposition transformation method that cannot be
adaptive. The wavelet threshold method has the ability of scaling and continuous time–
frequency analysis, which can avoid mode aliasing. Most of the bridge health monitoring
signals are nonlinear and nonstationary signals, and the wavelet threshold denoising is not
suitable, while the CEEMD processing effect is better.

Based on the above analysis, a CEEMD–wavelet threshold function noise reduction
method is proposed, and its algorithm flow is shown in Figure 1.
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Figure 1. Process of simulation data algorithm.

1⃝ Add the data signal x to 100 groups of Gaussian white noise with a standard
deviation of 0.4 to synthesize the data signal xi with noise, that is,

xi = x + βkwi (1)

where x is the data signal, wi(i = 1, 2, · · · , 100) is a group of Gaussian white noise whose
unit variance mean is 0; βk is the standard deviation of the added Gaussian white noise.

2⃝ The first mode is obtained by EMD calculation

IMF1 =

m
∑

i=1
E1

(
wi)

m
(2)

Then the first-order residual is

r1 = x − IMF1 (3)

3⃝ Calculate the second residual and the second mode

IMF2 =

m
∑

i=1
E2(ri+b1E1(w i ))

m
(4)

r2 = r1 − IMF2 (5)

4⃝ Calculate the NTH residual and the NTH mode by analogy

IMFn =

m
∑

i=1
En(rn−1+βn−1En−1(w i ))

m
(6)

rn = rn−1 − IMFn (7)

where m is the number of noise signals added; En(∗) is the NEH order EMD component
obtained through EMD decomposition.

Repeat step 4 until the residual cannot be decomposed and the full IMF is calculated.
5⃝ Denoise the IMF component with noise by the wavelet threshold function as

a whole, retain the remaining pure IMF component after denoising, and eliminate the
noise component.
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6⃝ Select the optimal stratification for denoising the health monitoring data of Xinjiang
Guozigou Bridge, keep other variables unchanged, and determine the wavelet type and
threshold selection criteria. The calculation formula for the global threshold is as follows:

δg = σ
√

2 log(M × N) (8)

where σ is the standard deviation of noise; M, N are the signal scale.
Select the threshold function

Wδ i =

 tanh(Wi)[|Wi| − (1 − exp( −K
|Wi |−δi

))δi], |Wi| ≥ δi

tanh(Wi)[|Wi| − δi
exp (|Wi |−δi)

mT ], |Wi| < δi
(9)

where Wi is the coefficient corresponding to the i layer of the wavelet transform; T is the
compression factor, and its default value is 1; δi is the threshold corresponding to layer i in
the wavelet transform.

7⃝ Reconstruct the IMF component after denoising to achieve accurate extraction of
effective signals.

3. Project Overview and Measuring Point Layout
3.1. Project Overview

Xinjiang Guozigou Bridge is a steel girder cable-stayed bridge with two towers and
two cable planes. The main beam is provided with longitudinal movement and vertical
rigidity spherical supports, and each main tower is provided with four transverse wind
supports, and a group of hydraulic dampers is provided at each main girder, each side pier,
and the two beams in the main tower, with a total of eight sets. The main tower is a stepped
reinforced concrete structure, and the column is a single box and single chamber section,
made of C50 concrete. The cable-stayed cable is a double-plane fan-shaped arrangement,
which adopts PES (FD) new low-stress anticorrosion cable and uses double HDPE for
protection. High-strength steel wire is manufactured using Φ7 galvanized steel, with a
standard tensile strength of 1670 MPa. In the design of steel truss beam, the structure form
of the “N” truss is adopted. This structure form is composed of two main trusses. In order
to increase the stability of the main trusses, the welded integral joint structure is adopted.
At the same time, the upper and lower chords use a box section, and a plate stiffener is
arranged on each side of the vertical plate. The vertical and oblique rods of the main girder
are “H”-shaped sections, and the maximum lifting weight can reach 17 tons.

At the functional level, the importance of the Guozigou Bridge is self-evident during
the operation of the core traffic hub of the G30 high-speed trunk line. At present, the
surrounding roads have not been built to share the current traffic flow. If the bridge is
seriously damaged, it will cause great inconvenience and have a negative impact on the
traffic. Therefore, the health monitoring of this bridge is very important.

3.2. Measuring Point Layout

(1) Load source monitoring

In order to ensure the durability of steel components, temperature and humidity
monitoring equipment in the middle of the main span and in the anchoring area of the
cable tower is mainly used for temperature and humidity monitoring. Its main purpose is
to monitor the digital indexes of air temperature and humidity at the main beam and assist
in monitoring the maintenance of the main beam of the steel structure of the bridge. At
the same time, temperature and humidity monitoring equipment is also an important pa-
rameter standard for analyzing the development state of structural changes and structural
damage. The location and number of measuring points are shown in Figure 2 and Table 1.



Buildings 2024, 14, 2056 6 of 14

Buildings 2024, 14, x FOR PEER REVIEW 6 of 14 
 

3.2. Measuring Point Layout 
(1) Load source monitoring 

In order to ensure the durability of steel components, temperature and humidity 
monitoring equipment in the middle of the main span and in the anchoring area of the 
cable tower is mainly used for temperature and humidity monitoring. Its main purpose is 
to monitor the digital indexes of air temperature and humidity at the main beam and assist 
in monitoring the maintenance of the main beam of the steel structure of the bridge. At 
the same time, temperature and humidity monitoring equipment is also an important pa-
rameter standard for analyzing the development state of structural changes and structural 
damage. The location and number of measuring points are shown in Figure 2 and Table 
1. 

 
Figure 2. Schematic layout of temperature and humidity measuring points. 

The temperature and humidity instruments utilized at the monitoring point are 
shown in Figure 3. 

 
Figure 3. The temperature and humidity instrument. 

Table 1. Location and quantity of temperature and humidity detectors. 

Location  
Number of Measurement 

Points Measurement Frequency Sensor Type 

Z1 tower anchor zone 2 
Once/10 min 

Temperature and humidity 
instruments Mid span of the main span 1 

(2) Deflection of the main beam 

Figure 2. Schematic layout of temperature and humidity measuring points.

The temperature and humidity instruments utilized at the monitoring point are shown
in Figure 3.

Buildings 2024, 14, x FOR PEER REVIEW 6 of 14 
 

3.2. Measuring Point Layout 
(1) Load source monitoring 

In order to ensure the durability of steel components, temperature and humidity 
monitoring equipment in the middle of the main span and in the anchoring area of the 
cable tower is mainly used for temperature and humidity monitoring. Its main purpose is 
to monitor the digital indexes of air temperature and humidity at the main beam and assist 
in monitoring the maintenance of the main beam of the steel structure of the bridge. At 
the same time, temperature and humidity monitoring equipment is also an important pa-
rameter standard for analyzing the development state of structural changes and structural 
damage. The location and number of measuring points are shown in Figure 2 and Table 
1. 

 
Figure 2. Schematic layout of temperature and humidity measuring points. 

The temperature and humidity instruments utilized at the monitoring point are 
shown in Figure 3. 

 
Figure 3. The temperature and humidity instrument. 

Table 1. Location and quantity of temperature and humidity detectors. 

Location  
Number of Measurement 

Points Measurement Frequency Sensor Type 

Z1 tower anchor zone 2 
Once/10 min 

Temperature and humidity 
instruments Mid span of the main span 1 

(2) Deflection of the main beam 

Figure 3. The temperature and humidity instrument.

Table 1. Location and quantity of temperature and humidity detectors.

Location Number of Measurement
Points Measurement Frequency Sensor Type

Z1 tower anchor zone 2
Once/10 min Temperature and humidity

instrumentsMid span of the main span 1

(2) Deflection of the main beam

The deflection of the main beam is monitored by the bridge deformation dynamic
monitoring system. The multipoint dynamic deformation long-term monitoring system of
the bridge is based on the image principle, which is developed in view of the shortcomings
of the current bridge deformation monitoring. The instrument is part of the professional
monitoring equipment with long-distance measurement ability, high precision, stable
measurement value, strong anti-environmental interference performance, and multipoint
real-time dynamic deformation. The location and quantity of measuring points are shown
in Figure 4 and Table 2.
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Table 2. Location and number of deflection meters in the image.

Location Number of Measurement
Points Measurement Frequency Sensor Type

Kuitun side span 2

10 Hz~300 Hz Image deflection instrumentsZ1 tower beam junction 2
Z1 tower beam junction 2

Mid span of the main span 2

(3) Structural stress

Stress monitoring is one of the core functions of intelligent bridge monitoring, which
is directly related to the safety of the structure. By comparing with the theoretical value,
parameter estimation, prediction, and modification of the measured value are carried out,
which is an important basis for ensuring the safe operation of the bridge. By monitoring
the stress of the bridge girder, we can know the stress condition of the bridge deck under
external load, including traffic load and natural load. By analyzing the amplitude of stress
variation, the stress variation of the member is monitored, which provides theoretical
guidance for structural safety evaluation. A vibration string strain gauge is used for strain
monitoring. The specific location and quantity are shown in Figure 6 and Table 3.
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Table 3. Location and quantity of strain gauges.

Location Number of Measurement
Points

Measurement
Frequency Sensor Type

Mid span of Kuitun side span 12

Once/10 min
Vibrating wire

gages
The main beam at the junction of tower and beam 12

Main beam at L/4 of the main span 12
Mid span of the main span 12

4. Results and Discussion
4.1. Evaluation Indicators

When evaluating the effect of noise removal, two indicators are usually used: the
signal-to-noise ratio (SNR) and root-mean-square error (RMSE).

(1) Signal-to-Noise Ratio

The signal-to-noise ratio is used as the standard rule to evaluate the effectiveness of
signal denoising. SNR is the ratio of the energy difference between the original signal and
the denoised signal. The larger the SNR value, the smaller the proportion of the noise
component in the signal and the better the denoising effect. The formula is
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SNR = 10 × log10

[
Qs

Qn

]
(10)

Qs =
1
M

M

∑
t=1

[Q(t)−
∧
Q(t)]

2
(11)

Qn =
1
M

1

∑
t=1

[Q(t)−
∧
Q(t)]

2
(12)

where Qs is the power of the original signal; Qn is the component of noise in the origi-

nal signal; S(t) Is the original signal;
∧
S(t) is the decomposed reconstructed signal after

decomposing and denoising; M is the signal length.

(2) Root-Mean-Square Error

The root-mean-square error represents the error between the observed value and the
real value, reflecting the similarity between the original signal and the denoised recon-
structed signal, and can be used as an evaluation index of the degree of deviation between
the denoised reconstructed signal and the original signal. The smaller the RMSE, the higher
the degree of similarity between the signal and the better the degree of restoration. Its
calculation formula is as follows:

R(X, h) =

√
1
m

m

∑
i=1

(h(xi)− yi)
2 (13)

where R(X, h) is the root-mean-square error; m is the number of samples; yi is the true value
of the original signal; h(xi) is the observed value of the noise reduction signal corresponding
to the original signal.

4.2. Strain Cleaning Results

In the process of strain data analysis of the Guozigou Bridge in Xinjiang, 100 groups of
Gaussian white noise with a standard deviation of 0.4 are added to the original signal for
CEEMD decomposition. The center frequency of each fraction is as follows: IMF1 = 0.5017,
IMF2 = 0.1149, IMF3 = 0.1010, IMF4 = 0.0662, IMF5 = 0.0313, IMF6 = 0.0104, IMF7 = 0.0034,
and res = 0. The retained components of IMF2, IMF3, IMF4, IMF5, IMF6, IMF7, and res are
denoised by wavelet threshold, and the best fitting results are selected.

For the processing of strain data from the Guozigou Bridge in Xinjiang, this paper
uses the CEEMD–wavelet threshold method to denoise and carry out component fitting.
Equations (10) and (13) are utilized to compute the signal-to-noise ratio and root mean
square error of the fitted data. The results show that the signal-to-noise ratio after denoising
reaches 35.089. The root-mean-square error is 9.076. The comparison between the strain
noise reduction and the original data is shown in Figure 8. Although there are differences
in local details, overall, the data change trend after denoising is basically the same and
within a reasonable range.
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Figure 8. Strain data noise cleaning.

The denoising effect of the strain mode decomposition function is shown in Table 4.

Table 4. Comparison table of strain mode decomposition and noise reduction data.

Function Type SNR RMSR

EMD wavelet threshold denoising 27.813 15.234
VMD wavelet threshold denoising 31.471 13.397

CEEMD wavelet threshold denoising 35.089 9.076

The results show that the signal-to-noise ratio after denoising is 35.089 and the root-
mean-square error is 9.0776.

4.3. Temperature Cleaning Result

When analyzing the temperature data from the Guozigou Bridge in Xinjiang, 100 groups
of Gaussian white noise with a standard deviation of 0.4 are added to the temperature
signal collected by the sensor to simulate the noise environment. The temperature signal
after adding noise is decomposed by CEEMD. The center frequency of each component
decomposition is as follows: IMF1 = 0.2648, IMF2 = 0.1777, IMF3 = 0.0941, IMF4 = 0.0418,
IMF5 = 0.0243, IMF6 = 0.0069, IMF7 = 0.0068, and res = 0. The IMF2, IMF3, IMF4, IMF5,
IMF6, IMF7, and res components are retained and wavelet threshold denoising is carried
out to select the best fitting results.

For the processing of the temperature data from the Guozigou Bridge in Xinjiang,
this paper uses the CEEMD–wavelet threshold method to reduce noise and carry out
component fitting. Equations (10) and (13) are utilized to compute the signal-to-noise ratio
and root mean square error of the fitted data. The results show that the signal-to-noise ratio
after denoising is 31.640, and the root-mean-square error is 0.132. As shown in Figure 9, the
change trend of the data after denoising is basically the same as that of the original data.
After adding complementary white noise to the temperature data and neutralizing it, the
results show that the data reconstruction error after noise reduction is relatively small, and
the frequency distribution is more suitable. These processes help reduce the distortion rate
of the temperature data in the bridge health monitoring system.
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Figure 9. Temperature data noise cleaning.

The denoising effect of the temperature modal decomposition function is shown in
Table 5.

Table 5. Comparison table of temperature modal decomposition and noise reduction data.

Function Type SNR RMSR (◦C)

EMD wavelet threshold denoising 20.963 0.5936
VMD wavelet threshold denoising 29.966 0.173

CEEMD wavelet threshold denoising 31.640 0.132

The results show that the signal-to-noise ratio after denoising is 31.640 and the root-
mean-square error is 0.132.

4.4. Deflection Cleaning Results

When analyzing the deflection data from the Guozigou Bridge in Xinjiang, 100 groups
of Gaussian white noise with a standard deviation of 0.4 are added to the deflection sig-
nals collected by sensors to simulate the noise environment. The deflection signal after
noise is decomposed by CEEMD. The central frequencies of each component are as follows:
IMF1 = 0.4019, IMF2 = 0.1407, IMF3 = 0.1007, IMF4 = 0.0428, IMF5 = 0.0269, IMF6 = 0.0113,
IMF7 = 0.0018, IMF8 = 0.0018, IMF9 = 0.0009, IMF10 = 0.0002, IMF11 = 0.0003, IMF12 = 0.0001,
and res = 0. The IMF2, IMF3, IMF4, IMF5, IMF6, IMF7, IMF8, IMF9, IMF10, IMF11, IMF12,
and res quantities are retained and denoised by wavelet threshold and the best fit results
are selected.

For the deflection data from the Guozigou Bridge in Xinjiang, this paper uses the CEEMD–
wavelet threshold method to denoise and carry out component fitting. Equations (10) and (13)
are utilized to compute the signal-to-noise ratio and root-mean-square error of the fitted data
The results show that the signal-to-noise ratio after denoising is 20.614 and the root-mean-
square error is 1.330. Among them, the comparison results between the data after denoising
of deflection and the original data are shown in Figure 10. It can be seen that the sample
size of deflection data within 24 h is very large, and the decomposition results of EMD and
VMD will be poor due to their own limitations when processing signals with large amounts
of data. To this end, the CEEMD decomposition technique is introduced in this paper, and the
modal effect is further reduced by adding adaptive noise when processing large amounts of
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data. The research shows that this technique has better convergence on the premise of small
reconstruction error when processing a large number of data.
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The denoising effect of the deflection mode decomposition function is shown in
Table 6.

Table 6. Comparison table of deflection mode decomposition and denoising data.

Function Type SNR RMSR (mm)

EMD wavelet threshold denoising 11.039 3.921
VMD wavelet threshold denoising 12.665 1.616

CEEMD wavelet threshold denoising 20.614 1.330

The results show that the signal-to-noise ratio after denoising is 20.614 and the root-
mean-square error is 1.330.

5. Conclusions

(1) By comparing the SNR and the mean square error of temperature, deflection, and
strain after EMD–wavelet threshold denoising and VMD–wavelet threshold denoising
methods, it is found that the SNR of deflection after denoising by this method is 63%
higher than that after VMD–wavelet threshold denoising. The mean square error of
strain after denoising is 40% lower than that of the data after EMD–wavelet threshold
noise reduction.

(2) This method has the advantages of a large data sample and high mode decomposition
performance when dealing with nonlinear and nonstationary data, which provides a
certain reference value for further research in the field of signal processing.

(3) Maintaining the integrity of the original signal while reducing noise has superior
application potential.

(4) Due to constraints in the engineering environment and equipment, this study can-
not precisely compare the collected data in the time–frequency domain. For future
research, the synchronous squeezing wavelet transform method can be employed for
high-precision data processing.

(5) All conclusions drawn in this study are specific to the project referenced and may not
be applicable to all scenarios.
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