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Abstract: Promoting flexible energy demand through response programs in residential neighborhoods
would play a vital role in addressing the issues associated with increasing the share of distributed
solar systems and balancing supply and demand in energy networks. However, accurately identifying
baseline-related energy measurements when activating energy demand response events remains
challenging. In response, this study presents a deep learning-based, data-driven framework to
improve short-term estimates of demand response baselines during the activation of response events.
This framework includes bidirectional long-term memory (BiLSTM), long-term memory (LSTM),
gated recurrent unit (GRU), convolutional neural networks (CNN), deep neural networks (DNN),
and recurrent neural networks (RNN). Their performance is evaluated by considering different
aggregation levels of the demand response baseline profile for 337 dwellings in the city of La Rochelle,
France, over different time horizons, not exceeding 24 h. It is also compared with fifteen traditional
statistical and machine learning methods in terms of forecasting accuracy. The results demonstrated
that deep learning-based models, compared to others, significantly succeeded in minimizing the gap
between the actual and forecasted values of demand response baselines at all different aggregation
levels of dwelling units over the considered time-horizons. BiLSTM models, followed by GRU
and LSTM, consistently demonstrated the lowest mean absolute percentage error (MAPE) in most
comparison experiments, with values up to 9.08%, 8.71%, and 9.42%, respectively. Compared to
traditional statistical and machine learning models, extreme gradient boosting (XGBoost) was among
the best, with a value up to 11.56% of MAPE, but could not achieve the same level of forecasting
accuracy in all comparison experiments. Such high performance reveals the potential of the proposed
deep learning approach and highlights its importance for improving short-term estimates of future
baselines when implementing demand response programs in residential neighborhood contexts.

Keywords: residential neighborhoods; demand response programs; baselines; short-term forecasts;
deep learning; machine learning methods

1. Introduction

The European residential sector accounts for approximately 75% of European build-
ings and is solely responsible for over 25% of the final energy demand in the European
Union (EU), making it the second-largest consumer after transport [1]. With this in mind, in-
creasing the energy efficiency of residential and non-residential buildings is one of the main
objectives of EU strategies to achieve the ambitious endeavor of decarbonizing European
buildings [2]. Given that residential buildings are significant contributors to global carbon
emissions, there is great interest in creating a low-carbon residential sector in Europe [3].
The widespread deployment of advanced demand-side management strategies through
demand response programs, enabling flexible energy demand in European residential
buildings, is seen as a promising direction to maximize energy efficiency while meeting
comfort requirements. Demand response programs focus significantly on the increased in-
tegration of low-carbon energy generation systems, such as distributed solar photovoltaics
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systems [4], and the modification of natural energy usages for residential buildings in
response to fluctuations in supply and demand when the reliability and security of energy
network systems are compromised [5]. At the same time, end-use customers become partic-
ipators in demand response programs by modulating their natural consumption patterns
according to electricity prices or through corresponding payment incentives in response to
control signals issued by energy network operators or aggregators [6,7].

Thus, various types of demand response scenarios/programs, including load-shifting,
valley-filling, peak-clipping, and the shaping of flexible loads, have been introduced [6,8]
to accurately operate and manage the available local energy resources considering outdoor
weather conditions, consumption patterns, and network security. In parallel, demand
response strategies that reduce a building’s energy demands during stressful times of
the energy network are seen as feasible approaches to harness flexible energy demand
without the need for substantial investments [9]. Despite the transition towards greater
energy efficiency in residential buildings, driven by the widespread adoption of demand
response programs, incomplete and significant improvements are still ongoing in this
direction. However, there is a strong need to understand the baseline demand trends (i.e.,
so-called demand response baselines) for energy in residential buildings on the side of
end-use customers/occupants and the interaction with the energy network. This requires
providing an accurate estimation of demand response baselines, which would be consumed
by end-use customers in the absence of demand response programs [10]. Demand response
baselines serve as a fundamental reference point for measuring, optimizing, and assessing
the potential reduction in energy demand during response events [11]. In contrast, demand
response baselines in buildings are distinguished by highly fluctuating with non-linear
characteristics due to the nature of consumption, which depends on occupancy, the culture
of a particular building, the working schedule of each building, and outdoor weather
conditions [12]. Thus, developing a data-driven learning framework to characterize baseline
demand patterns and provide accurate estimates of demand response baselines, enabling
the calculation of energy reductions in the context of residential buildings, is crucial [13,14].

In response, energy demand forecasts are a pivotal component of demand response
programs to investigate the effectiveness of demand response scenarios and maximize
their benefits. Specifically, accurate forecasts of energy demand in the short term and very
short term can be employed to address different types of challenges at both the building
level and the energy network level [15]. Common building-level challenges that can be
addressed include tracking progress in energy efficiency improvements and defining ab-
normal behaviors and deviations in expected energy usage patterns, which enable the
detection of potential energy losses, breakdowns, and inefficiency within the building’s
systems [16,17]. Energy network-level challenges are short-term optimal scheduling and
identification of the optimal energy flow to meet expected demand [18], facilitating in-
creased integration of low-carbon energy sources into the energy network [19], and demand
response flexibility optimization by tracking the improvement progress in energy reduc-
tions [20]. In demand response contexts, accurate short-term forecasts of demand response
baselines would be utilized by aggregators (intermediaries between end-use consumers
and energy utility suppliers) to support the fair compensation of participating households
in demand response programs [6]. Accurate demand response baselines can also serve
as essential information for resource planners and energy system operators interested in
implementing demand response programs with high effectiveness [14]. However, how
to develop an accurate and reliable data-driven framework that can fulfill the above-gap
remains a difficult task [21]. Therefore, this study aims to address this research need by
developing a short-term forecasting framework for demand response baselines based on
time-series data. This is essential for any optimal demand response strategy, particularly in
large-scale residential neighborhoods that would interact with intermittent renewables (i.e.,
low-carbon energy sources, such as distributed solar photovoltaic systems).
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2. Literature Review

Over the past few years, several research studies have been devoted to accurately esti-
mating demand response baselines at both the individual customer-level and the aggregate-
level, as summarized in Table 1. Various methods have been employed, which can be
categorized into statistical and traditional machine learning methods. Concerning statis-
tical methods, Ghasemi et al. [22] and Wijaya et al. [23] introduced the averaging-based
method (XofY method), which is based on historical datasets to investigate their effective-
ness in providing accurate estimates of the demand response baselines for 32 industrial and
782 residential customers in Iran and Switzerland, respectively. Despite the importance of
this work, the main limitation of these methods is that they tend to provide a simplified
and less accurate representation of historical energy demand data and may not accurately
capture the nuances and variations in demand patterns, which can lead to sub-optimal
estimates for demand response baselines. Similarly, Zhang et al. [24] and Wang et al. [25]
proposed using residential consumption of non-participants in demand response programs
to estimate baselines of demand response participants. The problem with such a practical
approach is that there must be reference buildings with similar characteristics that do not
participate in demand response actions. Furthermore, this approach becomes problematic
under frequent demand response actions. In the same context, the authors in [10,26–30]
presented statistical regression with external inputs, such as weather variables as predictive
factors, to perform predictions of demand response baselines. The results revealed that
statistical regression models have significant potential to provide accurate estimates of
demand response baselines. However, a drawback of statistical regression-based mod-
els is inadequately quantified uncertainty in predicting energy demand baselines due to
their inability to measure non-linear relationships between energy demand and relevant
influencing factors such as consumer behaviors and ambient weather conditions [31].

Table 1. Distribution of the reviewed studies according to method, study scale, data type, and time
horizon for estimation.

Method Scale Temporal
Granularly Data Size Time-Horizon for

Estimation Reference

Statistical
regression

138 residential
customers Sub-hourly 6 months 2-day Ziras et al. [10]

SVR Four office
buildings Hourly 12 days 9 am–5 pm

(9 h) Chen et al. [14]

Averaging-based 32 industrial
customers Hourly 50 days -- Ghasemi et al. [22]

Averaging-based 782 residential
customers Hourly 12 months -- Wijaya et al. [23]

Cohort-based 6427 residential
customers Hourly 122 days 0 am–23 pm

(24 h) Zhang et al. [24]

Cohort-based 736 residential
customers Hourly -- 3-day, 3-week,

3-month Wang et al. [25]

Statistical
regression-based

33 commercial
buildings Hourly 16 months 3-day, 5-day,

10-day Coughlin et al. [26]

Statistical
regression-based

29 commercial
offices Sub-hourly 16 months 4, 7, 10 months Granderson and

Price [27]

Statistical
regression-based 17 office buildings Hourly 12–27 months ~month Walter et al. [28]

Statistical
regression-based

Individual
consumers Sub-hourly Winter months ~5-day Hatton et al. [29]
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Table 1. Cont.

Method Scale Temporal
Granularly Data Size Time-Horizon for

Estimation Reference

Statistical
regression-based City Hourly 10 days ~5 day Sharifi et al. [30]

SVR 300 households Hourly 6 months 10-h Li et al. [32]

GMR Individual retail
store Sub-hourly 12 months -- Srivastav et al. [33]

GMR 441 customers -- 12 months -- Zhang et al. [34]

MNN, SVR, RF,
XGBoost Individual house Hourly 12 months 1 h, 1-day Bampoulas et al.

[35]

MLR, SVR, RF,
CatBoost,

LightGBM, ANN

20 commercial
buildings Hourly, Daily 24 months -- Sha et al. [36]

GCN 3561 household
customers Sub-hourly 12 months 24 h Tao et al. [37]

Self-organizing
map, K-means

clustering

3 multi-story
buildings Hourly 27 months ~5–10 days Park et al. [38]

Averaging-based,
ANN, MLR, PolyR

66 household
customers Hourly 4 months 24 h Jazaeri et al. [39]

Averaging-based,
exponential
smoothing,
regression

200 customers Hourly, Daily 12 months 12-day Schwarz et al. [40]

As a potential procedure to overcome the problems associated with statistical methods,
several researchers have proposed a diverse combination of traditional machine learning
methods to construct accurate demand response baselines. In this context, Chen et al. [14]
proposed a support vector regression (SVR) method to estimate demand response baselines
for office buildings, using factors such as weather and building working schedules as
inputs to the SVR models. Similarly, Li et al. [32] proposed an SVR method to estimate
customer demand response baselines in the presence of integrated distributed photovoltaic
systems. Srivastav et al. [33] and Zhang et al. [34] proposed the development of predictive
models based on the Gaussian Mixture Regression (GMR) method to characterize demand
response baselines of building clusters. However, the GMR method has difficulties in
processing time series data and requires the use of complex algorithmic models to cal-
culate demand response baselines. Bampoulas et al. [35] compared the performance of
RF (random forests), MNN (multilayer neural networks), SVR, and XGBoost (extreme
gradient boosting) methods in providing accurate estimates of residential energy demand
response baselines. Similarly, Sha et al. [36] developed six types of predictive models
based on multiple linear regression (MLR), SVR, RF, CatBoost, LightGBM (light gradient
boosting machine), and ANN (artificial neural network) to improve the calculation of
demand response baselines for commercial buildings over the next 24 h. Tao et al. [37]
proposed a graph convolutional network (GCN) method to improve the estimation of
aggregated demand response baselines, as its performance was compared with that of
their counterparts from SVR, MLR, and averaging methods. This is in addition to the other
methods proposed in [38–40] to improve the estimation of demand response baselines
in buildings.

Notwithstanding the effectiveness of some data-driven machine learning methods in
estimating demand response baselines, as mentioned above, these methods require sub-
stantial improvement by considering more external factors, such as occupancy and indoor
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environmental conditions, which can be difficult to acquire in the context of large-scale
neighborhoods and district buildings. In addition, implementation strategies for demand
response in buildings necessitate high-resolution forecasts (from hourly to daily), leading to
the need for developing accurate forecasting models [12,41]. As demand patterns fluctuate
randomly, inaccurate estimates of demand response baselines can lead to significant errors
when aggregated to determine the total energy reductions caused by the activation of
response events [37]. In the face of such challenges, deep learning methods have brought
the issue of reliable and accurate estimates in short-term energy forecasting studies in the
building sector back into the spotlight and have received considerable attention in recent
years. Researchers have pointed out the great potential of these methods in providing
accurate results for building energy demand forecasting [42,43]. Accordingly, this study
introduces the deep learning approach as a potential candidate to improve the accuracy of
residential demand response baseline estimates over a short-term forecast horizon. The aim
is to develop a robust and reliable deep learning-based data-driven framework and evaluate
its performance, considering different residential energy demand profiles in neighborhood
buildings, in order to provide accurate estimates for aggregated demand response baselines
over multiple time forecast horizons, not exceeding 24 h. To the author’s knowledge, no
previous studies have applied bidirectional long-short-term memory (BiLSTM) and gated
recurrent unit neural network (GRU) to estimate aggregated demand response baselines in
a neighborhood context.

Contribution of the Study

In light of the study’s objective and considering the strengths and weaknesses identi-
fied in the literature, the main contribution of this work is as follows:

• A data-driven framework is proposed to identify the most effective deep learning
methods in providing accurate estimates of residential demand response baselines
over various time-horizons, not exceeding 24 h. This provides a novel insight for a
deeper understanding of the forecasting characteristics exhibited by different data-
driven models.

• Verify the change in model performance during the evaluation phase by considering
the demand response baseline profile according to different aggregation levels of
residential units and other input features. This investigation is essential for under-
standing the different behaviors of forecasting models and the importance level of
input features.

• The performance of the deep learning models is compared with that of the traditional
statistical and machine learning models developed in this work, considering both the
type of forecasting model and the expected margin of error. This comparison helps
to identify the strengths and limitations of each model and method in the context of
short-term demand forecasts for residential demand response baselines.

The rest of this paper is organized into four main sections as follows: Section 3 presents
the deep learning methods proposed in this work. Section 4 describes the methodology of
this work developed from the previously mentioned methods. Next, the findings obtained
from this work are presented and discussed in Section 5, and finally, the main conclusions
and potential future developments of this work are drawn in Section 6.

3. Proposed Forecasting Methods

Basic concepts of the deep learning methods proposed in this work are outlined
as follows.

3.1. Deep Neural Networks

Deep neural networks (DNNs) are one of the most used and popular neural network
architectures in energy demand forecasting, commonly known as multilayer perceptron
neural network models, due to the inclusion of more hidden layers. They are widely
regarded as a robust and effective tool for solving complex problems, including clas-
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sifications and forecasting tasks, due to their capacity to learn and represent intricate
non-linear relationships between input and output data [44]. To achieve this, the basic
structure of DNNs consists of three types of successive layers: input layers, hidden layers,
and output layers, as shown in Figure 1a. The back-propagation algorithm is used to
train DNNs [45]. As shown in Figure 1a, the input layers receive input signals µ(t− τ1),
µ(t− τ2), µ(t− τ3), . . . , µ(t− τn), where τ1, τ2, τ3, . . . , τn are constants. The summation of
control signals and the system’s outputs at time t are represented by u(t). The weights
that connect the input layers to the hidden layers are represented by w1

11, w1
12, . . . , w1

1n for
the first neuron, w1

21, w1
22, . . . , w1

2n for the second neuron and w1
31, w1

32, . . . , w1
3n for the third

neuron. The weights associated with hidden layer neurons with neuron q are denoted
by w1

h1, w1
h2, . . . , w1

qn, where q denotes the number of neurons. The weights that connect
hidden layers to an output layer are represented by w21, w22, . . . , w2q [46,47]. These weights
and connections between different layers enable the DNN to learn and make reliable and
accurate predictions based on the input data. Thus, DNNs have gained significant attention
in time-series forecasting of building energy demand, with residential buildings receiving
a substantial part of this attention [48,49].
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3.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) are a unique class of advanced neural network
methods that hierarchically perform convolutional operations on input time-series data. In
recent years, CNNs have received increasing attention in building energy demand forecast-
ing [48,50] due to their ability to capture time-series dependencies. The typical structure of
CNNs consists of five layers, namely input, convolutional, pooling, fully connected, and
output layers [51]. They are characterized by their capability to process and transform time-
series datasets utilizing three building blocks. These include (1) convolutional layer, which
implements two types of operations. (a) The first of these operations are convolutional
operations, which require two components, called the kernel and the time-series data. The
kernel implements convolution on the time series by moving from the beginning to the end
of a series (i.e., in one direction), and the dot product between the kernel and corresponding
parts of the series is computed. (b) The other operations involve the non-linear activation
being applied to the final output of convolutional operations. The other building blocks are
(2) a pooling layer to maintain the stability and prevent overfitting of the model and (3) a
fully connected layer to perform the same duties in the conventional neural networks [52].

In this work, a 1-D convolutional neural network (ConvID) was utilized to extract
the features from the time series data for demand response baselines in residential build-
ings. This network applies sliding convolutional operations along the sequence of one-
dimensional time series data [53]. The proposed ConvID consists of five foundational
layers: the convolutional layer, the pooling layer, the fully connected layer, the dropout
layer, and the ReLU (relu) correction layer. The CNN network performance depends on the
parameters of these layers. They consist of several components, including the number of
filters in the layers, filter size, padding, stride, and batch size. Figure 1b displays the CNN
architecture used in this work.

3.3. Recurrent Neural Networks

Recurrent neural networks (RNNs) are an advanced class of neural networks designed
to overcome the disadvantages of a traditional neural network in accounting for temporal
correlations and dependencies in data sequences [54]. They are also distinguished from
other deep learning neural network architectures by their recurrent connections, which
enable them to memorize the information from previous outputs and incorporate it into
the computation of the current result [55]. Thus, the impact of recurrent neural network
models has been remarkable in many disciplines, including energy demand forecasting,
where the temporal order in the dataset is a fundamental feature in model design. RNNs
are typically networks composed of standard recurrent connection cells, hidden states, and
input and output layers. The input nodes in RNN models have no incoming connections,
and the output nodes have no outgoing connections, while the hidden state nodes have
both incoming and outgoing connections [52]. Each time, the RNN model updates the
information in its memory according to the following Equation (1).

ht = f c((Whht−1), xt) (1)

where ht is the current hidden state at time t; f c is the activation function, typically the
hyperbolic tangent (tanh) or the rectified linear unit (relu); Wh is the weight matrix for the
recurrent connections; ht−1 is the previous hidden state at time t− 1; and xt is the input at
time t.

The architecture of the RNN is exhibited in Figure 2a. Each node represents a neuron
for a single timestep. W1 represents the connection weight for inputs, W2 signifies the
self-connection weight for each neuron, and W3 denotes the connection weight for outputs.
The input data sequence is processed sequentially within the network based on time steps,
and the weight coefficients are reused in a recycling fashion. The training process of an
RNN model includes a forward pass and a backward pass. The forward pass of an RNN
model mirrors that of a single-hidden-layer multilayer perceptron, except that the hidden
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layer in an RNN model receives activations from both the current external input and the
hidden layer activations from the previous timestep [56]. The process of computing weight
derivatives for an RNN during the backward pass is referred to as “backpropagation”
through time. The advantage of RNN models in time-series forecasting is that they can
predict not only the next time step but also multiple future time steps, making them
versatile for different forecasting horizons.
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3.4. Long Short-Term Memory

Long short-term memory (LSTM) is an upgraded variant for RNN architectures
designed to overcome the vanishing gradient and gradient explosion problems in the long-
sequence training process. For this reason, LSTMs can be trained utilizing the time-series
dataset to make predictions for the future energy demand of buildings, each time utilizing
the historical dataset processed by the LSTM cells. Typically, the architecture of LSTM is
composed of frequently interconnected subnetworks called memory blocks, as shown in
Figure 2b. Each block consists of a forget gate, an input gate, an output gate, and one or
more self-connected memory cells [57]. During the training of LSTM models, the LSTM
gates facilitate the long-term storage and retrieval of information within the memory cells,
effectively addressing the problem of vanishing gradients [58]. For instance, if the input
gate remains closed (i.e., with an activation close to 0), the cell’s activation persists and is
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not overwritten by new inputs entering the network. Consequently, this information can
be retained and made accessible to the network at a later point in the sequence by simply
opening the output gate.

Significantly, the values of the forget gate and input gate are influenced by both the
previous hidden state and the current input. The operation of these units in LSTM is
parameterized as follows.

It = σ(Wixxt + Wihht−1 + bi) (2)

ft = σ
(

W f xxt + W f h−1ht−1 + b f

)
(3)

Gt = tanh
(

Wghxt + Wghht−1 + bg

)
(4)

Ct = ( f t × Ct−1)+(I t × Gt) (5)

Ot = σ(Woxxt + Woxht−1 + bo) (6)

Ht = Ot × tanh(Ct) (7)

where It, ft, Gt, and Ot are the input, forget, update, and output gate activations at time
t. The notations σ and tanh represent non-linear activation functions that take values in
the range the [0, 1] and [−1, 1], respectively.W* and b* are weight matrices and bias vectors
specific to each gate, while Ct is the cell state at time t.

3.5. Bidirectional Long Short-Term Memory

Bidirectional long short-term memory (BiLSTM) is an extension of the LSTM network
to capture dependencies in both the past and future contexts of a given data point. With
respect to prediction based on time series data, the multiple sequences of energy loads are
highly time-dependent, and loads at any point in time are significantly correlated with
loads at its previous and subsequent points in time, requiring a deeper temporal-feature-
extractor [59]. Compared to the unidirectional-state-transmission in LSTMs, BiLSTM
consists of two LSTM layers, namely the forward LSTM and the backward LSTM, as shown
in Figure 3a, and the output is jointly identified by the states of these two LSTMs [12,60].
This configuration achieves bidirectional time series feature extraction, which can fully
exploit the temporal correlations of energy load sequences. By fusing two bidirectional
LSTM layers, the output outcome is computed as follows.

→
ht = LSTM(xt,

→
ht−1) (8)

←
ht = LSTM(xt,

←
ht+1) (9)

Ot = σ(
→

Woh
→
ht +

←
Woh

←
ht + bo) (10)

Here, LSTM represents the LSTM function, while
→
W and

←
W are the weight matrices of

the forward and backward LSTMs for the computed output outcome.
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3.6. Gated Recurrent Units

Gated recurrent units (GRUs) are a simplified alternative to LSTMs, designed to
alleviate the computational burden associated with the large number of parameters in the
LSTM network [61]. Compared with LSTMs, the GRU architecture has only two gates,
namely the update gate and the reset gate (see Figure 3b) [62]. Typically, the update gate
dictates what to discard from the memory of the previous unit, and the reset gate guides
the fusion of the new input with the last memory [63]. Based on both the previous output
ht−1 and the current input xt, the functioning principle of the GRU cell is listed as follows.

Zt = σ(Wzhht−1 + Wzxxt + bz) (11)

rt = σ(Wrhht−1 + Wrxxt + br) (12)

ht = tanh(Whh[rt ⊙ ht−1] + Whxxt + bh) (13)
∼
ht =

(
1− Zt)⊙ ht−1 + Zt ⊙ ht

)
(14)

As exhibited in Equations (11)–(14), Zt, rt, ht, and
∼
ht are the update gate, reset gate,

output candidate vector, and the shared memory at time t, respectively, while ⊙ is an
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element-wise product. As demonstrated in Equations (11)–(14), the shared memory
∼
ht

passes through various time steps to encode new information while discarding memories
that are no longer relevant in terms of timing. Hence, the shared memory stores significant
information over an extended period. rt defines how much information ht−1 should be
retained. A smaller value for rt (close to 1) denotes that more information ht−1 is retained
in ht. Then, the update gate Zt defines how much information ht−1 should be discarded.
A bigger Zt indicates that more information ht−1 was not discarded, whereas a smaller Zt
means that a significant amount of information ht−1 was ignored.

4. Methodology

As mentioned above, the primary objective of this study is to investigate the poten-
tial of deep learning methods in providing an accurate estimation of residential demand
response baselines. This includes data preprocessing, input feature selection, hyperpa-
rameters, development of baseline models, forecasting, and evaluations. Therefore, the
methodology of this study includes several steps consisting of the following:

• Obtaining a representative profile of the baseline residential energy demand (i.e.,
demand response baselines) in building clusters, which vary in terms of household
space size and occupant behavior in the absence of response events.

• Pre-processing to understand how the demand response baselines of residential build-
ings correlate with potential input features, obtaining an input feature selection based
on the Pearson Correlation Coefficient (PCC) technique [64,65].

• Training the models on a dataset composed of all the input features processed during
the feature engineering stage and those determined as significant inputs by PCC in
the input feature selection stage, with the error measured by performance indicators
in the validation and evaluation stages.

• Finally, the trained models and the specified input features are used to predict the
future demand response baselines of residential units over various time horizons,
not exceeding 24 h, and the results are utilized to assess the performance of each
forecasting model.

The methodology can also be divided into the steps described as data acquisition
(i.e., residential building and energy demand data inventory) and data preprocessing and
input feature selection, as shown in Figure 4. The subsequent sections provide further
details on the model training process, which involves the utilization of a rolling window,
the hyperparameter selection, and performance evaluations.
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4.1. Residential Building and Energy Demand Data Inventory

To investigate the performance of the proposed forecasting methods, 337 dwellings in
the Atlantech of La Rochelle City, France, were selected as a typical case study. In order to
secure training data for developing forecasting models, the baseline energy demand profile
of 337 dwelling units was generated by simulating the real dwellings in DIMOSIM (District
MOdeller and SIMulator), a Python-based urban building energy simulation platform
(more details in [66,67]), the numeric datasets were saved in comma-separated values (CSV)
files. The reason for this is that the measured data for the residential energy demand of
all dwelling units, which must represent real demand response baselines in the absence of
demand response events, are not currently available. Therefore, the DIMOSIM models were
used to generate meticulously prepared datasets that accurately represent the behavior
of existing dwellings exposed to the typical climatic conditions of Atlantech in the city of
La Rochelle.

These datasets cover all aspects of dwelling units, with a particular focus on space
heating, lighting, and electric appliances to represent the smart-meter readings of dwellings.
They consist of 674 columns representing the most important information on the thermal
behaviors of the dwelling and the different energy demand patterns during the heating
season. In terms of size, the dataset contains a considerable amount of information due to
both the five-month simulation duration (from November to the end of March) and the
10 min sampling interval. In this study, energy demand simulations for dwelling units
during the heating season were carried out because of the significance of demand response
programs in reducing non-essential electricity consumption during peak heating hours
while at the same time providing economic benefits and promoting energy efficiency. The
results of the DIMOSIM models are also compared with external references (for more
details, see Ref. [68]), with DIMOSIM showing good agreement with the other tools in
terms of energy production. As depicted in Figure 5, the black solid lines represent the
average demand response baseline of all dwelling units, while both the red and blue solid
ones are the metered heating loads and lighting and appliances during the heating months.
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Figure 5. Hourly baseline energy demand behaviors for dwelling units over the days of the five
heating months, as the energy demand baselines are the average for space heating, appliances,
and lighting.

In terms of dwelling characteristics, the floor area of the dwelling units ranges from
38 m2 up to 225 m2, with an average size of 71 m2. The annual energy demand of each
dwelling unit is approximately 105.85 kWh/m2. For space heating, the heating system
consists of air-to-water heat pumps installed in each dwelling unit. In addition, each heat
pump is equipped with its dedicated thermostat, enabling control over individual zones.
The heat pump equipment is variable speed, and its coefficient of performance (COP)
depends on the polynomial regression of the nominal performance coefficient to estimate
the thermal power output as a function of both the radiator temperature (i.e., the sink) and
the ambient temperature (i.e., the source). For the population and occupancy characteristics,
each dwelling unit is occupied by either a couple with or without children or a single adult



Buildings 2024, 14, 2242 13 of 40

living alone. The dwelling occupancy characteristics include people who are employed,
unemployed, students, or retired, as shown in Table 2.

Table 2. Occupancy characteristics of the targeted dwelling units in Atlantech in the city of
La Rochelle.

Min Max Mean Standard Deviation

Household
composition
(person/m2)

Couple with children 0.004 0.024 0.014 0.004
Couple without children 0.008 0.026 0.014 0.003
Single 0.008 0.026 0.016 0.004

Occupant status
(person/m2)

Employed 0.004 0.074 0.025 0.014
Unemployed 0.011 0.073 0.031 0.018
Stay-at-home 0.004 0.018 0.012 0.003
Student 0.009 0.063 0.029 0.011
Retired 0.008 0.059 0.021 0.009

Average lighting and electric equipment energy
density (kW/m2) 0.019 1.241 0.290 0.203

Heating system
operation

Comfort setpoint (◦C) 17.3 22.40 19.83 1.26
Use of setback (%) - - 80 -
COP of heat pumps (-) 1.71 4.95 3.33 0.81

4.2. Data Preprocessing

Since the baseline energy demand of the dwelling units involves separate profiles for
space heating, lighting, and electric appliances in each dwelling, the initial step of data
preprocessing was to appropriately integrate the dataset of demand response baselines for
all dwelling units to create a unified dataset for analysis and model training. In the first
stage, the data for space heating, lighting, and electric appliances are aggregated together
for each dwelling. The next step is to determine the total and hourly energy demand for all
dwelling units, as shown in Figure 6. On the other hand, the measured outdoor weather
data collected at 1 h intervals in this study is not aligned with the generated dataset of
demand response baselines, which had a 10 min sampling interval. Therefore, the data are
reorganized using the technique of resampling and indexing time series to form unified
readings. The reorganized dataset includes the data of demand response baselines, a total
of 52,555 samples. This step is of great importance in order to facilitate the estimation of the
correlation between demand response baselines for dwelling units and other related input
features, as explained in Section 4.3. In this context, other new features (e.g., hour of the day
or day of the week) are derived using a time-based feature engineering/temporal feature
engineering technique. Feature engineering is used in this work due to its importance in
the development of forecasting models based on time series data, as it directly affects the
performance and accuracy of these models.
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The final datasets, which included the hourly dataset for demand response baselines,
weather factors, and other input features, were obtained. These datasets have not been
subjected to the normalization process [0, 1] to ensure that all models work with the original
data. They go through the input selection process to select the final inputs to the forecasting
models and to understand how the future baseline energy demand of residential buildings
correlates with the possible input features, as explained in Section 4.3.

4.3. Selection of the Input Features

Using the feature engineering technique results in datasets that have multiple at-
tributes associated with the considered demand response baseline profile. Since there are
multiple associated characteristics, it is essential to use the appropriate method to determine
the importance of each of them to the demand response baselines of the dwelling units.
Along with the measured outdoor weather factors (e.g., the outdoor temperature and direct
solar radiation), the impact of sixteen (16) independent input features is also considered.
Nine input features (9) capture previous energy demand patterns, encompassing the past
1 h, the past 2 hours, the past 3 hours, the past 24 h, the past 48 h, the past 72 h, and so on.
The other seven input features (7) relate to the working schedule factors of the dwelling,
such as the hour of the day, the day of the week, the day of the month, the day of the
year, the week of the month, and the month of the year. In this context, both the Pearson
Correlation Coefficient (PCC) and the Shapley Additive Explanation (SHAP) techniques are
used to minimize redundant or useless input features and to identify the most important
variables for the forecasting models.

PCC was used to estimate the correlation coefficients (R) between the average en-
ergy demand of all dwelling units in the district and each input feature, as described in
Equation (15).

R =
∑n

i=1(xi − x) + (yi − y)√
∑n

i=1(xi − x)2∑n
i=1(yi − y)2

(15)

where xi and yi represent the actual values, x and y donate the average values, and n is
the number of observations. The correlation coefficient of PCC takes a value between (+1)
and (−1), as the highest absolute value of PCC translates to a parameter closely related to
the future energy demand of dwelling units. Figure 7a displays the PCC values between
the baseline residential energy demand (i.e., the demand response baselines) and the most
meaningful input features in descending order when considering the whole evaluation.
As shown in Figure 7a, the factors associated with the previous energy demand patterns
show strong positive correlations with the demand response baselines of the dwelling units.
Weather-related outdoor temperatures also show strong negative correlations, while the
other factors have relatively different correlation values. However, these factors with low
PCC values were selected as input features for the forecasting models because deep learning-
based data-driven models have a high ability to detect non-linear and linear relationships
between the energy demand baselines of the dwelling units and other relevant influencing
factors. Based on this, the use of small correlation values of the PCC ensures that the
low-degree correlation is not neglected in model training.

As mentioned above, SHAP is also used to identify the potential contribution of each
input feature to the forecasting model. Figure 7b shows the contributions of each input
feature in descending order. It is important to note the importance of factors related to
past energy demand patterns, outdoor temperature, and the hour of the day in forecasting
baseline values of residential demand response over very short-term periods, not exceeding
24 h. Together with PCCs, these findings demonstrate the importance of including previous
input features, including those related to previous energy demand pattern-related ones, for
accurate forecasting of demand response baselines. The selection of the three (3) historical
energy demand-related input features is based on a comprehensive analysis of factors
that significantly affect energy demand forecasting. These features have been chosen to
capture the diverse aspects of historical energy consumption patterns, ensuring a robust
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and accurate forecasting model. Accordingly, these nine factors out of all input features
were selected as the final input features for all forecasting models, as described in Table 3.
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Table 3. Input features selected as predictors for forecasting models.

Input Feature (Factor) Abbreviation Unit

Previous energy
demand patterns

24 h H-1×24 kW
48 h H-2×24 kW
72 h H-3×24 kW

Weather
Outdoor temperature T_outdoor ◦C
Director solar radiation R_direct W/m2

Diffuse solar radiation R_diffuse W/m2

Dwelling working
schedule (occupancy)

Hour of the day hour hour
Day of the week dayofweek Day
Day of the month dayofmonth day

4.4. Forecast Model Development

The development of deep learning-based forecasting models explained in Section 3,
involves two fundamental steps: hyperparameter tuning and post-training. It is impor-
tant to note that the performance of these models is compared with that of classic and
ensemble models based on traditional statistical and machine learning methods used in
previous literature [69–72]. The classic models included support vector regression (SVR),
Autoregressive integrated moving average (ARIMA), multiple linear regression (MLR),
Lasso regression (Lasso), ridge regression (Ridge), polynomial regression (PolyR), Bayesian
regression (Bayesian), kernel ridge regression (KernelR), and stochastic gradient descent re-
gression (SGDReg) algorithms. The tree-based ensemble machine learning models included
extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), gradi-
ent boosting (GB), random forest (RF), Adaptive Boosting (AdaBoost), Bagging (Bagging),
and categorical gradient boosting (CatBoost) algorithms. Both classic and ensemble algo-
rithms are among the most popular traditional statistical and machine learning methods in
building energy analysis applications (see Refs. [69–71]), which have become specifically
data-driven methods for predicting, benchmarking, and mapping baseline energy demand
in buildings [72].

4.4.1. Hyperparameter Tuning

Tuning the appropriate hyperparameters is a critical step in the development of accu-
rate data-driven forecasting models and can have a considerable impact on convergence
speeds and generalizability. In this work, the controlled-variable method, relying on
empirical expertise, is utilized in the experiments to optimize the choice of hyperparam-
eters. To determine the optimal architecture of the proposed models, this work referred
to references [73–75] and identified the practicable scopes and the optimization scope for
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hyperparameters, as shown in Table 4. In terms of deep learning models, forecasting based
on BiLSTM and CNN is presented here as a typical example. First, with default BiLSTM
parameters (activation function = relu, optimizer = Adam, loss function = RMSE, batch size
= 32, verbose = 2, learning rate = 0.0001, epochs = 30) and the default parameters of CNN
(activation function = relu, optimizer = Adam, loss function = RMSE, filters = 64, kernel
size = 2, pool size = 2, learning rate = 0.0001, verbose = 2, epochs = 30), the number of
hidden units in each hidden layer was fixed. Second, the learning rate, epochs, batch size,
filters, and kernel size were adjusted. For example, the RMSE value of BiLSTM models
decreases when the learning rate is set to 0.01, and the number of epochs is set to 200 or
300. For CNN models, the RMSE value decreases when the learning rate is set to 0.001, and
the number of epochs is set to 300 or 500. Third, in cases where there was a tendency for
overfitting to occur, dropout was implemented based on empirical expertise. Dropout is
a useful regularization technique to control the proportion of randomly selected neurons
during each training iteration. This helps to prevent co-adaptation of neurons, making the
network more robust and reducing overfitting. Finally, to minimize redundancy in the
process of defining hyperparameters for optimization, parameters of the same model type
in the same case were kept consistent, and adjustments were only made to those parameters
that prevented overfitting.

Table 4. Hyperparameter tuning information for forecasting models based on deep learning and
classic and ensemble methods.

Model Hyperparameters Search Scopes
Optimal Values

Case I Case II

Classic

Ridge Regularization_coefficient for a
norm of the weight_vector (l2)

{3, 6, 10, 13, 20, 50, 100,
200} 100 50

Lasso Regularization_coefficient for a
norm of the weight_vector (l1)

{0.001, 0.01, 0.1, 3, 5, 10,
20, 30} 10 3

PolyR
Regularization_coefficient
(alphas)

{1 × 10−6, 1 × 10+6,
1 × 10−3, 1 × 10+3,
1 × 10−2, 1 × 10+2}

{1 × 10−6, 1 × 10+6} {1 × 10−6, 1 × 10+6}

Maximum number of iterations {300, 1000, 3000} 3000 3000

Bayesien
Regularization_coefficients
(parameters: alphas, lambdas)

{1 × 10−6, 1 × 10+6,
1 × 10−3, 1 × 10+3,
1 × 10−2, 1 × 10+2,
1 × 10−1, 1 × 10+1}

{1 × 10−1, 1 × 10+1} {1 × 10−1, 1 × 10+1}

Maximum number of iterations {100, 300, 1000, 3000} 3000 1000

SGDReg
Regularization_coefficient
(alpha) {0.001, 0.01, 1, 10} 0.1 0.1

Maximum number of passes
(epochs)

{300, 600, 1000, 3000,
6000} 3000 2000

KernelR

Types of Kernel used in the
algorithm {str, callable, linear} Linear Linear

Degree of Kernel {2, 3, 6} 3 3
Regularization_coefficient
(alphas) {0.1, 1, 10, 30, 100} 100 30

SVR

Types of Kernel used in the
algorithm {linear, sigmoid, rbf, poly} rbf rbf

Regularization_parameter
“regressor_gamma” {0.001, 0.01, 0.1, 1, 10} {0.001, 0.01, 0.1} {0.001, 0.01, 0.1}

Regularization_parameter
“regressor_C” {50, 60, 70, 100, 300, 1000} {50, 60, 70} {50, 60, 70}
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Table 4. Cont.

Model Hyperparameters Search Scopes
Optimal Values

Case I Case II

Ensemble

XGBoost

N_estimators {100, 250, 500, 900} 600 500
Maximum tree depth {3, 6, 7, 8, 9, 10} 7 3
Learning rate {0.001, 0.01, 0.02, 0.03} 0.01 0.01
Minimum loss reduction
“gamma” {0.02, 0.05, 0.1, 3} 3 3

Subsmaple {0.3, 0.6, 0.8, 0.9, 1} 0.8 0.6

LightGBM

N_estimators {200, 300, 800, 1000} 800 600
Maximum tree depth {3, 4, 6, 8, 10, 15} 10 5
Learning rate {0.05, 0.01, 0.03, 1.0} 0.1 0.1
Number of leaves {10, 60, 100, 300} 300 300
Subsmaple {0.2, 0.5, 0.6, 0.75, 1} 0.75 0.75

GB
N_estimators (trees) {20, 60, 200, 300} 200 200
Maximum tree depth {2, 4, 6, 8, 10} 2 2
Learning rate {0.01, 0.1, 0.2, 0.3} 0.3 0.3

RF

N_estimators (trees) {30, 100, 150, 200} 200 200
Maximum tree depth {4, 5, 6, 10, 15} 15 15
Maximum features {sqrt, auto} sqrt sqrt
Minimum number of samples {2, 3, 4, 5, 6} 200 200

AdaBoost
Learning rate {0.001, 0.1, 0.2, 0.3} 0.1 0.1
N_estimators (trees) {100, 200, 250, 300} 300 300

Bagging
Minimum number of features {0.1, 0.3, 0.6, 1, 4} 1 1
Maximum number of samples {1, 3, 7, 10, 15, 30} 1 1
N_estimators (trees) {200, 500, 700, 1000} 1000 1000

CatBoost
Learning rate {0.01, 0.03, 0.1, 1} 1 1
Maximum tree depth {3, 10, 20, 30} 3 3

Deep Learning

ANN

Number of hidden layers {1} 1 1
Number of neurons per
hidden layer {32, 64, 80, 100, 156} 156 100

Number of epochs {30, 100, 300, 600, 800} 600 600
Learning rate {0.001, 0.01, 0.02, 0.03} 0.001 0.001
Dropout rate {0, 0.1, 0.2, 0.3, 0.4} 0.2 0.2

DNN

Number of hidden layers {2, 3, 4, 5, 6} 2 3
Number of neurons per
hidden layer {20, 30, 64, 80} 64 64

Number of epochs {30, 200, 300, 400, 600} 300 300
Learning rate {0.001, 0.01, 0.03, 0.04} 0.001 0.001
Dropout rate {0, 0.1, 0.2, 0.3, 0.4} 0.2 0.2

CNN

Number of hidden layers {2, 3, 4, 5, 6} 3 2, 3
Number of neurons per
hidden layer {20, 32, 50, 64} 64 32, 64

Number of epochs {30, 100, 200, 300, 500} 500 300
Learning rate {0.001, 0.01, 0.03, 0.05} 0.001 0.001
Dropout rate {0, 0.1, 0.2, 0.3, 0.4} 0.2 0.2

RNN

Number of hidden layers {2, 3, 4, 5, 6} 2, 3 2
Number of neurons per
hidden layer {16, 32, 64, 76} 64 32, 64

Number of epochs {30, 100, 300, 400, 500} 500 400
Learning rate {0.001, 0.01, 0.02, 0.03} 0.001 0.01
Dropout rate {0, 0.1, 0.2, 0.3, 0.4} 0.2 0.1

LSTM

Number of hidden layers {2, 3, 4, 5, 6} 2, 3 2
Number of neurons per
hidden layer {16, 32, 64, 70} 32, 64 50

Number of epochs {30, 200, 300, 600} 600 300
Learning rate {0.001, 0.01, 0.02, 0.03} 0.01 0.01
Dropout rate {0, 0.1, 0.2, 0.3, 0.4} 0.2 0.1
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Table 4. Cont.

Model Hyperparameters Search Scopes
Optimal Values

Case I Case II

Deep Learning

GRU

Number of hidden layers {2, 3, 4, 5, 6} 2, 3 2
Number of neurons per
hidden layer {20, 40, 50, 64} 64 64, 40

Number of epochs {30, 100, 300, 400, 500} 500 300
Learning rate {0.001, 0.01, 0.02, 0.03} 0.01 0.01
Dropout rate {0, 0.1, 0.2, 0.3, 0.4} 0.2 0.1

BiLSTM

Number of hidden layers {2, 3, 4, 5} 2, 3 2
Number of neurons per
hidden layer {20, 32, 50, 64} 32, 64 32, 64

Number of epochs {30, 100, 200, 300, 400} 300 200
Learning rate {0.001, 0.01, 0.02, 0.04} 0.01 0.01
Dropout rate {0, 0.1, 0.2, 0.3, 0.4} 0.2 0.1

Notes: Case I and Case II refer to forecasting models with demand response baseline profiles with all dwelling
units and different aggregation levels of dwelling units. Adam and Relu are also optimization techniques and
activation functions for deep learning models.

For both classic and ensemble models, additional hyperparameters were employed to
optimize performance and prevent overfitting, as shown in Table 4. One of these hyperpa-
rameters is max_depth, which regulates the maximum depth of each tree in the ensemble,
thus limiting the complexity of individual trees. The second is n_estimators, which allows
controlling the size of the ensemble in terms of the number of base learners while training
the model. The third parameter is subsample, which determines the proportion of randomly
sampled training data utilized to grow each tree within the ensemble. Another technique is
the kernel coefficient of SVR, which specifically controls the influence of individual training
samples on the decision boundary. All models developed (as described in Section 4.4.2)
in this work were implemented using the Python programming language and executed
within the Scikit-learn [76] and TensorFlow [77] frameworks. The experimental hardware
configuration included an Intel(R) Xeon(R) Bronze 3106 CPU, a 64-bit operating system,
and 64 GB of RAM on an Intel processor.

4.4.2. Training and Validation

Once the final input features have been specified, as explained in Section 4.3, it is
crucial to develop robust and accurate models for predicting the future energy demand
(demand response baselines) of dwellings over multiple time horizons, not exceeding 24 h.
To achieve this goal, the datasets were divided into training and validation sets, comprising
80% and 20%, respectively. Considering the training dataset, each model is trained to learn
patterns and trends of energy demand, as well as relationships between data series for all
dwelling units and different dwelling unit aggregation levels—not a specific pattern of a
particular dwelling unit. The goal is to know the performance of each model in the context
of all dwelling units and different aggregation levels of dwelling units when traditional
machine learning and deep learning models are considered. Each model is trained to
predict the demand response baselines of dwelling units, starting at 0:00 am and ending at
11:00 pm (23:00 pm) of the day, as this lasts for the entire period under consideration (five
months). Secondly, the trained model, together with its learned information, will later be
used to make predictions about the future energy demand of these dwelling units.

With optimal hyperparameters, each model of traditional classic, ensemble, and
deep learning models is trained, and its performance is evaluated using three different
performance indicators described in Section 4.5. More specifically, using the training dataset,
each model is trained with all input features (nine factors) previously defined in Section 3.3.
Then, each model is saved at the optimal time for each trained dataset, and its performance
is evaluated and compared with its other counterparts. This performance evaluation step is
always based on the optimal hyperparameters for each trained model. The purpose of this
step is to obtain accurate forecasting models. Subsequently, these forecasting models (i.e.,
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pre-trained models) are used to periodically predict the future demand response baseline
of dwelling units over various time horizons: 6 h (00:00 am to 06:00 am), 12 h (00:00 am to
12:00 pm), 18 h (00:00 am to 06:00 pm), and 24 h (00:00 am to 11:00 pm), as shown in Figure 8.
In the forecasting step, each model only includes the input features (9) defined previously in
Section 4.3., while the demand response baseline profile of the dwelling units was excluded.
The aim is to determine the ability of each model to predict the future energy demand
(demand response basis) of dwellings by considering only those factors related to previous
energy demand patterns, dwelling working schedules, and outdoor weather conditions.
Ultimately, the performance of those forecasting models is evaluated and validated using
the validation dataset. In addition, the discrepancy between the values of the actual and
forecasted demand response baselines was used to express the overall performance of the
deep learning and traditional machine learning-based forecasting models by considering
performance indicators, as described in Section 4.5.
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using the demand response baseline values of dwelling units.

To further investigate the forecasting behavior of the proposed deep learning and
machine learning models, this work is extended to incorporate various aggregation levels
of the demand response baseline profile (i.e., 200, 150, 100, 50, 30, 20, and 10 dwelling units).
Each time, these models are trained and validated and then evaluated and compared in
their performance at each level of aggregation for the demand response baseline profile of
dwelling units. The motivation behind this is to better understand the forecasting behaviors
of these models in the case of fluctuations or changes occurring in the profile of the demand
response baselines of dwelling units. This can be performed by forecasting the energy
demand profile of dwelling units [48,78] over a short-term horizon. All forecasting models,
whether based on deep learning or classic and ensemble machine learning methods, had
the same input features as defined in Section 4.3 and were compared in terms of forecasting
accuracy, as discussed in Section 5.

4.5. Performance Assessment

The primary goal of adopting deep learning models, as well as classic and ensemble,
is to minimize the gap between the actual aggregated demand response baselines and their
forecasted counterparts for the next day. Therefore, the forecasting accuracy of aggregated
demand response baselines over various time horizons (6 h, 12 h, 18 h, and 24 h ahead)
was measured utilizing three performance metrics. The most commonly used statistical
metric to determine forecast accuracy in the literature is the mean absolute percentage error
(MAPE) [78,79]. However, MAPE has a limitation concerning the actual values of demand
response baselines being zero, which can occur in forecasting demand response baselines.
MAPE might take extreme values when the actual values are close to zero in some cases,
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making it less reliable. To avoid this limitation, this study also uses mean absolute error
(MAE) and root mean squared error (RMSE), which do not have the above-mentioned
limitations. The three metrics are formulated as follows.

MAPE(%) =
1
N∑N

i=0

∣∣∣∣yactual, i − y f orecast,i

yactual, i

∣∣∣∣× 100 (16)

MAE(kW) =
1

N ∑N
i=0

∣∣∣yactual,i − y f orecast, i

∣∣∣ (17)

RMSE(kW) =

√√√√∑N
i=0

(
yactual, i − y f orecast,i

)
2

N
(18)

where yactual,i is the actual aggregated demand response baselines per hour i, y f orecast,i is the
forecasted aggregated demand response baseline per hour i, and N is the number of hours
in the datasets. The MAE reflects the magnitude of deviation between forecasted and actual
values by utilizing the absolute error, while the RMSE refers to the standard deviation of the
residuals between forecasted and actual values of demand response baselines for dwelling
units. In contrast, the MAPE measures the forecasting accuracy between forecasted and
actual values of demand response baselines for dwelling units, expressed as a relative
percentage of forecasting errors. Both RMSE and MAE are scale-dependent metrics and
describe the forecasting errors at their original scale. MAPE is a scale-independent metric
because the denominator of its equation includes actual values, making it suitable for
comparing performance with other studies. The lower values of these metrics mean
that the dispersion is more similar between the actual and the forecast demand response
baselines. In this study, the MAPE was used as the primary performance measure, with the
MAE and RMSE used only as linkage breakers when the MAPE did not show a significant
difference between the forecasting models.

5. Results and Discussion

In this section, the performance of the forecasting models developed based on deep
learning algorithms is analyzed (Section 5.1.) and compared with those based on classic and
ensemble machine learning algorithms (Sections 5.2 and 5.3) over various time horizons,
as explained in the previous sections. Section 5.4 shows the forecasting behaviors of all
models developed over different aggregation levels of demand response baseline profile
for dwelling units. Note that the performance results represent multiple testing outcomes
for the developed predictive model, reflecting different test periods. Section 5.5 provides an
example to assess the ability of deep learning and classic and ensemble machine learning
methods in forecasting energy reductions resulting from the activation of demand response
events for 3 h on peak days of the heating season.

5.1. Performance of Deep Learning Models

Table 5 lists the MAPE, RMSE, and MAE values for the forecasting performance of the
proposed deep learning methods over various time horizons, compared to their classic and
ensemble counterparts, as a function of the input features and each forecasting method.
Given the performance results, the authors of this study evaluated the effectiveness of
each model over multiple test periods, surpassing five consecutive periods. As shown in
Table 5, BiLSTM-based forecasting models could considerably reduce the gap between the
measured demand response baselines of dwelling units and their forecasted counterparties,
considering different forecast horizons, leading to better performance. As a result, BiL-
STM models outperformed their deep learning counterparts, including traditional neural
networks (ANNs), with MAPE values of 9.08% (6 h ahead), 11.14% (12 h ahead), 11.11%
(18 h ahead), and 11.59% (24 h ahead), respectively. The error represented by RMSE and
MAE was also lower than ANN, DNN, CNN, and RNN in all cases of forecasting demand
response baselines of dwelling units. The best conditions yielded an RMSE of 7.07 kW and
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an MAE of 5.41 kW when forecasting 6 h demand response baselines. This performance
is attributed to the bidirectional processing (in both forward and backward directions) of
BiLSTM, which allows the neural network to efficiently learn and capture information from
both past and future states. Since the primary objective of BiLSTM is to acquire further
knowledge concerning a given context by capturing it from more than one perspective and
then concatenating the two outputs into a single contextual representation.

Table 5. Average performance of deep learning and classic and ensemble models in forecasting
aggregated demand response baselines for dwelling units over various time horizons.

Model
6 h Ahead 12 h Ahead 18 h Ahead 24 h Ahead

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

Classic

MLR 18.63 19.98 34.58 21.64 24.49 25.65 21.76 25.07 24.56 21.89 25.61 22.73
Ridge 18.52 19.88 34.06 21.57 24.44 25.37 21.58 24.91 24.24 21.74 25.46 22.45
Lasso 17.39 18.72 29.75 21.06 24.09 23.42 20.84 24.37 22.47 21.02 24.85 20.92
PolyR 18.62 19.97 34.52 21.64 24.49 25.62 21.73 25.05 24.52 21.88 25.59 22.70
Bayesian 18.53 19.89 33.65 21.64 24.52 25.19 21.61 24.94 24.06 21.76 25.49 22.31
KernelR 23.24 24.89 36.88 28.09 32.18 29.64 27.37 31.91 27.48 28.27 33.21 26.59
SGDReg 23.44 24.77 41.29 25.83 28.72 30.32 24.48 27.84 28.19 24.51 28.35 25.44
ARIMA 17.31 22.58 27.60 21.32 26.97 23.24 24.15 31.01 24.72 27.42 35.47 25.97
SVR 14.19 16.16 22.54 18.13 21.63 18.77 18.39 22.09 18.71 19.46 23.44 18.18

Ensemble

XGBoost 8.14 10.28 11.56 13.95 17.61 14.01 14.39 18.07 14.43 15.78 19.84 14.65
LightGBM 12.21 15.27 18.32 15.86 19.88 16.04 16.31 20.47 16.51 16.88 21.15 15.81
GB 10.61 13.75 15.68 14.91 19.04 14.69 15.58 19.81 15.47 16.09 20.34 14.86
RF 15.16 18.01 24.01 18.90 22.97 19.93 18.63 22.71 19.53 19.07 23.47 18.41
Bagging 14.91 17.33 24.54 18.15 21.68 19.83 17.95 21.66 19.44 18.69 22.83 18.45
AdaBoost 20.34 22.45 39.70 21.42 24.76 27.74 20.58 24.21 25.31 20.85 24.88 23.27
CatBoost 20.84 24.76 33.79 24.62 29.88 27.17 24.75 30.29 26.36 25.73 31.61 25.09

Deep
Learning

ANN 6.49 7.30 10.18 11.96 15.12 11.81 14.09 17.49 13.98 14.45 18.27 14.49
DNN 5.89 7.17 8.86 13.07 17.35 12.08 14.97 17.24 12.87 13.93 16.70 13.67
CNN 6.92 7.35 9.15 13.17 17.11 13.27 14.15 17.33 12.96 14.09 17.66 13.97
RNN 7.85 8.03 9.92 11.63 15.10 11.18 12.62 16.36 12.74 13.24 16.62 13.58
LSTM 5.47 8.93 9.23 11.92 15.94 11.73 11.63 15.35 12.27 12.85 16.29 12.03
GRU 5.81 7.78 8.92 11.51 15.55 11.31 10.48 13.92 11.22 13.04 16.32 12.52
BiLSTM 5.41 7.07 9.08 11.15 14.86 11.14 10.31 13.13 11.11 12.41 15.12 11.59

Compared to other deep learning models, GRU showed considerable improvements
in forecast accuracy over all time horizons considered, better than LSTM, RNN, DNN,
and CNN. The performance values of the GRU forecasts were better than those methods
by 8.92% and 11.22% in MAPE for the 6 h and 18 h ahead forecasts. The LSTM models
performed reasonably well in terms of forecasting accuracy, with MAPE values of up to
9.23% (6 h) and 12.03% (24 h). However, these improvements in the forecasting accuracy
were slightly lower than those achieved by BiLSTM. For all four time horizons, BiLSTM
performed better than GRU and LSTM, indicating that BiLSTM has a higher learning
potential over the next 24 h due to its bidirectional learning capability and produces fewer
errors than GRU and LSTM. On the contrary, this potential was found to be lowest with a
traditional ANN-based forecasting model, which, due to its shallow structure, was not able
to effectively learn time series data and produce accurate predictions for demand response
baselines of dwelling units over the four time horizons.

In Figures 9 and 10, four time horizons have been illustrated to provide an intuitive
representation of the forecast, each encompassing a single test period. Figure 9 illustrates a
comparison of the efficiency of the deep learning methods in representing the closeness
between the curves of forecasted and actual values for the demand response baselines of
dwelling units over the four time horizons. As shown in Figure 9, these methods were
able to produce a similar profile of demand response baselines for dwelling units, with
observable differences in the efficiency of each. Figure 10 shows a comparison of the
proposed deep learning methods in terms of the magnitude of the error at each hour, in kW,
and at different time horizons. As depicted in Figure 10, it illustrates how the best model
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reduces the magnitude of an error when producing estimates of the demand response
baselines over 6 h, 12 h, 18 h, and 24 h ahead forecasts. The magnitude of the forecast
error decreased to some extent as the length of the input interval decreased. For each
model, the 6 h input produced the lowest forecast error. However, in terms of conciseness,
the BiLSTM, followed by the GRU and LSTM models, outperformed the others in all
cases. As accuracy is very important in demand response program applications, BiLSTM,
GRU, and LSTM models would be preferred over ANN and DNN models for short-term
baseline energy forecasting in residential buildings. Therefore, BiLSTM, GRU, and LSTM,
along with the RNN and CNN as alternative methods, should be one of the deep learning
methods to consider when developing baseline demand response forecasting models for
dwelling units.
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5.2. Comparison of Deep Learning and Ensemble Models

As shown in Table 5, the performance of seven ensemble methods, based on Bagging
and boosting techniques, was assessed over various time horizons. Among these seven
methods, XGBoost showed the best performance, with the lowest values of MAPE, RMSE,
and MAE, when forecasting the demand response baselines of dwelling units over the four
time horizons. As a result, the magnitude of error was lower than its counterparts, with
values (8.14 kW, 13.95 kW, 14.39 kW, and 15.78 kW) and (10.28 kW, 17.61 kW, 18.07 kW,
19.84 kW) for MAE and RMSE, respectively. In contrast, the performance of AdaBoost and
CatBoost was the worst, with (39.70%, 27.74%, 25.31%, and 23.27%) and (33.79%, 27.17%,
26.36%, and 25.09%) of MAPE, (22.45 kW, 24.76 kW, 24.21 kW, and 24.88 kW) and (24.76 kW,
29.88 kW, 30.29 kW, and 31.61 kW) of RMSE, and (20.34 kW, 21.42 kW, 20.58 kW, and
20.85 kW) and (20.84 kW, 24.62 kW, 24.79 kW, and 25.73 kW) of MAE over 6 h, 12 h, 18 h
and 24 h ahead forecasts, respectively. Otherwise, other ensemble methods, such as GB,
LightGBM, and RF, showed reasonable performance with slightly lower error variability.
This is attributed to two main reasons: (1) the strong non-linear mapping generalization and
parallelization potential of XGBoost, which is derived from its boosted decision tree-based
architecture [80], and (2) the limited ability of other models to effectively learn from a given
time series dataset and generalize outcomes has negatively affected the forecast accuracy,
despite the implementation of hyperparameter adjustments.

Compared to deep learning methods, all ensemble models could not achieve the
same performance observed in deep learning-based forecasting models. This difference is
primarily due to the essential structural characteristics of these approaches. As ensemble
algorithms without inherent memory, such ensemble methods are unable to capture and
preserve past information. As a result, they exhibit suboptimal performance in scenarios
where the input time-series information is intricate and where a shorter output interval
is required. As shown in Figure 11, ensemble-based forecasting models can produce the
general pattern of demand response baselines for dwelling units. However, the magnitude
of forecast errors remains considerable, as depicted in Figure 12. For example, the total mag-
nitude error of CatBoost models was 29.88 kW, 30.29 kW, and 31.61 kW of RMSE, whereas
that was 15.12 kW, 17.79 kW, and 18.27 kW of RMSE for traditional artificial neural network
(ANN) of deep learning models for 12 h, 18 h, and 24 h ahead forecasts, respectively.

To be more concise, in terms of forecasting accuracy, deep learning-based baseline
models have exhibited superiority in reducing the magnitude error between forecasted
and measured values of demand response baselines, thus demonstrating their advantage
in short-term forecasts of demand response baselines for dwelling units. However, the XG-
Boost method should be one of the alternative forecasting methods to be considered, along
with deep learning methods, when estimating demand response baselines in residential
neighborhood contexts over various time horizons, not exceeding 24 h.
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5.3. Comparison of Deep Learning and Classic Models

Compared to deep learning methods, the nine (9) classic methods proposed in this
study showed no observable improvements in forecast accuracy over the four time horizons
considered. Although methods such as SVR exhibited reasonable performance, they were
far from achieving the performance obtained by deep learning-based forecasting models.
As shown in Table 4, the best performance conditions for the SVR resulted in an RMSE of
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16.16 kW and an MAE of 14.19 kW for the 6 h ahead forecasts. In addition, the RMSE and
MAE values for ARIMA and Lasso were (26.97 kW and 24.85 kW) and (21.32 kW and 21.02
kW) at 12 h and 24 h ahead forecasts, respectively. Among the classic models, KernelR
and SGDReg performed the worst compared with the other classic models, including SVR,
ARIMA, and Lasso, with errors of magnitude of up to 33.21 kW and 28.27 kW (RMSE
and MSE) and 28.35 kW and 24.51 kW (RMSE and MSE), respectively. The KernelR and
SGDReg models often suffered from instability when using relatively diverse and sparse
data samples (because they have different very short-term and short-term forecast horizons),
resulting in considerable differences in forecast accuracy.

Figure 13 shows the demand response baseline profiles produced by classical approach-
based forecasting models. It can be seen that using the classic models would produce the
general pattern of demand response baselines for dwelling units. However, when the
classic models are used, more deviations from the measured values of the demand response
baselines are likely to be seen. This is due to the presence of more non-linear values in the
input features, leading to error magnitudes of up to 36.88% (KernelR) and 41.29% (SGDReg)
of MAPE. One of the drawbacks of the classic methods’ linear nature is that they prevent
high-quality forecasts from being obtained with the original input features and, therefore,
fail to achieve performance levels similar to those of deep learning models at the same time
horizons. This is due to their inability to capture complex non-linear relationships in the
demand response baselines’ datasets. In situations where the underlying models are highly
non-linear or involve interactions between input features, linear models may not perform
as well as more sophisticated non-linear models.
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Figure 14 shows a comparison of the forecasted and measured value curves for one test
period, where the maximum error amplitudes of the classic models were between (−40.52
and 12.73 kW), (−40.52 and 16.22 kW), (−40.52 and 36.77 kW), and (−40.52 and 34.26 kW)
for forecasts at 6 h, 12 h, 18 h, and 24 h, respectively. At the same time, the maximum error
magnitude of the deep learning models was between (−9.07 and 3.16 kW), (−12.91 and
9.31 kW), (−11.73 and 10.88 kW), and (−9.59 and 11.76 kW) at 6 h, 12 h, 18 h, and 24 h ahead
forecasts, respectively. Two observations in this context can be made, as follows: (1) Deep
learning methods demonstrated the best performance, highlighting their advantages in
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short-term residential energy forecasting. (2) Classic methods with regularization terms
exhibited larger error fluctuations when forecasting demand response baseline values
compared to their deep learning counterparts. Therefore, it can be concluded that the
classic method failed to significantly reduce the forecasting error when producing accurate
estimates of demand response baselines for dwelling units.
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5.4. Performance at Different Aggregation Levels

To better understand the forecasting behavior of each method, different demand
response baseline profiles were used at different levels of dwelling unit aggregation, namely,
200, 150, 100, 50, 20, and 10, as mentioned above. Each method has the same time horizons
and input features, allowing analysis of the difference in forecast performance between
different models with different levels of forecastability. Figures 15–17 show the overall
performance in terms of MAPE values for each of the deep learning, classic, and ensemble
models over different time horizons. As depicted in Figure 15, the variations in the demand
response baseline profiles for dwelling units indicate that deep learning models typically
avoid overestimating future demand response baselines for different dwelling units. It
was observed that deep learning-based forecasting models could achieve higher accuracy
compared to other models, with reduced errors of up to 8.71%, 10.59%, 11.53%, and
13.05% of MAPE for 6 h, 12 h, 18 h, and 24 h ahead forecasts, respectively. In this respect,
BiLSTM-based forecasting models demonstrated superior performance, followed by GRU,
LSTM, and RNN, over different time horizons (see Appendices A and B). This behavior
in forecasting performance is due to the robust learning capabilities of these methods in
mapping energy data of dwelling units, resulting in lower errors than their counterparts
from other deep learning methods.
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Figure 15. Comparison of MAPE values for deep learning models considering different aggregation
levels of the demand response baseline profile of the dwelling units over four time horizons: (a) 6 h,
(b) 12 h, (c) 18 h, and (d) 24 h ahead forecasts.

Considering both classic and ensemble methods, the evaluation results demonstrated
that the forecasting models based on these methods often tend to overestimate future
demand response baselines when using different profiles of demand response baselines,
leading to inaccurate forecasts. As shown in Figures 16 and 17, SGDReg, ARIMA, KernelR,
AdaBoost, and RF have considerable error variability, with MAPE values of (39.96%, 31.67%,
30.66%, 29.02%), (25.91%, 23.58%, 28.44%, 29.85%), (25.12%, 20.98%, 20.96%, 20.21%), and
(37.91%, 27.63%, 26.11%, 24.63%); these are (49.94%, 75.10%, 111.65%, 96.08%), (70.38%,
63.03%, 70.62%, 67.06%), (94.24%, 72.88%, 74.16%, 65.96%), and (97.03%, 77.48%, 80.41%,
71.25%) when using demand response baseline profiles for 200 and 10 dwelling units over
6 h, 12 h, 18 h, and 24 h ahead forecasts, respectively. These considerable variations in error
for each method are due to changes in the dataset of demand response baseline profiles.
Consequently, the margin of forecasting behavior between these models and deep learning
models is more apparent in such sparse datasets of demand response baselines because, for
example, several classic and ensemble models, including Bagging and RF models, suffer
more from instability in sparse datasets [81].

Intuitively, the forecasting behavior of the XGBoost, GB, LightGBM, and SVR models
was better in terms of forecasting accuracy compared to their counterparts of other classic
and ensemble models, as these models enabled better learning from different datasets of
demand response baseline profiles (see Tables A1–A6 in Appendix B). However, these
models could not outperform the deep learning models in terms of improving forecasting
accuracy. This result was expected due to (1) the stability of deep learning models when
dealing with sparse datasets and (2) the ability of deep learning models to better learn
and efficiently deal with the complexity of sequential datasets (time series data) based on
training data. Concerning the values of the accuracy metrics, using the demand response
baseline profile for different aggregated dwelling units, for example, 200 dwelling units,
results in (10.10%, 10.59%, 11.53%, 13.05%) of MAPE with BiLSTM, in contrast to (19.73%,
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18.53%, 20.03%, 19.91%) and (11.05%, 14.12%, 15.45%, 16.02%) with the SVR and XGBoost
models over 6 h, 12 h, 18 h, and 24 h ahead forecasts, respectively.
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Figure 16. Comparison of MAPE values for ensemble models considering different aggregation levels
of the demand response baseline profile of the dwelling units over four time horizons: (a) 6 h, (b) 12 h,
(c) 18 h, and (d) 24 h ahead forecasts.

Furthermore, the RMSE and MAE for the deep learning models were lower compared
to the classic and ensemble models, demonstrating better forecasting performance than
others, as shown in Figures A1–A4 from Appendix A and Tables A1–A6 from Appendix B.
Therefore, it can be said that the proposed deep learning methods consistently outperform
the comparative classic and ensemble methods for forecasting demand response baselines
at different aggregation levels of dwelling units, indicating accurate forecasting behaviors.
The significant improvement in MAE and RMSE values primarily demonstrates the ability
of the deep learning methods to effectively learn the complexity of time series datasets,
which enables the correct capture of the data points of demand response baselines for
different aggregations of dwelling units. It can be seen that the proposed deep learning
models outperform the other models, as shown in Tables A1–A6. The deep learning models
can adequately capture the dynamic stochastic nature of the aggregated demand response
baselines, caused by the outdoor weather conditions and the energy demand behavior of
the occupants, represented by the working schedules (calendar factor) of the dwelling. As
a result, the gap between measured and forecasted aggregated demand response baselines
was minimized to some extent, and good forecasting accuracy levels were achieved.
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5.5. Example for Demand Response Forecasts

In order to integrate the forecasting models developed so far for demand response
baselines into the residential energy management systems, it is necessary to evaluate their
performance not only for the baseline demand patterns but also during the activation of
demand response events (i.e., assess their ability in capturing energy reductions when
response events are triggered). Energy reductions are calculated based on the difference
in energy values between the baselines and the energy profile while the response events
are triggered. To do so, datasets of the energy demand profile of all dwelling units when
demand response events are activated for 3 h per day (i.e., from 6:00 pm to 9:00 pm) during
the coldest days are utilized (see Figure A5 in Appendix A). The proposed deep learning
models are also used to provide an accurate estimate of the energy reductions resulting
from demand response events during these three hours, and their performance is then
evaluated against the classic and ensemble models by considering performance metrics.
Table 6 presents the performance results of the deep learning, ensemble, and classic models
as a function of the given time horizon, input features, and for each proposed forecasting
method. As expected, the deep learning-based forecasting models demonstrated better
performance in capturing the energy reductions of the dwelling units due to demand
response events over a 3 h time horizon. The LSTM models, followed by ANN, GRU, and
BiLSTM, showed a significant ability to improve the forecasting accuracies by minimizing
the gap between forecasted and measured values, up to 8.02%, 9.56%, 9.59, and 9.89% of
MAPE, respectively. Table 6 also shows that the accuracy of other forecasting models based
on deep learning is acceptable. The highest error magnitude of CNN is 7.55 kW of RMSE
and 7.15 kW of MAE, making it the least accurate of the deep learning models. However,
the forecast outcomes are all close to the actual reductions in energy demand. In contrast,
all classic and ensemble models, including SGDReg, KernelR, ARIMA, and LightGBM
models, failed to improve forecasting accuracy, with errors up to 46.32%, 34.24%, 36.94%,
and 23.15% of MAPE, respectively. Both RMSE and MAE values were also significant,
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around (29.33 kW, 25.96 kW, 26.12 kW, 16.35 kW) and (26.68 kW, 23.72 kW, 22.18 kW,
15.65 kW), respectively. Otherwise, XGBoost performed better than its other classic and
ensemble counterparts, with an error of 13.12% of MAPE, 9.58 kW of RMSE, and 8.01 kW
of MAE, which is the best. However, it was not able to achieve the same level of accuracy
when forecasting the energy reduction of dwelling units during the next three hours (3 h
ahead forecast).

Table 6. Performance of different forecasting models to evaluate energy reductions due to demand
response events for all dwelling units during peak heating days over 3 h ahead.

Model MAE (kW) RMSE (kW) MAPE (%)

Classic

MLR 13.32 15.19 22.82
Ridge 12.98 14.78 20.68
Lasso 11.90 13.63 19.99
PolyR 13.98 15.63 21.01
Bayesian 14.06 15.72 21.09
KernelR 23.72 25.96 34.24
SGDReg 26.68 29.33 46.32
ARIMA 22.18 26.12 36.94
SVR 8.44 10.26 15.75

Ensemble

CatBoost 11.73 12.41 18.50
AdaBoost 10.16 12.52 17.03
Bagging 10.20 11.75 16.02
RF 9.09 10.69 14.01
GB 10.95 11.98 14.93
LightGBM 15.65 16.35 23.15
XGBoost 8.01 9.58 13.12

Deep learning

ANN 5.22 6.03 9.56
DNN 5.42 6.23 10.35
CNN 7.12 7.55 12.64
RNN 4.92 5.40 10.16
LSTM 4.19 4.62 8.02
GRU 4.86 5.27 9.59
BiLSTM 4.97 5.87 9.89

For conciseness in this section, a notable observation was the satisfactory performance
of the deep learning models compared to the classic and ensemble models in providing
accurate estimates of energy reductions over a 3 h ahead. At the same time, the comparison
of the actual profile of energy demand reductions with the forecasted profiles of each
forecasting method showed that deep learning-based forecasting models can provide
more accurate profiles of energy demand reductions resulting from demand response
events over short-term and very short-term horizons. This result is due to the intrinsic
characteristics of deep learning structures. XGBoost can also be used as an alternative
method, along with deep learning methods to support demand response programs in
providing accurate estimates of the energy reductions of buildings during the activation of
residential neighborhood-level response events.

6. Conclusions

The paper presents the development of a deep learning-based, data-driven learning
framework to provide accurate and reliable estimates of demand response baselines in
a residential neighborhood context over short-term and very short-term time horizons.
Several predictive models based on a deep learning approach, including ANN, DNN,
CNN, RNN, LSTM, GRU, and BiLSTM, were developed to predict the future demand
response baselines of 337 dwelling units and explore the influence of using different levels
of aggregation (200, 150, 100, 50, 20, 10 dwelling units) for the demand response baseline
profiles on the forecast accuracy. At the same time, all these methods are compared with
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fifteen different classic and ensemble methods to verify their potential to provide accurate
and reliable estimates of demand response baselines over a time horizon not exceeding
24 h. The classic methods included MLR, Lasso, Ridge, PolyR, Bayesian, KernelR, SGDReg,
and ARIMA, while the ensemble methods included XGBoost, LightGBM, GR, RF, Bagging,
CatBoost, and AdaBoost.

In all these methods, firstly, the PCC technique is used to select the most significant
variables (input features) that influence the energy demand baselines of dwelling units.
Secondly, SHAP is used to identify the potential contribution of each input feature to
the predictive model. This not only effectively reduces the dimensionality of the input
parameters but also enhances the model’s running speed while ensuring the incorpora-
tion of scientifically and rationally chosen input features. Finally, the controlled-variable
method, relying on empirical expertise, is utilized in the experiments to determine the best
combination of hyperparameters for building a robust demand response baseline model.
Several demand response baseline models were developed and then their performance
was analyzed based on MAE, RMSE, and MAPE measured over energy demand baseline
datasets from different dwelling aggregation levels to identify the most accurate models
over multiple forecast horizons.

The results showed that deep learning-based forecasting models, in comparison with
others, could significantly minimize the gap between the actual and forecasted values
of demand response baselines at all the different dwelling unit aggregation levels over
the time horizons considered. The ANN, DNN, CNN, RNN, LSTM, GRU, and BiLSTM
models consistently showed the smallest MAE, RMSE, and MAPE in all comparison
experiments, with values up to (6.49 kW, 5.89 kW, 6.92 kW, 7.85 kW, 5.47 kW, 5.81 kW,
5.41 kW), (7.30 kW, 7.17 kW, 7.35 kW, 8.03 kW, 8.93 kW, 7.78 kW, 7.07 kW), and (10.18%,
8.86%, 9.15%, 9.92%, 9.23%, 8.92%, 9.08%), respectively. The BiLSTM models, followed
by the GRU and LSTM, had the highest forecasting accuracies, as demonstrated by their
superiority in most demand response baseline forecasting experiments. Compared to the
performance of classic and ensemble models, XGBoost-based models were among the best
for demand response baseline forecasts at different dwelling aggregation levels over the
four time horizons considered. Meanwhile, KernelR, SGDReg, ARIMA, CatBoost, and
AdaBoost were among the worst models when forecasting demand response baselines of
dwellings. The classic and ensemble models could not achieve the same level of forecast
accuracy in all comparative experiments over the time horizons considered. The optimal
combination of hyperparameters, such as hidden layers and hidden units, was sufficient to
characterize the different underlying patterns of demand response baselines for dwelling
units in datasets. In some cases, the ANN, DNN, and CNN models suffered from instability
but were able to self-regulate and achieve high performance in reliably and accurately
forecasting residential demand response baselines. This is due to the training techniques
associated with the deep learning approach, including the use of ReLU as the activation
function and the dropout method for model regularization, which help to improve the
forecasting performance of the neural network.

This work, in general, contributes to the body of knowledge on two levels. First,
this research not only presents a performance comparison of each proposed method but
also highlights the importance of employing advanced neural network models to improve
the short-term and very short-term estimation of demand response baselines, as well as
the energy reductions resulting from the implementation of demand response programs
in residential neighborhood contexts. The MAE, RMSE, and MAPE values clearly show
that method structure and other features can significantly influence the production of
accurate and reliable demand response baselines. With this comparison, the predictions
of residential demand response baselines can be expanded and associated with other
issues to promote the efficiency of implementing demand response programs. Second,
this work provides important insights into the domain of advanced deep learning-based
energy reduction estimation. The results demonstrated that the neural network model
with optimal hyperparameters can serve as a useful tool for enhancing demand response
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programs by providing accurate and reliable estimates of baseline values in residential
neighborhoods. In future work, the author will focus on advanced hybrid neural network
techniques and address the associated limitations of real datasets representing the real-
world complexity of occupant behaviors. In addition, other features related to energy
prices, building typology, such as thermal insulations of dwellings, and occupant behavior,
can be incorporated along with concurrent prediction intervals to investigate the effect of
uncertainties in the forecasting processes and improve forecast accuracy in the context of
residential neighborhoods.
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MAPE 
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Classic 

MLR 10.59 11.39 28.36 12.78 14.77 23.85 12.79 15.02 25.01 12.85 15.36 23.52 
Ridge 10.56 11.36 28.05 12.71 14.69 23.63 12.65 14.87 24.63 12.73 15.23 23.22 
Lasso 10.38 11.29 26.80 12.34 14.33 22.72 12.07 14.27 23.04 12.22 14.67 21.77 
PolyR 10.58 11.38 28.33 12.77 14.76 23.83 12.77 15.01 24.96 12.84 15.39 23.89 
Bayesian 10.59 11.38 27.60 12.71 14.69 23.36 12.60 14.83 24.31 12.69 15.19 22.94 
KernelR 14.56 15.25 37.13 15.57 17.47 29.44 14.58 16.76 28.31 14.67 17.03 26.88 
SGDReg 16.08 16.95 39.90 16.88 19.13 31.67 15.76 18.34 30.66 16.12 18.84 29.02 
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Ensemble 

XGBoost 5.06 6.26 11.05 8.19 10.39 14.12 8.36 10.64 15.45 9.39 11.96 16.02 
LightGBM 7.72 9.54 18.53 9.69 12.24 17.19 9.61 12.13 18.04 10.15 12.79 17.65 
GB 6.79 8.71 15.61 9.56 12.21 16.02 9.66 12.30 17.53 9.99 12.74 16.94 
RF 9.92 11.56 25.32 11.11 13.53 20.98 10.64 13.10 20.96 11.18 13.92 20.21 
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CatBoost 13.00 15.08 33.34 14.37 17.28 27.30 13.69 16.74 26.72 14.22 17.59 25.63 
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Appendix B

Table A1. Average performance of forecasting models at the aggregation level of 200 dwelling units
for the profile of demand response baselines over four time horizons.

Model
6 h Ahead 12 h Ahead 18 h Ahead 24 h Ahead

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

Classic

MLR 10.59 11.39 28.36 12.78 14.77 23.85 12.79 15.02 25.01 12.85 15.36 23.52
Ridge 10.56 11.36 28.05 12.71 14.69 23.63 12.65 14.87 24.63 12.73 15.23 23.22
Lasso 10.38 11.29 26.80 12.34 14.33 22.72 12.07 14.27 23.04 12.22 14.67 21.77
PolyR 10.58 11.38 28.33 12.77 14.76 23.83 12.77 15.01 24.96 12.84 15.39 23.89
Bayesian 10.59 11.38 27.60 12.71 14.69 23.36 12.60 14.83 24.31 12.69 15.19 22.94
KernelR 14.56 15.25 37.13 15.57 17.47 29.44 14.58 16.76 28.31 14.67 17.03 26.88
SGDReg 16.08 16.95 39.90 16.88 19.13 31.67 15.76 18.34 30.66 16.12 18.84 29.02
ARIMA 10.18 13.06 25.91 13.09 17.02 23.58 14.92 19.26 28.44 17.16 21.79 29.85
SVR 8.18 9.47 19.73 10.85 13.15 18.53 10.96 13.30 20.03 11.67 14.26 19.91

Ensemble

XGBoost 5.06 6.26 11.05 8.19 10.39 14.12 8.36 10.64 15.45 9.39 11.96 16.02
LightGBM 7.72 9.54 18.53 9.69 12.24 17.19 9.61 12.13 18.04 10.15 12.79 17.65
GB 6.79 8.71 15.61 9.56 12.21 16.02 9.66 12.30 17.53 9.99 12.74 16.94
RF 9.92 11.56 25.32 11.11 13.53 20.98 10.64 13.10 20.96 11.18 13.92 20.21
Bagging 9.71 11.19 25.52 10.77 12.95 20.79 10.41 12.69 20.93 11.06 13.66 20.29
AdaBoost 12.66 13.76 37.91 12.71 14.62 27.63 11.88 14.07 26.11 12.29 14.84 24.63
CatBoost 13.00 15.08 33.34 14.37 17.28 27.30 13.69 16.74 26.72 14.22 17.59 25.63

Deep
Learning

ANN 4.84 5.90 10.43 8.07 9.46 12.52 7.97 9.79 14.78 8.94 10.74 14.75
DNN 4.58 5.79 9.52 7.61 8.27 11.49 7.82 9.66 13.86 8.04 9.77 13.63
CNN 4.69 5.55 10.34 7.90 9.55 13.16 7.57 9.62 13.83 8.28 9.88 13.81
RNN 4.46 5.79 9.77 7.22 9.51 11.20 7.75 9.25 12.00 8.17 10.53 14.38
LSTM 4.31 5.28 9.42 7.35 9.83 13.22 7.34 9.39 12.83 7.75 9.23 13.12
GRU 3.81 5.12 8.71 7.99 9.21 12.82 7.61 9.13 12.10 8.36 10.55 15.96
BiLSTM 4.02 5.29 10.10 6.56 8.23 10.59 6.90 8.62 11.53 8.22 9.03 13.05

Table A2. Average performance of forecasting models at the aggregation level of 150 dwelling units
for the profile of demand response baselines over four time horizons.

Model
6 h Ahead 12 h Ahead 18 h Ahead 24 h Ahead

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

Classic

MLR 8.65 9.39 35.35 10.45 12.07 27.10 10.52 12.38 25.97 10.62 12.61 24.16
Ridge 8.64 9.37 34.98 10.43 12.05 26.89 10.46 12.31 25.68 10.58 12.56 23.99
Lasso 8.42 9.21 33.53 10.35 12.06 26.53 10.26 12.17 25.06 10.38 12.38 23.35
PolyR 8.65 9.38 35.31 10.45 12.07 27.07 10.51 12.37 25.93 10.61 12.59 24.13
Bayesian 8.64 9.37 34.39 10.45 12.07 26.62 10.45 12.29 25.40 10.55 12.52 23.68
KernelR 10.83 11.53 42.13 12.24 13.79 31.77 11.73 13.47 29.01 11.95 13.85 27.47
SGDReg 10.61 11.46 37.24 12.96 15.13 30.83 12.89 15.21 30.77 12.77 15.18 28.12
ARIMA 7.86 10.06 28.09 10.89 14.01 24.94 11.83 15.08 26.72 13.83 17.62 28.21
SVR 6.44 7.54 21.92 8.73 10.65 19.39 8.96 10.98 19.83 9.46 11.58 19.29

Ensemble

XGBoost 4.29 5.41 13.18 7.84 9.93 15.69 7.93 9.89 16.12 7.98 10.08 16.54
LightGBM 6.09 7.55 20.63 8.12 10.24 18.46 8.33 10.47 19.09 8.59 10.79 18.16
GB 5.41 7.03 17.73 7.96 10.23 17.18 8.20 10.52 18.10 8.47 10.88 17.26
RF 7.44 8.83 26.51 9.41 11.45 22.50 9.21 11.28 21.95 9.43 11.58 20.68
Bagging 7.22 8.40 26.38 8.98 10.82 21.98 8.88 10.79 21.68 9.23 11.27 20.53
AdaBoost 9.73 10.74 42.21 10.48 12.15 30.28 10.17 11.95 28.07 10.27 12.20 25.76
CatBoost 9.44 11.42 33.93 11.45 14.14 28.07 11.84 14.58 28.20 12.28 15.19 26.75

Deep
Learning

ANN 4.09 5.12 12.06 7.11 9.04 14.33 6.47 8.17 14.20 6.98 9.88 15.54
DNN 3.73 4.50 12.64 6.79 9.01 14.01 7.60 9.64 15.68 7.45 9.44 13.88
CNN 3.64 4.43 12.13 7.09 9.34 14.74 7.25 9.36 15.66 7.03 8.92 15.03
RNN 3.81 5.02 11.99 5.58 7.47 13.27 6.79 8.87 14.65 7.52 9.46 15.46
LSTM 3.36 4.11 11.29 6.21 8.23 14.73 7.33 9.52 15.88 6.50 8.35 13.18
GRU 3.28 4.07 10.47 5.92 7.94 13.30 7.37 9.36 15.44 6.96 9.04 15.16
BiLSTM 3.67 4.38 12.41 6.28 8.44 14.92 7.17 9.11 15.69 6.38 8.08 14.54
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Table A3. Average performance of forecasting models at the aggregation level of 100 dwelling units
for the profile of demand response baselines over four time horizons.

Model
6 h Ahead 12 h Ahead 18 h Ahead 24 h Ahead

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

Classic

MLR 5.27 5.79 26.74 6.71 7.97 24.09 6.77 8.09 25.28 6.78 8.16 23.79
Ridge 5.26 5.80 26.50 6.68 7.95 23.92 6.71 8.04 24.98 6.74 8.12 23.63
Lasso 5.13 5.66 26.49 6.46 7.74 23.60 6.36 7.71 24.02 6.39 7.78 22.66
PolyR 5.27 5.80 26.72 6.71 7.96 24.09 6.76 8.08 25.24 6.77 8.15 23.76
Bayesian 5.29 5.83 26.17 6.70 7.97 23.73 6.68 8.02 24.67 6.71 8.09 23.27
KernelR 7.44 7.91 37.05 8.26 9.44 30.56 7.87 9.16 29.83 7.92 9.27 28.39
SGDReg 7.71 8.26 35.56 8.75 10.21 31.10 8.54 10.15 32.40 8.51 10.19 30.19
ARIMA 5.35 6.83 25.92 7.12 9.22 24.53 8.03 10.31 29.57 9.17 11.56 30.94
SVR 4.36 5.12 20.10 5.91 7.30 19.73 6.02 7.44 21.35 6.25 7.73 20.66

Ensemble

XGBoost 3.90 4.67 12.01 4.52 5.92 14.83 4.72 6.09 16.74 5.04 6.46 16.79
LightGBM 4.49 5.54 20.32 5.53 7.00 19.19 5.44 6.95 20.17 5.61 7.11 19.38
GB 3.85 5.07 16.19 5.42 7.12 17.41 5.42 7.09 19.02 5.52 7.12 18.17
RF 5.47 6.36 26.45 6.09 7.53 22.32 5.93 7.40 22.91 6.09 7.63 21.79
Bagging 4.89 5.74 23.81 5.74 7.15 20.88 5.69 7.11 22.03 5.93 7.39 21.15
AdaBoost 6.49 7.19 37.15 6.63 7.85 27.79 6.37 7.64 27.23 6.51 7.91 25.51
CatBoost 6.27 7.35 30.79 7.27 9.05 26.69 7.15 8.92 27.24 7.41 9.25 26.23

Deep
Learning

ANN 2.81 3.49 11.95 3.59 4.82 13.93 3.98 5.55 15.19 4.91 5.91 15.56
DNN 2.76 3.77 11.71 3.94 4.44 13.58 3.26 5.73 14.01 4.22 5.32 14.66
CNN 2.53 3.45 10.23 3.84 4.97 13.05 3.79 5.13 14.84 4.25 5.34 15.49
RNN 2.65 3.56 10.59 3.11 4.35 11.59 3.69 5.23 13.31 4.42 5.69 15.41
LSTM 2.37 3.28 9.35 3.94 4.70 13.52 3.78 5.21 13.27 4.19 5.27 14.65
GRU 2.58 3.12 11.32 3.87 4.32 11.38 3.50 5.98 13.40 4.47 5.87 15.65
BiLSTM 2.13 3.08 10.42 3.18 4.39 13.03 3.40 5.79 13.53 4.74 5.01 14.18

Table A4. Average performance of forecasting models at the aggregation level of 50 dwelling units
for the profile of demand response baselines over four time horizons.

Model
6 h Ahead 12 h Ahead 18 h Ahead 24 h Ahead

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

Classic

MLR 3.19 3.52 30.91 3.95 4.73 26.04 3.98 4.91 28.19 4.06 4.94 27.04
Ridge 3.16 3.50 30.51 3.92 4.71 25.78 3.94 4.77 27.83 4.03 4.91 26.84
Lasso 3.03 3.39 30.39 3.79 4.62 25.77 3.74 4.62 26.59 3.86 4.77 25.61
PolyR 3.19 3.52 30.87 3.94 4.72 26.01 3.97 4.81 28.15 4.05 4.93 27.01
Bayesian 3.15 3.49 30.01 3.91 4.71 25.51 3.91 4.75 27.46 4.01 4.89 26.40
KernelR 4.07 4.38 38.25 4.84 5.60 32.06 4.66 5.48 32.92 4.79 5.66 32.10
SGDReg 4.16 4.50 37.49 5.46 6.56 35.41 5.57 6.72 42.62 5.47 6.64 38.87
ARIMA 3.06 3.86 28.71 4.61 6.04 28.11 4.95 6.37 33.91 5.51 6.93 34.96
SVR 2.56 2.99 22.36 3.39 4.23 20.56 3.43 4.31 22.99 3.65 4.57 22.87

Ensemble

XGBoost 1.68 2.09 13.07 2.79 3.61 17.33 2.93 3.76 19.66 3.15 4.06 19.93
LightGBM 2.59 3.13 22.18 3.22 4.09 20.38 3.32 4.19 23.08 3.44 4.38 22.28
GB 2.10 2.68 17.62 3.10 4.05 18.62 3.33 4.33 22.45 3.42 4.45 21.66
RF 3.39 3.84 32.90 3.63 4.40 25.85 3.59 4.39 26.99 3.71 4.58 25.71
Bagging 2.87 3.35 26.93 3.39 4.23 22.91 3.41 4.25 24.97 3.58 4.49 24.18
AdaBoost 3.87 4.23 43.03 3.96 4.66 31.47 3.83 4.59 31.50 3.91 4.71 29.63
CatBoost 3.69 4.37 32.28 4.09 5.09 26.70 4.16 5.19 29.05 4.32 5.42 28.45

Deep
Learning

ANN 1.48 1.91 10.88 3.12 3.99 13.99 2.81 3.87 18.10 2.99 3.65 18.44
DNN 1.41 1.92 10.37 2.75 3.67 12.28 2.38 3.47 17.45 2.48 3.54 17.34
CNN 1.65 1.99 12.36 3.33 4.32 14.49 2.79 3.23 18.18 2.95 3.82 17.58
RNN 1.44 1.93 12.03 2.83 3.74 13.90 2.10 3.99 16.71 2.69 3.59 16.07
LSTM 1.83 2.36 13.93 2.58 3.46 11.35 2.03 3.82 16.05 2.80 3.65 17.58
GRU 1.51 1.93 12.74 2.69 3.50 12.96 2.16 3.91 16.45 2.98 3.87 16.03
BiLSTM 1.34 1.88 10.85 2.54 3.36 11.69 2.20 3.19 17.63 2.43 3.18 15.36
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Table A5. Average performance of forecasting models at the aggregation level of 20 dwelling units
for the profile of demand response baselines over four time horizons.

Model
6 h Ahead 12 h Ahead 18 h Ahead 24 h Ahead

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

Classic

MLR 0.98 1.11 23.64 1.47 1.88 31.48 1.49 1.91 34.77 1.56 2.05 32.87
Ridge 0.97 1.10 23.34 1.46 1.86 31.18 1.47 1.89 34.48 1.55 2.04 32.71
Lasso 1.04 1.17 26.16 1.50 1.89 32.78 1.51 1.92 36.28 1.58 2.07 34.06
PolyR 0.97 1.11 23.61 1.47 1.87 31.45 1.48 1.91 34.73 1.56 2.05 32.84
Bayesian 0.96 1.09 23.12 1.45 1.85 30.97 1.46 1.88 34.32 1.53 2.01 32.49
KernelR 1.39 1.52 33.60 1.78 2.16 39.52 1.76 2.15 43.26 1.83 2.28 40.52
SGDReg 1.46 1.60 34.89 2.44 3.26 56.33 2.75 3.58 77.94 2.56 3.42 66.43
ARIMA 1.38 1.72 32.74 1.81 2.31 37.42 2.06 2.62 49.16 2.26 2.88 47.77
SVR 0.80 0.96 18.20 1.29 1.71 26.11 1.45 1.79 30.56 1.44 1.95 29.07

Ensemble

XGBoost 0.76 0.92 12.82 1.45 1.86 24.34 1.43 1.92 28.62 1.40 1.82 28.55
LightGBM 0.84 1.01 19.40 1.30 1.92 27.33 1.54 1.97 33.05 1.42 1.89 30.78
GB 0.85 1.09 19.62 1.47 1.97 30.51 1.55 2.07 37.38 1.62 2.17 34.50
RF 1.31 1.45 36.07 1.57 1.93 37.11 1.60 1.97 43.20 1.64 2.09 38.98
Bagging 0.94 1.11 24.51 1.87 1.97 31.22 1.55 1.85 38.45 1.49 1.95 35.11
AdaBoost 1.42 1.54 41.11 1.65 1.98 40.82 1.69 2.04 47.21 1.72 2.12 42.89
CatBoost 1.28 1.48 30.72 1.67 2.08 35.63 1.67 2.11 40.75 1.73 2.23 37.62

Deep
Learning

ANN 0.62 0.75 11.59 1.35 1.79 23.12 1.34 1.68 26.13 1.18 1.60 24.45
DNN 0.67 0.82 11.96 0.96 1.27 17.47 1.08 1.37 20.04 1.17 1.54 24.36
CNN 0.56 0.64 11.23 1.21 1.73 20.24 1.33 1.69 26.99 1.29 1.62 26.06
RNN 0.42 0.57 8.03 1.04 1.43 17.53 1.32 1.58 25.31 1.34 1.73 26.38
LSTM 0.36 0.45 6.57 1.14 1.48 18.43 1.37 1.59 25.65 1.16 1.59 22.74
GRU 0.46 0.57 8.82 1.26 1.75 20.45 1.37 1.76 26.05 1.32 1.84 26.66
BiLSTM 0.52 0.64 9.38 1.29 1.80 20.36 1.26 1.49 24.22 1.02 1.09 23.33

Table A6. Average performance of forecasting models at the aggregation level of 10 dwelling units
for the profile of demand response baselines over four time horizons.

Model
6 h Ahead 12 h Ahead 18 h Ahead 24 h Ahead

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%)

MAE
(kW)

RMSE
(kW)

MAPE
(%) MAEkW RMSE

(kW)
MAPE

(%)

Classic

MLR 0.58 0.68 45.96 0.99 1.29 49.76 1.01 1.34 54.52 1.07 1.40 51.49
Ridge 0.57 0.67 45.49 0.97 1.28 49.12 1.02 1.35 54.06 1.06 1.39 51.32
Lasso 0.61 0.71 51.54 0.99 1.30 52.26 1.03 1.31 56.68 1.07 1.41 53.54
PolyR 0.58 0.68 45.89 0.98 1.29 49.68 1.01 1.31 54.26 1.06 1.39 51.46
Bayesian 0.57 0.67 45.27 0.97 1.27 48.91 1.03 1.33 53.91 1.05 1.37 51.17
KernelR 0.75 0.84 57.38 1.07 1.34 56.46 1.08 1.36 62.60 1.15 1.46 58.37
SGDReg 0.73 0.84 49.94 1.62 2.27 75.10 1.91 2.57 111.65 1.79 2.44 96.08
ARIMA 0.87 1.09 70.38 1.25 1.64 63.03 1.34 1.73 70.62 1.52 1.95 67.06
SVR 0.53 0.65 37.91 0.94 1.24 43.68 1.02 1.34 50.21 1.04 1.39 47.35

Ensemble

XGBoost 0.54 0.62 30.04 0.93 1.19 39.99 1.01 1.32 45.68 0.97 1.29 46.09
LightGBM 0.57 0.67 44.04 0.98 1.22 47.41 1.06 1.39 54.22 1.02 1.33 49.81
GB 0.54 0.69 37.81 1.02 1.41 47.25 1.09 1.45 56.34 1.11 1.51 51.93
RF 0.95 1.03 94.24 1.12 1.35 72.88 1.10 1.35 74.16 1.16 1.46 65.96
Bagging 0.54 0.65 42.84 0.99 1.21 48.06 1.09 1.33 56.75 1.01 1.32 51.85
AdaBoost 0.97 1.04 97.03 1.17 1.40 77.48 1.17 1.40 80.41 1.18 1.45 71.25
CatBoost 0.75 0.89 55.99 1.11 1.42 56.76 1.13 1.45 63.47 1.19 1.53 58.31

Deep
Learning

ANN 0.43 0.53 25.77 0.88 1.13 35.81 0.98 1.22 38.33 0.91 1.19 39.43
DNN 0.39 0.48 22.81 0.87 1.12 35.35 0.99 1.23 38.64 0.81 1.05 35.09
CNN 0.48 0.56 23.63 0.87 1.16 36.51 0.91 1.19 37.75 0.83 1.07 35.55
RNN 0.32 0.43 18.31 0.72 1.01 28.02 0.86 1.14 35.28 0.88 1.12 35.66
LSTM 0.44 0.59 27.71 0.71 0.98 28.28 0.91 1.24 37.68 0.84 1.11 35.89
GRU 0.40 0.58 24.51 0.75 1.04 28.87 0.92 1.21 36.72 0.89 1.18 39.41
BiLSTM 0.40 0.57 23.03 0.74 0.99 28.33 0.86 1.18 34.58 0.63 1.07 34.47
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