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Abstract: With the continuous improvement of construction management standards, thorough
investigation into various management objectives becomes crucial. To address the current gaps
in project management concerning time, cost, safety, and carbon emissions interrelationships, this
study adopts the multi-objective optimization (MOP) theory and makes the following contributions:
(1) proposes an innovative carbon emission model, which enhances the cost model by incorporating
carbon cost factors, and establishes a MOP model covering time–cost–safety–carbon emissions;
(2) validates the effectiveness of the proposed model and the feasibility of algorithms through
empirical research and algorithm comparison analysis—the research demonstrates that NSGA-III
exhibits significant advantages in solving MOP problems of this scale; (3) applies the entropy-
weighted VIKOR method to objectively analyze the solution set obtained by NSGA-III for optimal
solution selection. This study provides practical management tools for project managers and offers
significant insights for researchers in construction management regarding multi-objective problem-
solving and algorithm selection.

Keywords: multi-objective optimization; construction management; NSGA-III; entropy–VIKOR
method

1. Introduction
1.1. Research Background

The construction industry, as a critical pillar of our national economy, has played a
significant role in driving rapid economic growth. According to the “14th Five-Year Plan”,
by 2025, the increasing trends in construction energy consumption and carbon emissions
will be effectively controlled, and a development approach that is green, low-carbon, and
circular will be essentially established [1]. With the rapid development of the industry,
competition among enterprises is intensifying, leading to an increase in the complexity
of engineering project management. In engineering management practices, goals such
as time, cost, carbon emissions, and safety are crucial to the success of a project. These
goals are both conflicting and interrelated, and negligence in any aspect could potentially
have adverse effects on the project [2–4]. Achieving a balance among multiple objectives is
essential to ensuring the success of a project and maximizing corporate interests. Therefore,
achieving this balance among these objectives is crucial, as it not only ensures the success
of the project but also maximizes corporate benefits.

The application of multi-objective optimization (MOP) problems in engineering project
management has long been a focal point for researchers and experts in the field. Through
MOP, it is possible to effectively control project time and costs while reducing carbon
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emissions, all while ensuring safety. This approach drives the construction industry toward
a green, low-carbon direction. Not only does this enhance corporate competitiveness, but it
also contributes to the achievement of sustainability goals.

1.2. Literature Review

This section reviews research on MOP problems using various methodologies. Table 1
summarizes key details of these studies, such as the research subjects, objectives, algorithms
or key technologies employed, whether algorithm comparisons were conducted, considera-
tion of environmental impacts, and whether solution decision analysis was performed.

Table 1. Contributions of This Study and Previous Studies in MOP Problems in the Construc-
tion Field.

Author (Year) Research
Subject/Question Objectives/KPIS Algorithm/Key

Technique

Whether to
Conduct

Algorithm
Comparison

Whether to
Consider

Environmental
Impact

Whether
to Make

Decisions
Reference

Xiong (2007) Engineering
project Time—Cost ACO No No No [5]

Babu (1996) Engineering
project

Time—Cost—
Quality

Critical path
programming

(CPM)
No No No [6]

Pollack-
Johnson (2006)

Engineering
project

Time—Cost—
Quality AHP No No No [7]

Heravi (2014) Engineering
project

Time—Cost—
Quality

Monte Carlo
method, OWA No No Yes [8]

Wang et al.
(2023)

Engineering
project

Time—Cost—
Quality PSO No No No [9]

Song (2023) Engineering
project

Time—Cost—
Quality—

Environment
GA No Yes No [10]

Keshavarz E
(2020)

Teaching
building

Time—Cost—
Quality

fuzzy
decision-making

approach
No No Yes [11]

Hussein M
et al. (2022)

Logistics
planning

Minimize project
time, SC costs and SC

emissions

Simulation (ABM
and DES), DOE,

and optimization
No Yes Yes [12]

Liu (2010) Engineering
project

Time—Cost—
Quality—Resources PSO No No No [13]

San Cristobal
Mateo J R

(2019)

Project planning
and scheduling

Time—Cost—
Quality—Safety CPM No No No [14]

Hao (2019) Reservoir
engineering

Time—Cost—
Security risk PSO No No No [15]

Jin (2022) Highway Time—Cost—
Quality NSGA-II Yes No No [16]

Zareei (2015)
Project

scheduling
issues

Time—Cost NSGA—II, MOSA,
MOPSO Yes No No [17]

Shahriari
(2016)

Engineering
project Time—Cost NSGA-II No No No [18]

Liu (2018)
Dynamic layout
of construction

site facilities

Maximizing the
reduction of total
facility processing
costs and unsafe

factors

NSGA-II No No No [19]

Wang (2023)

High-
performance

fiber-reinforced
concrete

Material
Ratio–Freeze
Resistance–

Permeability
Resistance–Cost

NSGA-III, response
surface

methodology
No No No [20]
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Table 1. Cont.

Author (Year) Research
Subject/Question Objectives/KPIS Algorithm/Key

Technique

Whether to
Conduct

Algorithm
Comparison

Whether to
Consider

Environmental
Impact

Whether
to Make

Decisions
Reference

Hussein M
(2021)

Construction
planning issues
(Bridge project)

Finding the optimal
planning decision to

enhance the
sustainability of the
built environment

firefly algorithm,
grey wolf

optimization, the
whale optimization
algorithm, the salp
swarm algorithm,

improved bat
algorithm

Yes No No [21]

Tegos N et al.
(2023)

bridge
construction

methods

Through
multi-criteria

decision-making, the
most appropriate

bridge construction
method is selected

under varying
circumstances

Multi-criteria
analysis,

questionnaire
No Yes Yes [22]

Qiu (2019) Commercial
complex

Time—Cost—
Quality—Safety

Quantum Particle
Swarm

Optimization
(QPSO),

Entropy—TOPSIS
method

No No Yes [23]

Wu et al. (2018)

Small Mass
Buildings in

Cold District of
China

Cost—Energy

NSGA-II, grey
correlation
multi-level

comprehensive
evaluation method

No No Yes [24]

Rahimbakhsh
H et al. (2022)

Residential
complex

Balancing individual
privacy and public

space within
residential buildings
to achieve optimal
surveillance and

privacy conditions

NSGA-II, TOPSIS No No Yes [25]

This Study
Office building

construction
project

Time—Cost–Safety—
Carbon Emissions NSGA-II, NSGA-III Yes Yes Yes

1.2.1. Research on Objective Dimensionality

The exploration of MOP originated from the study of two objectives. Xiong [5] es-
tablished a balanced curve between project time and cost, focusing on optimizing project
time and cost in construction projects. Babu [6] constructed a balanced optimization model
of project time, cost, and quality within the MOP framework of engineering manage-
ment, setting a precedent for research on tri-objective optimization in engineering projects.
Pollack-Johnson [7] developed a multi-objective integrated optimization model for project
time, cost, and quality through innovative adjustments to traditional models, departing
from a single objective approach. Heravi [8] introduced a group decision-making frame-
work aimed at seeking optimal resource allocation, considering time, cost, and quality,
and demonstrated the stochastic optimization capability of this framework in engineering
projects. Wang et al. [9] established stochastic optimization models for project time, cost,
and quality based on system reliability theory, tailored to different contexts. Song [10]
employed a multi-attribute utility function to meticulously decompose key factors such as
project time, cost, and quality in the project. Keshavarz E [11] addressed the optimization
problem of time, cost, and quality using fuzzy decision theory. As research progresses,
scholars have begun to surpass the traditional triad of project time, cost, and quality and
introduced other key factors influencing engineering projects. Hussein M et al. [12] de-
veloped a multi-method simulation model and combined it with the Taguchi method
(TA) to determine the significant logistics and construction decisions that impact five key
performance indicators (KPIs). Liu [13] addressed the MOP concerning quality, cost, time,
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and resources. San Cristobal Mateo J R [14] introduced a linear programming model to
examine how the integration of time, cost, quality, and safety, the four core elements in
project management, can be studied. Hao [15] integrated safety risk management into
MOP management problems and established a comprehensive optimization model for
time–cost–safety risk.

1.2.2. Research on Objective Model Construction

Through the literature review, it is evident that most researchers primarily focus on
three objectives: time, cost, and quality. During the construction of objective models, Jin [16]
incorporates both direct and indirect costs when considering cost objectives, asserting a
linear relationship between indirect costs and process duration. Chen [26] used the Delphi
method to solicit expert ratings on safety influencing factors to quantify safety objectives.
Additionally, in addressing multi-objective optimization problems, carbon emission fac-
tors are often insufficiently considered. Carbon emissions generated during construction
processes have significant environmental impacts, contradicting sustainability goals. There-
fore, integrating carbon emissions into the multi-objective optimization management of
engineering projects not only enhances focus on low-carbon objectives but also holds pro-
found implications for promoting the low-carbon, green, and sustainable development
of engineering projects. In construction projects, safety accidents pose serious threats to
workers’ safety and may result in substantial economic losses and construction delays [27].
Thus, in-depth exploration of safety issues in construction projects plays a crucial role in
ensuring the smooth progress of engineering projects. Accordingly, this paper focuses on
four key objectives—time, cost, safety, and carbon emissions—to conduct comprehensive,
balanced optimization research on engineering projects.

1.2.3. Research on Algorithms

The solution methods for MOP can be classified into two main categories: traditional
mathematical modeling methods and modern intelligent algorithms. Traditional methods,
such as linear weighting, goal programming, and constraint methods, involve relatively
smaller computational efforts but may compromise the objectivity of results, especially
when dealing with complex models. Intelligent algorithms, such as simulated annealing
(SA), genetic algorithms (GA), particle swarm optimization (PSO), and ant colony opti-
mization (ACO), among others, typically rely on computer simulation for solving, offering
new avenues for addressing complex optimization problems. Research on MOP has been
conducted by some scholars using SA, GA, ACO, and PSO [26,28–30]. In-depth analysis of
the performance of intelligent algorithms in addressing MOP problems has been pursued
by researchers through a series of computational experiments, wherein various intelligent
algorithms were applied, yielding rich outcomes. Zareei [17] solved engineering project
MOP problems using three algorithms, NSGA-II, MOSA, and MOPSO, and comparing the
Pareto optimal solutions obtained from these algorithms, NSGA-II was found to have a
significant advantage in solving efficiency. In consideration of the time value of money,
Shahriari [18] investigated the relationship between project time and cost, and the model
was effectively solved using NSGA-II. Liu [19] emphasized the importance of construction
site layout, and a new optimization model was proposed to address the shortcomings of
existing methods. This model, utilizing the NSGA-II, aims to minimize construction costs
and maximize the safety factor of construction sites. The effectiveness of the model was
validated through a case study. The research findings indicate that NSGA-II has become
a widely adopted algorithm for solving MOP problems. However, when faced with com-
plex scenarios involving more than three objectives, NSGA-II may encounter limitations.
To address this challenge, researchers have innovated upon NSGA-II and developed the
NSGA-III. This algorithm extends the application scope of genetic algorithms, enabling
more efficient handling of MOP problems. For example, Wang [20] conducted an MOP of
high-performance fiber-reinforced concrete using the NSGA-III. By balancing durability
and cost considerations, the optimal mix proportions of concrete were determined, thereby
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effectively enhancing design efficiency. Hussein M et al. [21] compared the application of
five metaheuristic algorithms in construction project planning through simulation optimiza-
tion methods to find optimal planning decisions to reduce project time and costs, ensuring
the sustainability of the built environment. These advancements highlight the potential
of intelligent algorithms in addressing complex MOP problems, particularly the superior
performance of the NSGA-III in handling high-dimensional objective optimization prob-
lems, offering new strategies for engineering project management. Therefore, this study
will employ the NSGA-II algorithm to solve the constructed model and compare it with
the NSGA-III to determine the most suitable approach for solving the four-dimensional
MOP problem.

1.2.4. Research on Decision-Making Processes

After solving the MOP model, many studies often stop at algorithm application, failing
to provide project managers with clear optimal solutions. Recently, some scholars have
begun addressing this issue, striving to translate research findings into practical and feasible
management decisions. Tegos N et al. [22] proposed a multi-criteria analysis approach,
defining seven evaluation criteria and allocating weights through a survey questionnaire
to select the most suitable bridge construction method. Qiu [23] employed the entropy–
TOPSIS method to make decisions on numerous solutions obtained. The entropy method
was utilized to determine the weights of each objective, and then the TOPSIS method was
employed to assess the proximity of each solution to the optimal solution, thus determining
the optimal solution.

Wu et al. [24] conducted an evaluation of zero-energy building integrated energy
systems based on entropy weight and mixed grey multi-level comprehensive assessment
methods. Hanie Rahimbakhsh H et al. [25] employed the TOPSIS method for decision-
making, where objectives were assigned varying weights, and ranking was based on the
relative proximity of solutions to the optimal solution. The literature review indicates
a relatively limited amount of research by domestic and international scholars in this
field, with existing decision-making methods often incorporating subjective factors, thus
having certain limitations. Therefore, this study proposes to employ the entropy-based
VIKOR method to rank the post-solved solutions in order to select the optimal solution.
This approach aims to provide decision-makers with more objective and effective project
management decision support. Through this method, project managers can better identify
and select solutions that best align with project objectives and constraints from the Pareto
solution set, thereby enhancing decision quality and project management efficiency.

Based on the analysis of the literature on MOP problems in the field of architecture,
several research gaps are identified: (1) Most studies in developing cost objective models
consider only direct and indirect costs, neglecting the cost implications of carbon emissions
during construction; (2) There is a lack of consideration in the literature for the objective of
carbon emissions generated during the construction process; (3) The majority of studies
solving MOP problems use only one algorithm without comparative analysis of algorithms;
(4) Few studies in the literature make subjective decisions when selecting schemes after
solving a series of Pareto frontiers, often integrating subjective factors into the decision-
making process.

Therefore, to address these gaps in the literature, this study integrates time (T), cost
(C), safety (S), and carbon emissions (E) as key objectives and constructs a TCSE multi-
objective optimization model. In developing the cost objective, we consider the cost of
carbon emissions. To solve this model, we initially employ the NSGA-II and subsequently
introduce the NSGA-III to verify and compare their suitability and efficiency in solving
the four-dimensional multi-objective problem. We identify the most suitable intelligent
optimization algorithm for such problems through rigorous comparative analysis. Once the
optimal algorithm is determined, we further analyze and rank the obtained Pareto solutions
objectively using the entropy–VIKOR method, thereby selecting the optimal solution.
Through these innovative research efforts, this paper optimizes project performance across
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the dimensions of time, cost, safety, and carbon emissions and provides valuable insights
and guidance for project managers and government agencies in formulating MOP policies.
These research findings are crucial for advancing the transformation of the construction
industry towards greener and more sustainable development.

2. Research Methods

The research methodology roadmap of this paper is illustrated in Figure 1. The article
is structured into three sections: problem identification, problem analysis, and problem
resolution. Firstly, the theme of “MOP in construction management” is introduced through
a literature review of the research background and relevant studies. Secondly, objective
models are constructed based on different methodologies for the four identified objectives.
Subsequently, the constructed objective models are solved using two algorithms, and the
superiority of the resulting solution sets is compared to select the better set of Pareto
frontiers. Finally, the entropy–VIKOR method is employed for decision-making.
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2.1. MOP Theory

MOP is a complex optimization problem that seeks a set of optimal or balanced
solutions when multiple conflicting objectives exist. Typically, these objectives compete
with each other, and optimizing one objective may have adverse effects on others. Therefore,
the goal of MOP is to find a set of solutions that achieve the best trade-offs among multiple
objectives, known as the Pareto Front or Pareto solution set. In the Pareto solution set, no
solution can improve one objective without compromising others.

Generally speaking, MOP models can be formalized as the following mathemati-
cal problem:

Min − MaxF(x) =
(

f1(x), f2(x), . . . , fp(x)
)

s.t.


gi(x) ≤ 0, i = 1, 2, . . . , m
hj(x) = 0, i = 1, 2, . . . , l
xl < x < xu

(1)
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In this, x represents the decision variables constrained within their specified upper
and lower bounds. There are p objective functions, gi(x) and hj(x), collectively referred to as
constraint functions, determining the feasible domain of solutions.

In the realm of engineering projects, MOP dilemmas involve multiple dimensions, each
of which carries explicit objectives and requirements. Elevating the overall performance and
benefits of a project hinges on identifying a balance point among these objectives, ensuring
a coherent and coordinated advancement across all aspects of the project. Therefore,
conducting balanced optimization research on the various objectives of engineering projects
becomes particularly essential.

The focus of this study is to explore how to achieve balanced optimization among all
objectives. Specifically, this involves scheduling the project timeline reasonably, controlling
costs effectively, significantly reducing carbon emissions, and continuously improving
the project’s safety level to achieve the overall project goals, as illustrated in Figure 2.
By comprehensively considering these aspects, this paper aims to propose a set of MOP
strategies designed to assist project managers in maximizing benefits during decision-
making processes.
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2.2. Model Establishment
2.2.1. Basic Assumptions

When constructing MOP models for engineering projects, given the complexity of
construction activities, this study initially puts forward several fundamental assumptions
to streamline the model and sharpen the research focus:

Assumption 1. During the project implementation process, it is assumed that all processes proceed
as planned, without any work stoppages due to unexpected circumstances. Furthermore, to ensure
the continuity and logical sequence of construction, no process can be skipped.

Assumption 2. It is assumed that the time of each process exhibits a certain degree of uncertainty,
but the range of variation is known and predetermined. This allows the model to consider temporal
flexibility during optimization.

Assumption 3. When considering carbon emissions as an optimization goal, this study focuses
solely on the carbon emissions generated from labor, material usage, and the operation of mechanical
equipment during the construction process. Other potential sources of carbon emissions, such as
emissions during transportation, are not taken into account in this model.

2.2.2. Establishment of Time Model

The term “time” referred to in this paper denotes the entire period from the commence-
ment of construction projects to their ultimate completion, typically measured in days. In
order to present construction scheduling more visually, this paper employs the method
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of dual-coded network planning diagrams. During the implementation of construction
projects, in addition to time consumption, key production factors such as financial costs,
mechanical equipment, building materials, and labor need to be invested. Time serves
not only as a comprehensive indicator for assessing the progress of engineering projects
but is also influenced by multiple factors, including machinery selection, material supply,
and labor allocation. Different choices and combinations of these factors can impact the
time. Simultaneously, the time of each process, as independent variables, need to be judi-
ciously planned and arranged to ensure the reasonableness of the time and the successful
completion of construction tasks.

In this study, detailed assumptions were made regarding the time of each process,
setting three reference time points: the shortest time, the longest time, and the normal
time. This implies that the actual time of each process will vary between the predetermined
shortest and longest time. The time optimization model of this paper is as follows:

g1(x) = minT = ∑
ij∈Lg, Lg∈L

tij

s.t.tdij ≤ tij ≤ tcij

(2)

In the equation, T denotes the total project time; L represents the set of all paths in
the network diagram; Lg signifies the collection of all processes on a critical path in the
network diagram; tij stands for the duration of process ij; tdij indicates the minimum time
of process ij; tcij represents the maximum time of process ij.

2.2.3. Establishment of Cost Model

This paper comprehensively categorizes the costs of engineering projects, clearly dis-
tinguishing three main components: direct cost, indirect cost, and carbon cost. Direct cost
encompasses all expenses directly associated with project implementation, including pro-
curement costs for raw materials, equipment, tools, as well as wages and benefits for labor.
Indirect costs, on the other hand, include expenses related to project management, office
space, insurance, and transportation, which are indirectly related to project implementation.
Additionally, carbon costs encompass expenses related to carbon emissions generated
during the project construction process, primarily comprising the costs incurred by carbon
emissions themselves. Taxing carbon emissions can raise environmental awareness and
thereby contribute to environmental protection.

Taking all of the above into account, the total cost of the project can be expressed as:

C = Cz
ij + Cj

ij + Ce
ij (3)

In the equation, C represents the total cost of the project; Cz
ij represents the direct cost

of the project; Cj
ij represents the indirect cost of the project; Ce

ij represents the carbon cost
of the project.

To enhance project progress, inevitably, the reduction of time for each construction
process will increase the input of manpower and materials, resulting in a corresponding
increase in cost. The more aggressive the time compression, the more significant the cost
escalation. Conversely, by appropriately extending the time, reducing the intensive use of
resources is possible, thereby lowering direct costs. As time passes, the decrease in direct
cost gradually slows until reaching a minimum value. The specific relationship can be
expressed as follows:

Cz
ij =

Cz
ijmax−Cz

ijmin

(tcij−tdij)
2

(
tij − tcij

)2
+ Cz

ijmin

s.t.tdij ≤ tij ≤ tcij

(4)

In the equation, Cz
ij represents the direct cost of process ij; Cz

ijmax represents the
maximum direct cost of process ij; Cz

ijmin represents the minimum direct cost of process ij.
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In the meticulous management of project budgets and cost control, thoughtful con-
sideration and proper management of indirect costs are particularly crucial, as they are
essential factors in ensuring the overall feasibility and profitability of the project. The
specific contents of indirect cost will vary depending on the unique nature, scale, and in-
dustry of the project. Given the inherent necessity of indirect cost, the reduction in indirect
cost of engineering projects will significantly decrease after the activity time is shortened
to a certain critical point, nearly stagnating. Meanwhile, as the project time shortens,
the rate of reduction in indirect cost will gradually slow down, eventually approaching
zero. Moreover, delays in project time may also trigger additional management expenses,
thereby increasing indirect costs. Considering these factors, this paper proposes a quadratic
function relationship between project time and indirect cost, expressed mathematically
as follows:

Cj
ij =

Cj
ijmax−Cj

ijmin

(tcij−tdij)
2

(
tij − tcij

)2
+ Cj

ijmin

s.t.tdij ≤ tij ≤ tcij

(5)

In the equation, Cj
ij represents the indirect cost of process ij; Cj

ijmax represents the
maximum indirect cost of process ij; Cj

ijmin represents the minimum direct cost of process ij.
As global concerns about climate change deepen, numerous organizations and gov-

ernment agencies have begun to incorporate the carbon cost of engineering projects into
consideration and calculation in order to assess and manage the potential impact of projects
on climate change. In this paper, we specifically include the additional costs generated
by carbon emissions in the process of calculating engineering project costs. The term
“carbon cost of engineering projects” refers to the economic burden or cost incurred due to
greenhouse gas emissions during the implementation of the project.

The calculation of carbon cost includes quantifying and evaluating the greenhouse gas
emissions generated during the project process. These emissions are typically expressed in
terms of carbon dioxide equivalent (CO2e), which is then linked to the price of carbon in
the emissions market or the carbon tax rate set by the government to calculate the carbon
cost to be borne. Assuming the engineering project consists of m processes, the specific
formula for calculating carbon cost can be expressed as:

Ce
ij =

m

∑
ij=1

α

(
Wa · tij +

n

∑
l=1

W l
b · Qijl +

z

∑
k=1

Wk
c · Qijk

)
(6)

In the equation, α represents the tax rate of a carbon tax in the construction industry;
Wa, Wlb, and Wkc denote the carbon emission factors for labor, the l-th type of material
consumed in completing process ij, and the k-th type of machinery consumed in completing
process ij, respectively; tij represents the total worker-days to complete process ij; Qijl
indicates the consumption of the l-th type of material in completing process ij; Qijk signifies
the consumption of the k-th type of machinery in completing process ij.

From the above, the optimization model for cost objectives is:

g2(x) = minC = Cz
ij + Cj

ij + Ce
ij

s.t.tdij ≤ tij ≤ tcij
(7)

2.2.4. Establishment of Safety Model

Safety objectives are fundamentally qualitative in nature and often evaluated based on
the level of the objectives. To quantify safety objectives, this paper introduces the concept
of a safety level index. Concurrently, safety costs Cs are subdivided into proactive safety
costs Cg and reactive safety costs Cl. Proactive safety costs refer to expenses invested in
preventing and avoiding safety incidents, while reactive safety costs pertain to the expenses
incurred in restoring normal operations and handling accident losses post-incident. Within
a certain range, there exists an inverse relationship between proactive and reactive safety
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costs, while both are directly proportional to the project’s safety level. The manifestation of
this relationship is illustrated in Figure 3.
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While safety level objectives are fundamentally qualitative indicators, quantification is
necessary for MOP and project management practices. This paper introduces a continuous
numerical range, specifically between 0 and 1, to quantify the safety levels of various
construction processes in engineering projects. In this quantification system, values closer
to 1 indicate higher safety indices, corresponding to stronger safety for the respective
construction process. Conversely, values closer to 0 denote lower safety indices, implying a
greater risk of safety incidents occurring during the construction process.

To further quantify safety costs, this paper introduces the safeguarding safety cost
investment rate, denoted as β (computed as the safeguarding safety cost divided by the
direct cost of the engineering project). For a specific process ij, its safeguarding safety cost
can be expressed as Cg

ij = βCz
ij. Using Sij to represent the safety level index of the process,

as shown in the following equation:

Sij = 1 − pij = 1 − p0ij
(
1 − ∆pij

)
(8)

∆pij = ∆pmin
ij +

(
∆pmax

ij − ∆pmin
ij

) Cg
ij − Cg

ijmin

Cg
ijmax − Cg

ijmin

(9)

In the equation, pij represents the probability of actual safety incidents occurring
during process ij; p0ij denotes the initial probability of safety incidents during process ij
when the protective safety cost is α; ∆pij indicates the proportion by which the probability
of safety incidents decreases after investing in protective safety costs for process ij; ∆pmax

ij

and ∆pmin
ij represent the maximum and minimum reduction proportions of the probability

of safety incidents after investing in protective safety costs for process ij; Cg
ijmax and Cg

ijmin
denote the maximum and minimum protective safety costs invested in process ij.

According to the definition of the protective safety cost investment rate, it can be
derived that Cg

ijmax = βCz
ijmax and Cg

ijmin = βCz
ijmin. Furthermore, based on the relationship

between direct costs and project duration mentioned earlier, the final safety level index for
process ij can be deduced.

Sij = 1 − p0ij

1 −
(
tij − tcij

)2(
tcij − tdij

)2

(
∆pmax

ij − ∆pmin
ij

)
− ∆pmin

ij

 (10)

When managing safety in construction projects, not all individual activities contribute
equally to the project’s significance; the safety standards of each process directly impact the
overall safety of the project. However, assessing the safety status of the entire project cannot
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simply be achieved by summing up the weighted safety standards of each process [31].
The safety level of a process is influenced by its own safety standards and constrained by
the safety levels of preceding processes. In order to assess the overall safety status of a
project more accurately, this study introduces the theory of system reliability models to
quantify the safety level index of the entire project, as shown in Figure 4. Focusing on the
individual construction process, we assume that process ij has m preceding processes ki. In
this scenario, the safety level index of process ij can be expressed as:

Sout
ij =

[
1 −

m
∏

ki=1

(
1 − Sout

ki
)]

× Sij

s.t.0 ≤ Sij ≤ 1
(11)
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In the equation, Sout
ij represents process ij outputs safety level index; Sout

ki repre-
sents process ij outputs safety level index; Sij represents the intrinsic safety level index of
process ij.

For the entire project, the initial operation Sout
12=1. The safety level index of the initial

input for construction operation is regarded as the initial node safety level index, and the
output safety level index is the safety level index of the entire project. If the final operation
fij has m preceding operations, then the safety level of the entire project is determined by:

S = Sout
f ij =

[
1 −

m

∏
f ki

(
1 − Sout

f ki

)]
× S f ij (12)

In the equation, Sout
fij represents the output safety level of the final process fij; Sout

fki
represents the output safety level of the preceding task fki; Sfij represents the inherent safety
level of the final process fij.

Therefore, the optimization model for safety objectives is as follows:

g3(x) = maxS = Sout
f ij =

[
1 −

m

∏
f ki

(
1 − Sout

f ki

)]
× S f ij (13)

2.2.5. Establishment of Carbon Emissions Model

In the context of pursuing the “dual-carbon” goals, prefabricated construction has
become a focal point of public attention due to its outstanding resource utilization efficiency
and relatively low level of environmental pollution. In accordance with the development
objectives outlined in China’s “14th Five-Year Plan for the Development of the Construc-
tion Industry,” efforts are being made to establish a preliminary green and low-carbon
production mode, accelerate the promotion of green construction methods, and develop
a series of green construction demonstration projects [32]. Therefore, a comprehensive
study on carbon emission targets not only aligns with the overall planning of the national
development trends in the construction industry but also holds significant importance for
driving green transformation in the construction sector and achieving energy conservation
and emission reduction goals.
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In order to reduce the time of construction processes, more material resources need to
be invested, along with increased utilization of labor and machinery. These measures often
result in an increase in carbon emissions. Conversely, if the time of construction process
is prolonged, there may be a relative decrease in carbon emissions in the short term, but
they will not decrease indefinitely due to the ongoing demand for machinery and materials
during the construction process. By comprehensively analyzing the aforementioned factors
and integrating them with engineering practices, we can draw the conclusion that there
exists a quadratic relationship between the time of construction processes and carbon
emissions. The model for the carbon emissions generated by process ij and its time is
as follows:

Eij =
Emax

ij − Emin
ij(

tdij − tcij

)2

(
tij − tcij

)2
+ Emin

ij (14)

In the equation, Emax
ij and Emin

ij respectively represent the maximum and minimum
carbon emissions generated by process ij.

The carbon emissions generated by the entire construction project are determined by
the carbon emissions produced by all processes. In summary, the optimization model for
carbon emissions targets is as follows:

g4(x) = minEtotal =
n
∑

ij=1

Emax
ij − Emin

ij(
tdij − tcij

)2

(
tij − tcij

)2
+ Emin

ij

s.t.tdij ≤ tij ≤ tcij

(15)

2.2.6. Time-Cost–Safety–Carbon Emissions Integrated Optimization Model

By integrating the aforementioned target models, it becomes apparent that there is a
close interrelationship among the four objectives. Among these four objective functions,
minimizing time, cost, and carbon emissions is optimal, while maximizing safety achieves
optimality. These objectives are mutually conflicting. Attempts to reduce costs often lead to
decreased safety and extended time. Similarly, shortening project time may increase carbon
emissions, jeopardizing project safety. In order to achieve the comprehensive goals of short
construction time, low cost, high safety standards, and minimal carbon emissions while
ensuring balanced optimization of all four objectives, the following TCSE multi-objective
optimization model for engineering projects has been formulated:

g1(x) = minT = ∑
ij∈Lg, Lg∈L

tij

g2(x) = minC = Cz
ij + Cj

ij + Ce
ij

g3(x) = maxS = Sout
f ij =

[
1 −

m
∏
f ki

(
1 − Sout

f ki

)]
× S f ij

g4(x) = minEtotal =
n
∑

ij=1

Emax
ij − Emin

ij(
tdij − tcij

)2

(
tij − tcij

)2
+ Emin

ij

s.t.tdij ≤ tij ≤ tcij 0 ≤ Sij ≤ 1

(16)

2.3. Algorithm Design

The genetic algorithm, initially elucidated by Holland in 1975, has evolved its theory
and methodology. It simulates the natural selection and genetic evolution processes of
biological organisms in nature, as expounded in Darwin’s theory of evolution, through
modern computer technology, addressing search and optimization problems at a finite
cost [33]. Originating from a randomly generated initial population, genetic algorithms
perform selection, crossover, and mutation operations based on individuals’ fitness in
each iterative generation to sift out superior individuals. Chromosomes with higher
fitness have greater survival chances, eventually yielding the optimal population after
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multiple generations of optimization. As a significant branch of intelligent algorithms,
the widespread application of genetic algorithms across various domains has gradually
revealed its limitations. To enhance performance, researchers have refined the basic genetic
algorithm and developed a series of derivative algorithms centered around it.

2.3.1. NSGA-II

Deb, an Indian scholar, advanced NSGA by proposing NSGA-II, a non-dominated
sorting genetic algorithm with an elite strategy [34]. NSGA-II significantly improves upon
NSGA by primarily optimizing the non-dominated sorting. Specific improvements include
the introduction of an “elite strategy,” which merges parent and offspring populations,
selects the next generation through competitive selection, and swiftly identifies outstanding
individuals through hierarchical sorting based on individual dominance relationships.
Additionally, the algorithm reduces computational complexity through non-dominated
sorting methods and introduces the concept of crowding distance to maintain population
diversity and effectively define the search scope of the Pareto optimal solution set.

Applying the NSGA-II to MOP in construction management involves each chro-
mosome representing a feasible solution, namely a construction plan. The gene values
correspond to the encoding components of the feasible solution, representing numerical
codes for the objectives within the plan. In each iterative generation, newly generated candi-
date solutions are sorted and selected based on their performance in objective optimization.
The following outlines the implementation steps of the NSGA-II in the comprehensive
optimization model for construction management in engineering projects:

Step 1: Specific case data is imported, and parameter values for each objective are
defined, along with setting NSGA-II parameters.

Step 2: Objective functions, constraints, etc., are defined based on the comprehensive
model in Equation (16). Objectives for project time, cost, and carbon emissions are mini-
mized, while safety objectives are maximized by taking the negative value to convert them
to minimization.

Step 3: After generating an initial population using a random method, individuals
undergo rapid non-dominated sorting, and the crowding distance of each individual is
computed. The crowding distance of each individual is the sum of the distances to adjacent
solutions under each objective function, expressed as follows:

D[m]i = D[m]i +
(D[m + 1]i − D[m − 1]i)

gmax
i − gmin

i
(17)

In the equation, D[m+1]i represents the value of the (m + 1)-th individual for the i-th
objective function, gmax

i denotes the maximum value of the i-th objective function in the
solution set, and gmin

i denotes the minimum value of the i-th objective function in the
solution set.

Step 4: The first-generation subpopulation is generated by selecting individuals (with
higher selection levels and greater crowding) and performing crossover and mutation
operations. A single-point crossover is adopted in this study, where a crossover point is
randomly selected, and the chromosomes of two parents are exchanged after that point to
achieve crossover, as illustrated in Figure 5. To prevent the algorithm from being trapped
in local optima during optimization, single-point mutation is employed for mutation
operations, wherein a mutation occurs at one position in the gene sequence to increase the
diversity of individuals, as shown in Figure 6.

Step 5: The offspring population obtained after selection, crossover, and mutation
operations is merged with the parent population. Then, N optimal individuals are selected
based on crowding and non-dominance to form a new parent population.

Step 6: Iterative optimization involves repeating the above steps until the maximum
iteration count is reached.
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2.3.2. NSGA-III

With the increase in the number of objective dimensions, the complexity of MOP
problems also escalates. To address this, Deb K and Jain H proposed the NSGA-III, which,
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building upon NSGA-II, introduced an innovative reference point sorting mechanism that
effectively sustains population diversity, making it suitable for tackling MOP problems
with four or more objectives [35]. Accordingly, this study will utilize the NSGA-III to
re-solve the MOP model, aiming to validate its capability as the most suitable intelligent
optimization algorithm for solving four-objective optimization problems.

NSGA-III and NSGA-II share similarities in their architectures, with their core differ-
ence lying in the manner in which the selection process is carried out. NSGA-II relies on
crowding to filter individuals, whereas NSGA-III employs a reference point-based selection
mechanism that prioritizes retaining solutions that are nondominated and close to the
reference points. This mechanism effectively controls the overall distribution of the popula-
tion by uniformly distributing reference points throughout the population [36]. Assuming
there are N optimization objective functions, the corresponding reference points are evenly
distributed on an N-1 dimensional hyperplane. If each optimization objective is divided
into M partitions, the number of reference points P can be calculated using Formula (18):

P = CM
M+N−1 (18)

The NSGA-III significantly reduces the computational cost of handling high-dimensional
objective optimization problems by replacing the crowding distance calculation in NSGA-II
with a reference point method. It can more accurately guide the population towards various
parts of the Pareto optimal solution set, thus achieving a more comprehensive exploration
and more effective diversity maintenance in MOP [37].

Therefore, the development of NSGA-III aims to further enhance the performance
of MOP algorithms, enabling them to better tackle complex MOP problems and provide
more powerful optimization tools for the engineering and scientific fields. In the context of
solving MOP models in construction management, the application process of NSGA-III is
detailed in Figure 8.
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2.4. Decision Method

After solving the optimization model using the algorithm, we obtain a series of
potential solutions known as the Pareto solution set. Some scholars argue that addressing
MOP problems involves two key stages: optimization and decision-making. The objective
of the optimization stage is to search for the Pareto solution set, while the decision-making
stage involves selecting the final solution from these solutions [23], as shown in Figure 9.
During the decision-making process, the subjective preferences of the decision-maker may
introduce biases.
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To reduce the influence of external factors during the decision-making process, this
study adopts an objective decision strategy based on the entropy–weight–VIKOR method.
Initially, the entropy method is used to determine the weights of each objective, ensuring
the objectivity and rationality of weight distribution. Subsequently, the VIKOR method is
applied to evaluate and rank each objective to identify the solution with the best compre-
hensive performance. This approach circumvents limitations found in other Multi-Criteria
Decision Making (MCDM) methods, such as the subjective elements of AHP and the
single-criterion selection of TOPSIS. Through this approach, we are able to objectively
and comprehensively identify and decide upon optimal solutions within the Pareto front,
ensuring the scientific rigor and fairness of the decision-making process.

2.4.1. Entropy Method

The entropy method is a scientific and objective approach for assigning weights,
widely recognized and applied in the field of management decision-making [38]. At
the core of this method is the utilization of calculated entropy values to determine the
relative importance of each optimization objective. The magnitude of information entropy
directly reflects the extent of variability in the indicators and the amount of information
they carry. Specifically, indicators with lower information entropy imply a larger range
of variation and rich information content and thus should be given greater weight in the
allocation. Conversely, indicators with higher information entropy indicate a smaller range
of variation and limited information provided; hence, they should correspondingly receive
smaller weights [39–41]. The specific computation steps of the entropy method are outlined
as follows:

Step 1: Data processing, constructing normalized standardization matrix:
Construct an m*n matrix, where m represents the numerous solutions obtained after

algorithmic analysis, and n represents the four objectives of MOP. Then, perform standard-
ization processing according to the following formula.

Positive index standardization:

yij =
xij − xijmin

xijmax − xijmin
(19)
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Negative index standardization:

yij =
xijmax − xij

xijmax − xijmin
(20)

In the equation, xij refers to the value of the j-th objective in the i-th scheme. xijmax and
xijmin denote the maximum and minimum values of certain target data, respectively, while
yij represents the standardized value of the target data after processing.

Step 2: Calculating a percentage value:

Rij =
yij

m
∑

j=1
yij

(21)

In the equation, Rij represents the weight or proportion of the j-th objective in the
i-th scheme.

Step 3: Calculating entropy:

ej = − 1
ln m

m

∑
i=1

Rij ln Rij (22)

In the equation, ej represents the entropy value of the j-th objective; m denotes the
number of solutions obtained after solving; and Rij is the proportion value obtained in
Formula (21).

Step 4: Calculating coefficient of variation:

gj = 1 − ej (23)

Step 5: Determining the weights of evaluation indicators:

wj =
gj

n
∑

j=1
gj

(24)

In the equation, ωj represents the weight or importance of the j-th objective.

2.4.2. VIKOR Method

The VIKOR method is a multi-attribute decision-making approach based on ideal
solutions. Its essence lies in computing the positive and negative ideal solution values for
each criterion and measuring the distance between alternatives and the ideal solution by
maximizing group benefits value and minimizing individual regret value, thus achieving
a compromise ranking of alternatives [42]. This method innovates upon the ideal point
method, optimizes the rules for alternative ranking, and constructs a comprehensive
evaluation model based on compromise principles, thereby enhancing the efficiency and
effectiveness of the multi-attribute decision-making process [43]. The calculation steps of
the VIKOR method are as follows:

Step 1: Determine the initial matrix and standardize it, following the same process as
the entropy weight method for standardization.

Step 2: Calculate the positive and negative ideal solution values for each criterion
based on the standardized matrix:

For performance-type indicators:

f ∗j = max
i

fij f−j = min
i

fij (25)
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For cost-type indicators:

f ∗j = min
i

fij f−j = max
i

fij (26)

Step 3: Calculate the group benefit value Si and individual regret value Ri for the
decision-making alternatives:

Si =
n

∑
j=1

wj

(
f ∗j − fij

)
/
(

f ∗j − f−j
)

(27)

Ri = max
[
wj

(
f ∗j − fij

)
/
(

f ∗j − f−j
)]

(28)

In the equation, ωj represents the weights of each objective obtained through the
entropy method; f *j and f -

j denote each objective’s positive and negative ideal solution
values, respectively.

Step 4: Calculate the benefit ratio value Qi for the decision-making alternatives:

Qi = ν

(
Si − min

i
Si

)
(

max
i

Si − min
i

Si

) + (1 − ν)

(
Ri − min

i
Ri

)
(

max
i

Ri − min
i

Ri

) (29)

In the equation, ν is the decision coefficient, taken as 0.5.
Step 5: According to the calculated values of Si, Ri, and Qi, the decision-making for

alternative options is based on the following ranking rules:
Rule 1:

Q
(

A2
)
− Q

(
A1
)
≥ 1

m − 1
(30)

Rule 2: After satisfying Rule 1’s sorting, A1 is the alternative with the highest S and
R values.

Here, A1 is the optimal alternative in the Q sorting, A2 is the second-best alternative,
m is the number of alternatives, and the smaller the value of Q, the higher the ranking of
the alternative.

3. Case Study
3.1. Case Overview

This paper presents an MOP study using the J engineering office building as a case
study to validate the model’s effectiveness. The J project is a recent undertaking managed
by Company Z, situated in the middle and lower reaches of the Yangtze River. It features
a concrete frame structure spanning 12 floors, each with a standard height of 3.5 m. The
total above-ground floor area measures 4389.52 m2. The project requires a contract period
of 311 days, with completion costs not exceeding RMB 17 million and safety objectives
reaching an excellent level, meaning the safety index should not be lower than 0.85. Ad-
ditionally, total carbon emissions are to be controlled within 2305.57 tCO2. Based on the
actual construction processes of the project, which are segmented into 12 specific processes,
Figure 10 and Table 2, respectively, depict the construction dual-coded network plan and
the logical relationship table of construction processes for the J engineering project.
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Table 2. Logical Sequence of Construction Processes for the Concrete Frame Office Building in
Project J.

Process
Number

Process
Code

Predecessor
Task

Successor
Task Process Name

1 A - B Earthwork excavation
2 B A C Foundation construction
3 C B D, E Basement structure and first-floor beam
4 D C H Basement wall treatment
5 E C F Main structure construction
6 F E H Roof construction
7 G E H Scaffolding removal

8 H D, F, G I Main structure maintenance
and Inspection

9 I H J Masonry construction
10 J H L Main roof decoration and treatment
11 K J K Drainage, roads, and other facilities
12 L I, K - Completion of cleaning and preparation

3.2. Data Processing

Based on the specific dual-coded network plan and critical path method for this
project, the critical path is determined as A → B → C → E → F → H → J → K → L. The
parameters related to each process are derived from actual construction situations and
network planning. Among them, the unit of (tdij, tij, tcij) are days, (Cz

ijmin, Cz
ijmax, Cj

ijmin,
Cj

ijmax, Ce
ij)are tens of thousands of RMB, (p0ij, ∆pmin

ij, ∆pmax
ij)are dimensionless, and

(Emin
ij, Emax

ij)are tCO2. The specific parameters are shown in Table 3.

Table 3. Construction Process Relationships and Related Parameters Table.

Process
Number tdij tij tcij Cz

ijmin Cz
ijmax Cj

ijmin Cj
ijmax Ce

ij p0ij ∆pmin
ij ∆pmax

ij Emin
ij Emax

ij

A 20 21 25 34 51 14 17 16.51 0.15 0.05 0.90 5.5 7.8
B 29 32 37 75 88 21 24 13.55 0.12 0.10 0.90 407.4 425.88
C 20 22 23 160 208 14 17 14.90 0.12 0.15 0.93 241.5 294
D 13 15 22 11 16 11 13 13.19 0.10 0.05 0.85 42.1 58
E 58 60 69 647 720 42 47 19.58 0.03 0.04 0.90 1144.5 1184.6
F 15 18 20 71 81 12 14 10.52 0.04 0.009 0.92 6.3 10.06
G 7 8 11 13 20 5 7 3.71 0.10 0.09 0.90 0.32 0.55
H 27 32 34 40 48 19 21 7.25 0.08 0.10 0.90 2.4 3.4
I 32 35 43 42 54 24 26 10.94 0.11 0.05 0.92 299.37 316
J 20 21 25 58 70 15 17 7.97 0.12 0.02 0.86 2.53 3.99
K 24 28 33 50 58 18 20 13.97 0.06 0.10 0.93 0.84 1.18
L 1 1 2 2 4 1 2 0.49 0.10 0.06 0.8 0.08 0.11

4. Model Result
4.1. Parameter Setting

This research uses NSGA-II and NSGA-III to solve the model, respectively, and per-
forms calculations using MATLAB R2024a. The initial parameter settings for each algorithm
are shown in Table 4.

Table 4. Algorithm Parameter-Setting Table.

Algorithm
Name

Population
Size

Number of
Objectives

Crossover
Ratio Mutate Ratio Number of

Iterations

NSGA-II 60 4 0.4 0.1 500
NSGA-III 60 4 0.4 0.1 80
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4.1.1. NSGA-II Solution Results

Solving the model using the NSGA-II, the solution iteration graphs for each objective
obtained are shown in Figure 11a–d.

Buildings 2024, 14, x FOR PEER REVIEW 21 of 28 
 

NSGA-III 60 4 0.4 0.1 80 

4.1.1. NSGA-II Solution Results 
Solving the model using the NSGA-II, the solution iteration graphs for each objective 

obtained are shown in Figure 11a–d. 

 
Figure 11. NSGA-II Solution Iteration Graph. (a–d) represent the iteration graphs for time, cost, 
safety, and carbon emissions respectively. 

Upon reaching the maximum number of iterations, the algorithm ceases operation, 
yielding a series of Pareto optimal solutions that comply with the constraint limitations, 
as depicted in Figure 12. Each set of solutions corresponds to a distinct construction 
approach, with this paper solely presenting 10 sets of solutions that exhibit shorter 
construction periods, lower costs, reduced carbon emissions, and higher safety levels. The 
detailed data is outlined in Table 5. 

 
Figure 12. Pareto Solutions Set Graph Solved by NSGA-II. 

Table 5. Partial Pareto Solutions Set Solved by NSGA-II. 

Scheme Number Time (T) Cost (C) Safety (S) Carbon 
Emissions (E) 

1 265 1534.6 0.924 2152.9 
2 271 1534.5 0.86 2154.3 
3 278 1550.6 0.929 2169 
4 306 1611.6 0.978 2174.8 
5 299 1592.1 0.965 2173 
6 281 1546.6 0.933 2155.4 
7 284 1578.6 0.959 2157 
8 303 1594.7 0.970 2194.6 
9 290 1576.6 0.953 2165.1 

10 298 1605.3 0.963 2174.2 

Figure 11. NSGA-II Solution Iteration Graph. (a–d) represent the iteration graphs for time, cost,
safety, and carbon emissions respectively.

Upon reaching the maximum number of iterations, the algorithm ceases operation,
yielding a series of Pareto optimal solutions that comply with the constraint limitations, as
depicted in Figure 12. Each set of solutions corresponds to a distinct construction approach,
with this paper solely presenting 10 sets of solutions that exhibit shorter construction
periods, lower costs, reduced carbon emissions, and higher safety levels. The detailed data
is outlined in Table 5.
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Table 5. Partial Pareto Solutions Set Solved by NSGA-II.

Scheme
Number Time (T) Cost (C) Safety (S) Carbon

Emissions (E)

1 265 1534.6 0.924 2152.9
2 271 1534.5 0.86 2154.3
3 278 1550.6 0.929 2169
4 306 1611.6 0.978 2174.8
5 299 1592.1 0.965 2173
6 281 1546.6 0.933 2155.4
7 284 1578.6 0.959 2157
8 303 1594.7 0.970 2194.6
9 290 1576.6 0.953 2165.1
10 298 1605.3 0.963 2174.2
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4.1.2. NSGA-III Solution Results

To verify the applicability of the algorithm for the four-objective optimization problem
in the engineering project, NSGA-III is used again in this study to solve the model. The
final iteration graphs for each objective are shown in Figure 13a–d.
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constraint conditions. Both algorithms achieved optimization effects. However, the 
NSGA-III required only 80 iterations to search for a superior solution set, while the NSGA-
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safety, and carbon emissions respectively.

After running the NSGA-III, the Pareto solution set is obtained, as shown in Figure 14.
Similar to the NSGA-II, only the relatively better 10 sets of solutions are selected, with the
specific data shown in Table 6.
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Table 6. Partial Pareto Solutions Set Solved by NSGA-III.

Scheme
Number Time (T) Cost (C) Safety (S) Carbon

Emissions (E)

1 283 1553.3 0.952 2154.9
2 287 1570.2 0.969 2169.1
3 277 1558.6 0.960 2155.3
4 284 1564.6 0.964 2155.5
5 279 1559 0.960 2155.9
6 274 1546.8 0.948 2154.1
7 281 1571.4 0.965 2156.8
8 280 1559.6 0.961 2156.6
9 291 1572.1 0.970 2169.1
10 276 1547.3 0.949 2154.7
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After executing the algorithm programs, two sets of solutions based on NSGA-II
and NSGA-III were obtained, respectively, each set being the optimal values under the
constraint conditions. Both algorithms achieved optimization effects. However, the NSGA-
III required only 80 iterations to search for a superior solution set, while the NSGA-II
needed more iterations, resulting in a longer optimization time. Furthermore, the NSGA-
III discovered a larger number of solution sets with greater diversity in each solution
compared to the NSGA-II. Finally, the range, variance, and standard deviation of the two
algorithms were calculated and compared, as shown in Table 7. Values corresponding
to each objective of NSGA-III were relatively small, indicating stable performance and
sustained population diversity, thus avoiding premature convergence. Therefore, the Pareto
averages of the objectives obtained using both algorithms were compared, as depicted
in Figure 15, illustrating overall superior optimization performance with the NSGA-III
algorithm. Considering these three aspects, this paper selects the Pareto solution sets
obtained by the NSGA-III for decision-making, providing the most satisfactory solutions
to stakeholders.

Table 7. Comparison of Results between NSGA-II and NSGA-III Approaches.

NSGA-II NSGA-III

Objective Time (T) Cost (C) Safety (S)
Carbon

Emissions
(E)

Time (T) Cost (C) Safety (S)
Carbon

Emissions
(E)

Mean Value 287.5 1572.52 0.9434 2167.03 281.2 1560.29 0.9598 2158.2
Range 41 77.1 0.118 41.7 17 25.3 0.022 15

variance 194.9444 840.7218 0.0012 168.0779 27.0667 87.1410 0.00006 33.6756
standard
deviation 13.9623 28.9952 0.0345 12.9645 5.2026 9.3349 0.0078 5.8031
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4.2. Solution Choosing

The decision-making process in this study involved the utilization of the entropy-
based VIKOR method, which determined the optimal solution from the Pareto solution set
obtained through the application of the NSGA-III. Initially, the weights were determined
using the entropy method, with 10 alternative options (m = 10) and four evaluation criteria
(n = 4) considered. An initial matrix of dimensions m × n was constructed. After normal-
ization based on Equations (19) to (20), a standardized matrix was derived, with safety
as a positive criterion and project time, cost, and carbon emissions as negative criteria.
The entropy values and weights for each criterion were subsequently computed using
Equations (21) to (24), and the results are presented in Table 8.
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Table 8. Table of Entropy Values and Weights for Each Evaluation Criterion.

Evaluation Criterion Time (T) Cost (C) Safety (S) Carbon
Emissions (E)

Entropy Values of Each
Criterion ej

0.9242993 0.8476381 0.8831263 0.9022033

Weights of Each
Criterion wj

0.170985 0.3441394 0.2639823 0.2208933

Once the weights of each criterion are determined, the VIKOR method is used for
ranking. The positive and negative ideal solutions of each criterion are calculated according
to Formulas (25) and (26). The specific results are shown in Table 9.

Table 9. Positive and Negative Ideal Solutions of Each Evaluation Criterion.

Evaluation Criterion Time (T) Cost (C) Safety (S) Carbon
Emissions (E)

Positive Ideal Solution 0.170985 0.3441394 0.2639823 0.2208933
Negative Ideal Solution 0.000000171 0.000000344 0.000000264 0.000000221

Finally, the group benefit value Si, individual regret value Ri, and benefit-cost ratio
value Qi of each solution is calculated according to Formulas (27)–(29). The results are
rounded to four decimal places, and decision ranking is conducted based on these values.
The results are shown in Table 10.

Table 10. Values of S, R, and Q for Each Group’s Schemes and Scheme Rankings.

Scheme
Number

Group Benefit
Value Si

Individual
Regret Value Ri

Benefit-Cost
Ratio Value Qi

Scheme
Ranking

1 0.4104 0.2160 0.3035 6
2 0.6841 0.3187 0.8752 9
3 0.3314 0.1619 0.0714 1
4 0.4391 0.2433 0.4088 7
5 0.3665 0.1673 0.1235 2
6 0.2640 0.2640 0.2801 5
7 0.5077 0.3348 0.7324 8
8 0.3832 0.1755 0.1637 3
9 0.7360 0.3441 1 10
10 0.2890 0.2520 0.2737 4

To compare and validate the effectiveness of the decision-making method, the ideal
point method [44] was employed to obtain the optimal solutions from the Pareto set. In this
method, the ideal point assumes optimal performance across all four objectives, which is
unattainable in practice. The solution closest to the ideal point along the Pareto frontier is
selected as the optimal solution. As indicated in Table 5, the coordinates of the ideal point
are P1 (274, 1546.8, 0.970, 2154.1). Subsequently, the distance (Un) between each point on
the Pareto frontier and the ideal point is calculated using the following formula:

Un = ∥p2 − p1∥ =

√√√√√ 4

∑
j=1

ωj

(
f p2
j − f p1

j

f max
j − f min

j

)2

(31)

In the equation, ωj represents the weights of each objective calculated using the
entropy method, f max

j and f min
j denote the maximum and minimum values of fj(x) in

the j-th objective, fp1
j represents the value of the ideal point in the j-th objective, and fp2

j
represents a scenario along the Pareto frontier in the j-th objective.
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The distances from each point to the ideal point, rounded to three decimal places, are
presented in Table 11. Solution 3 emerges as the optimal solution on the Pareto frontier
closest to the ideal point, consistent with the decision made using the entropy–VIKOR
method. This reaffirms the effectiveness and accuracy of the decision-making approach
and further underscores Solution 3 as a balanced compromise considering multiple factors.

Table 11. Distances from the Pareto frontier point to the ideal point.

Scheme Number 1 2 3 4 5 6 7 8 9 10

Un 0.498 0.785 0.369 0.501 0.391 0.514 0.612 0.400 0.858 0.493

4.3. Result Analysis

By utilizing the entropy–VIKOR method for decision-making, the optimal solution is
identified as Proposal 3 based on the results obtained. Proposal 3 has a total project time of
277 days, with specific construction days for each process detailed in Table 12. Comparisons
are made between the selected Proposal 3, serving as the optimal solution, and the target
values specified in the contract requirements, as depicted in Figure 16. The project timeline
aligns with the overall completion time within the contractual deadline, achieving a 34-day
lead time, a reduction of 10.93% compared to the contract’s project time. The incurred cost
amounts to RMB 15.586 million, staying below the maximum completion cost specified in
the contract, resulting in a decrease of RMB 1.414 million, or 8.31%, below the contract price.
The safety level index stands at 0.960, meeting the required standards with an enhancement
of 0.11. The carbon emissions amount to 2155.3 tons, reflecting a decrease of 150.27 tons of
CO2 compared to the contract requirement, translating to a 6.51% reduction. Through the
NSGA-III for MOP problem-solving, the results not only adhere to the constraints but also
achieve optimized objectives. The decision-making process has effectively identified the
best solution for project managers, enabling them to comprehensively plan construction
projects based on the optimal solution.

Table 12. Time of Each Process in Proposal 3.

Process Code A B C D E F G H I J K L Total

Time 20 29 20 13 58 15 7 34 42 25 24 2 277
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jectives. However, existing studies often overlook the potential impact of carbon emissions
during the construction process. For instance, Peng [45] introduced sustainability goals in
their study, quantifying objectives from economic, environmental, and social dimensions,
yet did not delve into the specific influence of carbon emissions on engineering projects. In
light of this gap, this paper proposes a balanced optimization model that considers project
time, cost, safety, and carbon emissions to address the existing research gap and delve
deeper into the MOP issues in construction project management. Regarding algorithmic
solutions, despite the widespread use of intelligent algorithms to address MOP problems,
few studies focus on the adaptability of algorithms as the problem dimensions increase.
Wang [46] utilized an improved NSGA-II to investigate construction site layout issues
but did not conduct an in-depth comparative analysis of the algorithm. To address this
issue, this paper tackles a four-objective optimization problem in engineering projects and
simultaneously applies NSGA-II and NSGA-III for resolution, evaluating the suitability
of the algorithms based on iteration numbers and the optimization effects of the solution
set. In terms of decision-making for proposals, Yan [47] employed the Analytic Hierarchy
Process (AHP) to determine the weights of various objectives through scoring. However,
this method introduces subjective judgments that may lead to biased results. To enhance the
objectivity of decision-making, this paper utilizes the entropy–VIKOR method to evaluate
solution sets, thereby selecting an optimal construction plan set and effectively avoiding
the interference of subjective factors.

The study also has certain limitations and prospects for future development: (1) The
research primarily focuses on four key aspects influencing engineering yet fails to encom-
pass a broader spectrum of dimensions. Additionally, the Critical Path Method (CPM)
used in constructing the project time objective model has certain limitations. For instance,
it does not account for project uncertainties or the possibility that certain tasks may not
be completed simultaneously due to resource constraints. (2) Preliminary discussions
were conducted in this paper regarding the applicability of two algorithms in addressing
four-objective optimization problems, but there is still room for improvement in the algo-
rithms themselves. (3) The scale of the case in this study is relatively small compared to
the number of activities in other construction projects. (4) Building upon the foundation
of this study, future research could concentrate on the dynamic and real-time analysis of
multi-objective management in construction projects. By introducing advanced information
technologies and data analysis methods, real-time monitoring of construction processes and
intelligent decision-making could be achieved, thereby creating greater economic benefits
and societal value.

6. Conclusions

(1) This paper innovatively proposes a carbon emission model, addressing previous
limitations in cost-target models that only consider direct and indirect costs. Building
upon the consideration of carbon cost factors, this study enhances the cost model and
ultimately develops the TCSE comprehensive optimization model for engineering projects.
Through algorithmic solutions, not only was the practicality of the developed model
successfully validated but also the effectiveness and feasibility of the employed algorithm
were demonstrated.

(2) In algorithmic solving, this paper compares the NSGA-II and NSGA-III, addressing
the limitation in previous studies that predominantly relied on a single algorithm for
solving. The results indicate that although both algorithms can achieve optimization effects,
NSGA-III can obtain a superior solution set with fewer iterations. This finding highlights
the advantage of NSGA-III in addressing four-objective optimization problems at the scale
of this case study, providing crucial guidance for researchers selecting algorithms to tackle
similar issues in future studies.

(3) In terms of decision-making, this paper employs the entropy-based VIKOR method,
which is relatively more objective than MCDM methods used in previous studies, and
comprehensively evaluates the Pareto solution set obtained by the NSGA-III algorithm.
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This analysis aims to enhance the objectivity of the final decision-making process, yielding
solutions with greater objectivity. Ultimately, Solution 3 was identified as the optimal
solution, achieving significant optimizations in project time, cost, safety level, and carbon
emissions. Compared to contractual requirements, Solution 3 reduced project time by
10.93%, lowered costs by 8.31%, improved safety level by 0.11, and decreased carbon
emissions by 6.51%. These optimization outcomes provide construction project managers
with rational, integrated planning strategies, facilitating MOP and promoting the green
and sustainable development of the construction industry.
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