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Abstract: In tunnel construction, the prediction of the surrounding rock deformation is related
to the construction safety and stability of the tunnel structure. In order to achieve an accurate
prediction of the surrounding rock deformation in soft rock tunnel construction, a Long Short-Term
Memory (LSTM) neural network is used to construct a prediction model of the vault settlement
and the horizontal convergence of the upper conductor in soft rock tunnels. The crested porcupine
optimisation (CPO) algorithm is used to realise the hyper-parameter optimisation of the LSTM model
and to construct the framework of the calculation process of the CPO-LSTM model. Taking the soft
rock section of the Baoshishan Tunnel as an example, the large deformation of the surrounding rock
is measured and analysed in situ, and the monitoring data of arch settlement and superconducting
level convergence are obtained, which are substituted into the CPO-LSTM model for calculation, and
compared and analysed with traditional machine learning and optimisation algorithms. The results
show that the CPO-LSTM model has an R2 of 0.9982, a MAPE of 0.8595% and an RMSE of 0.1922,
which are the best among all the models. In order to further improve the optimisation capability of
the CPO, some improvements were made to the CPO and an Improved Crested Porcupine Optimiser
(ICPO) was proposed. The ICPO-LSTM prediction model was established, and the ZK6 + 834 section
was selected as a research object for comparison and analysis with the CPO-LSTM model. The
results of the error analysis show that the prediction accuracy of the improved ICPO-LSTM model
has been further improved, and the prediction accuracy of the model meets the requirements of
guiding construction.

Keywords: improved crested porcupine optimise; soft rock tunnel; long short-term memory neural
networks; intelligent prediction; deep learning

1. Introduction

In recent years, with the continuous development of China’s transportation construc-
tion, tunnel construction has the characteristics of long tunnel lines and a large excavation
depth, which makes tunnel construction face more complex problems in the construction
process. Tunnel soft rock deformation is one of the most prominent problems, especially in
soft rock strata with poor rock mechanical properties, which are characterised by low rock
strength and are prone to plastic deformation and damage. During tunnelling, deformation
of soft rock can lead to settlement of the tunnel vault, increasing the risk of deformation
and damage to surface and underground structures. It can also cause rock displacement,
leading to the displacement and deformation of the tunnel wall, causing it to lose its load-
bearing capacity and increasing the risk of tunnel collapse. It is therefore of great practical
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engineering importance to carry out a working study on the prediction of deformation in
soft rock tunnels.

With this problem in mind, a great deal of research has been carried out by scholars at
home and abroad. In terms of numerical simulation, Yang Junsheng et al. [1] took the XHS
tunnel of a high-speed railway through an arthritic coal shale layer as a basis, combined
with on-site monitoring means and a discrete–continuous coupled numerical simulation
to analyse the large deformation of the surrounding rock and damage characteristics, and
based on the numerical simulation, proposed to take layers of pre-strengthening of the
surrounding rock deformation control measures, and the results show that this method is
an effective means of controlling the deformation of the surrounding rock in this type of
arthritic coal shale layer. Guo Xinxin et al. [2] took the Muzailing road tunnel as a basis
and used a combination of a three-dimensional computational model and multivariate
linear regression to analyse the influence of the creep characteristics of the rock body
on the deformation of the surrounding rock, and compared and analysed the predicted
deformation and the actual deformation of the surrounding rock, and the results showed
that the method has a certain degree of applicability. In terms of traditional prediction
models, they mainly include the Grey Model [3,4], extreme learning machine [5,6] and
support vector machine (SVM) [7]. However, the traditional prediction models have
shortcomings in predicting tunnel rock deformation, such as a lack of ability to model
nonlinear relationships, a lack of ability to learn complex patterns and sensitivity to noisy
data. With the continuous development of the computational discipline, machine learning
prediction methods play an increasingly important role in predicting the deformation of
tunnel-surrounding rock. Due to its efficient fitting and generalisation ability, it has been
successfully applied to tunnel rock deformation prediction [8–13].

Due to the extremely complex nature of the surrounding rock in mountain tunnels,
there are many uncertainty factors with strong nonlinear characteristics. Traditional the-
oretical analysis and empirical analysis methods have difficulty in fully capturing this
complex deformation mechanism, and the prediction results inevitably have some devia-
tion. Although numerical simulation can simulate and analyse the deformation process of
the surrounding rock, due to the relatively fixed parameter settings, it is difficult to fully
reflect the dynamic changes of the actual state of the rock surrounding the tunnel. To over-
come these problems, the attempt has been made to apply some new nonlinear prediction
methods and machine learning techniques to the prediction of tunnel rock deformation.
However, these methods still have some limitations when faced with long-time series data
modelling and prediction, and it is difficult to fully exploit their potential [14,15]. In recent
years, BP Neural Networks [16–18], Convolutional Neural Networks (CNNs) [19–21] and
recurrent neural networks (RNNs) [22–24] have been widely applied to the analysis and
prediction of deformation monitoring data. They have been found to have greater advan-
tages than traditional prediction models when dealing with time series data. Yao et al. [25]
established a generalised regression neural network tunnel deformation prediction model
based on the Drosophila algorithm, and found that the Drosophila algorithm effectively
improved the prediction accuracy of the model. Pan et al. [26] proposed an optimisation
algorithm for predicting the dynamic nonlinear deformation of the surrounding rock,
which improved the prediction accuracy of the dynamic neural network by optimizing the
number of delay orders and the number of units of the hidden layer. Huang Zhen et al. [27]
used a combined SVM-BP model, so that the combined model had a flexible nonlinear mod-
elling capability and a parallel processing capability for large amounts of information. Xu
et al. [28] used the numerical simulation method combined with an actual motorway tunnel
project to determine its specific construction parameters, and predicted the deformation
of the tunnel during the construction process using the LSTM algorithm, which provided
guidance for the construction. Ye et al. [29] compared the prediction performance of four
machine learning algorithms: a backpropagation neural network (BPNN), generalised
regression neural network (GRNN), extreme learning machine (ELM), and particle swarm
optimisation (PSO)- and genetic algorithm (GA)-optimised support vector machine. The
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PSO-optimised GRNN model was found to have the smallest prediction error and the
largest correlation coefficient. Kang et al. [30] further improved the prediction accuracy of
the LSTM model by incorporating an attention mechanism into the model, which made the
model more sensitive to parameters with higher weights. The Long Short-Term Memory
(LSTM) neural network model has the advantages of fast convergence, high stability and
high prediction accuracy when used to predict time series data [31].

The existing research results have laid a solid foundation for us to further promote the
development of tunnel deformation prediction technology. Due to its excellent time-series
modelling, nonlinear fitting, data fusion and feature learning capabilities, the LSTM model
has obvious advantages in predicting the deformation of the rock surrounding a tunnel.
Therefore, this paper proposes a long- and short-term memory neural network method
based on the Crested Porcupine Optimiser to construct a deep learning prediction model
for tunnel rock deformation, and investigates its effectiveness in predicting the deformation
of the Jewel Mountain Tunnel of the Yunnan–Dabao Expressway. By comparing it with
traditional optimisation algorithms and machine learning methods, this study verifies the
accuracy and applicability of the CPO-LSTM model in the tunnel settlement time series
prediction problem. In addition, this paper also makes some improvements to the CPO,
constructs the ICPO-LSTM model and compares it with the CPO-LSTM model. This study
shows that the optimisation ability of ICPO is further improved, the prediction progress of
the ICPO-LSTM model is higher, and the accuracy and stability of the prediction are more
consistent with the actual measurement data in the field. Using the ICPO-LSTM model to
predict the deformation of soft rock tunnels not only promotes the practical application of
artificial intelligence in tunnel construction, but also avoids construction risks in advance,
reduces labour costs and improves the monitoring accuracy. It provides a new method for
soft rock tunnel deformation monitoring.

2. Deep Learning Model of Long- and Short-Term Memory Neural Networks Based on
Crested Porcupine Optimiser Algorithm
2.1. Basic Principles of the Crested Porcupine Optimiser

The Crested Porcupine Optimiser (CPO) is a new meta-heuristic algorithm proposed
by Abdel-Basset et al. [32], and it has been studied to verify that the performance of the CPO
is superior when compared to other traditional optimisation algorithms. The CPO simulates
four defence strategies of the Crested Porcupine (CP), including sight, sound, odour and
physical attack. The algorithm uses an exploratory and exploitative mechanism, where
the first and second defence strategies (i.e., sight and sound) represent the exploratory
behaviour of the CPO, while the third and fourth defence strategies (i.e., odour and physical
attack) represent the exploitative behaviour of the CPO.

The first step is to initialise the population. Similar to other meta-heuristic population-
based algorithms, the CPO starts the search process from the initial set of individuals
(candidate solutions),

→
Xi =

→
L +

→
r ×

(→
U −

→
L
)

, i = 1, 2, · · · , N′ (1)

where N′ denotes the number of individuals (population size N′),
→
Xi is the i-th candidate

solution in the search space,
→
L and

→
U are the lower and upper bounds of the search range,

respectively, and
→
r is a random number between 0 and 1. The initial overall population

can be expressed as
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X =



X1
X1
...

Xi
...

XN′


=



x1,1 x1,2 · · · x1,j · · · x1,d
x2,1 x2,1 · · · x2,j · · · x2,d

...
...

...
...

...
...

xi,1 xi,2 · · · xi,j · · · xi,d
...

...
...

...
...

...
xN′ ,1 xN′ ,2 · · · xN′ ,j · · · xN′ ,d


(2)

Then, a cyclic population reduction technique (CPR) is used to obtain some CP from
the population during the optimisation process, to speed up convergence and reintroduce
them into the population to improve diversity and avoid falling into local minima. The
cycle is based on a cyclic variable, to determine the number of times the process is executed
during the optimisation process. The expression for the cyclic reduction of the population
size is given below:

N = Nmin +
(

N′ − Nmin
)
×
(

1 −
(

t% Tmax
T

Tmax
T

))
(3)

where T is the variable that determines the number of cycles, t is the current function eval-
uation, Tmax is the maximum number of function evaluations, % denotes the remainder or
modulus operator and Nmin is the minimum number of individuals in the newly generated
population, so that the size of the population cannot be smaller than Nmin.

Finally, there are four separate defence strategies for entering the exploration phase.

(1) First defence strategy.

Its mathematical expression is shown below:

x =
→
x + τ ×

∣∣∣2 × τ ×→
x −→

y
∣∣∣ (4)

where
→

xt
CP is the best solution of the evaluation function t,

→
yt

i is a vector generated between
the current CP and a randomly selected CP from the population to represent the position of
the predator at iteration t, τ1 is a random number based on a normal distribution and τ2 is
a random value in the interval [0, 1].

The mathematical formula for generating is shown below:

→
yt

i =

→
xt

i +
→
xt

r
2

(5)

where r is a random number between [1, N].

(2) Second defence strategy.

Its mathematical expression is shown below:

→
xt+1

i =

(
1 −

→
U1

)
×

→
xt

i +
→
U1 ×

(
→
y + τ3

( →
xt

r1
−

→
xt

r2

))
(6)

where r1 and r2 are two random integers between [1, N] and are random numbers generated
between 0 and 1.

(3) Third defence strategy.

Its mathematical expression is shown below:

→
xt+1

i =

(
1 −

→
U1

)
×

→
xt

i +
→
U1 ×

( →
xt

r1
+ St

i ×
( →

xt
r2
−

→
xt

r3

)
− τ3 ×

→
δ × γt × St

i

)
(7)
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where r3 is a random number between [1, N], and
→
δ is a parameter used to control the

direction of the search and is defined using Equation (8).
→
xt

i is the position of the i-th
individual at iteration t, and γt is the defense factor defined using Equation (9). τ3 is a
random value in the interval [0, 1], and St

i is the odour diffusion factor defined using
Equation (10), as shown below:

→
δ =

{
+1,
−1,

i f
→

rand ≤ 0.5
Else

(8)

γt = 2 × rand ×
(

1 − t
tmax

) t
tmax

(9)

St
i = exp

(
f
(
xt

i
)

∑N
k=1 f

(
xk

i
)
+ ε

)
(10)

where f
(

xt
i
)

denotes the value of the objective function for the i-th individual at itera-

tion t, ε is a small value that avoids division by zero,
→

rand is a vector that includes randomly
generated values between 0 and 1, rand is a variable that includes randomly generated num-
bers between 1 and 0, N is the overall size, t is the number of current iterations and tmax is

the maximum number of iterations. The
→
U1 vector is used to model the three possible

scenarios in the strategy.

(1) When
→
U1 = 0, the CP will stop odour diffusion because the predator will stop moving

because it is afraid of the CP, so the distance between the predator and the CP remains
constant;

(2) When
→
U1 = 1, the CP will emit odour significantly because the predator is nearby;

(3) When
→
U1 is within the interval range 0 and 1, the predator maintains a safe distance

from the CP, at which time there is no need to emit its odour significantly.
(4) Fourth defence strategy.

Its mathematical expression is shown below:

→
xt+1

i =
→

xt
CP + (α(1 − τ4) + τ4)×

(
δ ×

→
xt

CP −
→
xt

i

)
− τ5 × δ × γt ×

→
Ft

i (11)

where
→

xt
CP is the best solution obtained, which denotes the position of the i-th individual

of
→
xt

i at iteration t and denotes the predator at that position; α is the convergence speed
factor discussed later in the parameter setting section; τ4 is a random value in the interval

[0, 1]; and
→
Ft

i is the average force affecting the CP of the i − th predator. It is provided by
the inelastic collision law and defined by Equation (12),

→
Ft

i =
→
τ6 ×

mi ×
( →

vt+1
i −

→
vt

i

)
∆t

mi =

f
(→

xt
i

)
e∑N

k=1 f
(→

xk
i

)
+ ε

(12)

→
vt

i =
→
xt

i
→

vt+1
i =

→
xt

r
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where mi is the mass of the i − th individual (predator) at iteration t, f (·) denotes the objec-

tive function,
→

vt+1
i is the final velocity of the i − th individual at the next iteration t + 1 and

is assigned based on the selection of a random solution from the current population,
→
vt

i is
the initial velocity of the i-th individual at iteration t, ∆t is the number of the current
iteration and τ6 is a vector including random values generated between 0 and 1.

In Equation (12), the average force of the CP is calculated based on dividing the
numerator by the current iteration, and the average force of the current iteration increases
linearly during the optimisation process, which causes the effect of the average force of
the CP to diminish, and a small value of this factor is detrimental to the performance of
the CPO. Therefore, by removing the numerator and relying only on the denominator,
it is shown in Equation (13). This approach will help to create a wide range of values
within the search space, resulting in a more comprehensive examination of the area around
the solution.

→
Ft

i =
→
τ6 × mi ×

( →
vt+1

i −
→
vt

i

)
(13)

2.2. Basic Principles of the LSTM Model

The LSTM belongs to a temporal recurrent temporal network, which introduces a
gating unit on the basis of a recurrent neural network, in order to memorise the historical
state and control the information transfer, which overcomes the phenomena of gradient
disappearance and gradient explosion. The memory unit module is located in the hidden
layer, and for the basic structure, see Figure 1.
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Each LSTM basic structure contains three types of gating structures, the forgetting
gate ft, the input gate it and the output gate Ot, which all use the sigmoid function (σ).
The expression of the forgetting gate ft is as follows:

ft = σ
(

xtWx f + ht−1Wht−1 f + b f

)
(14)

where Wx f is the weight matrix corresponding to the input x passed to ft, Wht−1 f is the
weight matrix corresponding to the state ht−1 passed to ft at the previous time step
and b f denotes the bias term. The result of ft is bounded between (0, 1) by the activation
function σ.

The input gate is expressed as follows:

it = σ
(

xtWxi + ht−1Wht−1i + bi

)
(15)

where Wxi is the weight matrix representing the input xt passed to it, W is the weight
matrix of the upper state ht−1 passed to it and bi is the bias term. The computation of it is
bounded between (0, 1) by the activation function σ.

The expression of the intermediate state C′
t is as follows:

C′
t = tanh

(
xtWxC + ht−1Wht−1C + bC

)
(16)
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where WxC denotes the weight matrix corresponding to the input xt passed to C′
t, Wht−1C is

the weight matrix corresponding to the upper state ht−1 passed to C′
t and bC denotes the

bias term. The computation result of C′
t is bounded between (−1, 1) by the activation

function tanh.
The expression of the output gate Ot is as follows:

Ot = σ
(

xtWxO + ht−1Wht−1O + bO

)
(17)

where WxO is the weight matrix that represents the input xt transmitted to Ot, Wht−1O is the
weight matrix that represents the state ht−1 of the previous time step passed to Ot and bO is
the bias term. The computation result of Ot is bounded between (0, 1) by the activation
function σ.

The output state ht expression is as follows:

ht = Ot ⊙ tanh(Ct) (18)

That is, the output gate Ot is multiplied point-by-point with tanh(Ct) to obtain the
new output state at the current time step, which serves as part of the input for the next
time step.

2.3. CPO-LSTM Model

The idea of constructing the CPO-LSTM model is to optimise the learning rate, hid-
den layer nodes and regularisation coefficients of the LSTM model by using the CPO
optimisation algorithm. For a flowchart of the CPO-LSTM model, see Figure 2.
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(1) Model initialisation.

The parameters of the CP are initialised, including the position of the crown porcupine,
the upper and lower limits of the parameter values, and the maximum number of iterations.
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Then, the LSTM structure is initialised, which uses the learning rate, the number of hidden
nodes and the regularisation coefficient of the LSTM model as optimisation targets.

(2) Objective function establishment.

The objective function of the CP is the root mean square error (RMSE) of the predicted
value of an untrained LSTM model compared to the actual value.

(3) Optimisation.

The position of the crowned porcupine is updated according to the result of the
objective function, and the initial value of the LSTM is optimised when the initially set
number of iterations is satisfied.

(4) LSTM training.

After optimizing the parameters, the optimal values are substituted into the LSTM
model for re-training and prediction, ultimately yielding a predictive model.

2.4. CPO-GRNN Model

A generalised regression neural network (GRNN) is a four-layer forward propagation
neural network with a good nonlinear approximation ability [33]; the data are input into
the network and then pass through the input layer, pattern layer, summation layer and
output layer in order to obtain the output result.

(1) Input layer: The input data is passed to the pattern layer, and the number of nodes is
the feature dimension of the input data.

(2) Pattern layer: It generally uses a Gaussian function to process the input data, the
number of nodes is the number of training samples, and the calculation formula is
as follows:

gi = exp

(
−
∥∥xi − xj

∥∥
2σ2

)
(19)

where xi is the training sample, xj is the learning sample and σ is the smoothing factor.

(3) Summation layer: Assuming that the output sample dimension is k, then the number
of nodes in the layer is k + 1, where a node output SD is the arithmetic sum of the
output of the pattern layer, and the rest of the node outputs SNi are all weighted sums
of the output of the pattern layer; the calculation formula is as follows:

SD = ∑n
i=1 gi (20)

SNi = ∑n
i=1 wijgi (21)

where, wij is the weighting coefficient.

(4) Output layer: The number of nodes in this layer is the output sample dimension,
which is mainly based on the arithmetic sum and weighted sum derived from the
summation layer to calculate the output; the calculation formula is as follows:

Oj =
SNi
SD

(22)

For a flowchart of the CPO-GRNN model, see Figure 3.
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2.5. WOA-LSTM Model

The Whale Optimisation Algorithm (WOA) was first proposed by Mirjalili et al. [34]
in 2016. The algorithm searches for the optimal solution by simulating the hunting be-
haviour of humpback whales—including three operators to simulate the hunting process
of humpback whales’ encircling predation, foaming net attack and prey search—from
determining the search area to a local search, to the final implementation of a global search.
The algorithm is characterised by a high accuracy and fast convergence, and has good
performance in solving optimisation problems.

(1) Encircling predators: Humpback whales choose the optimal path to encircle their prey;
the calculation formula is as follows:

D =
∣∣C·X′(t)− X(t)

∣∣ (23)

X(t) = X′(t)− A·D (24)

where D is the distance between the prey and the optimal search agent; X′(t) is the position
of the prey; X(t) is the position of the whale; t is the number of iterations; and A, C are
coefficient vectors.

(2) Bubble net attack: The algorithm uses two ways to simulate humpback whale hunting
behaviour. These two ways update the position of the humpback whale and then move
it towards the prey according to the randomly generated probability of alternately
updating the optimal search agent; the calculation formula is as follows:

X(t + 1) = D′ebI
cos2π I + X′(t) (25)

D′ =
∣∣X′(t)− X(t)

∣∣ (26)

where b is the shape parameter of the logarithmic spiral and I is a random number between
0 and 1.

(3) Random search: There is a random search method among humpback whales, and
the search phase can update the position according to the nearest search agent; the
calculation formula is as follows:
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D = |CXrand(t)− X(t)| (27)

X(t + 1) = Xrand(t)− AD (28)

where Xrand(t) is the random position of the prey.
The WOA algorithm searches for the optimal process, generates a random number

q ∈ [0, 1] and enters the bubble net attack mode if q > 0.5; otherwise, the coefficient vector
A is evaluated, and the target prey is searched for if |A| ≥ 1 and encircled if |A| ≤ 1. As
the number of iterations of the WOA algorithm increases, it gradually transitions from the
prey-seeking state to the prey-encircling state.

For a flowchart of the WOA-LSTM model, see Figure 4.
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3. Numerical Modelling Experiments
3.1. Project Overview

The Baoshishan Tunnel is located in the north of Baoshan City, Yunnan Province. The
left side of the tunnel start and stop pile numbers are ZK6 + 598~ZK10 + 134, the tunnel
length is 3532.159 m, the maximum depth is 232.32 m; it belongs to the extra-long tunnels.

The project is located in the southern part of the Hengduan Mountains, located in the
tail of the Nujiang Mountain Range and Gaolilongshan Mountain Range, set in the Lancang
River and Nujiang River between regional terrain that is generally high in the north and
low in the south. The highest point in the corridor of the project area is the peak of the
southeast side of Qiushan Village, with a summit elevation of about 2256.72 m, and the
ground elevation of Baoshan Damzi is about 1658 m, with a maximum elevation difference
of 598.72 m. The geomorphology of the area is mainly controlled by tectonics, erosion,
denudation, solvation and accretion. It belongs to the southwest Yunnan seismic zone,
which is a seismic zone with very frequent strong seismic activities, with a high frequency



Buildings 2024, 14, 2244 11 of 20

and intensity of seismic activities. Due to the long-term rise of the earth’s crust, resulting in
violent erosion of the water flow, the terrain cutting depth is greater.

3.2. Field Monitoring Data

In order to verify the accuracy and applicability of the model for predicting tunnel
peripheral rock deformation, the monitoring and measurement data of section ZK6 + 834
at the tunnel mileage were selected as the research object, and the monitoring data of the
vault settlement and the horizontal convergence of the upper conductor were collected
at the site. For the layout of site monitoring points, see Figure 5. For the peripheral rock
deformation monitoring data of the ZK6 + 834 section, see Table 1.
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Table 1. Monitoring data of surrounding rock deformation of ZK6 + 834 section.

Time/d

Accumulated
Deformation/mm

Time/d

Accumulated
Deformation/mm

Time/d

Accumulated
Deformation/mm

Vault Upper
Conductor Vault Upper

Conductor Vault Upper
Conductor

0 0 0 14 191.9 58.2 28 328.9 96.3
1 15.7 5.5 15 206.9 62.4 29 330.1 96.8
2 28.2 9.3 16 221.3 66.3 30 331.0 97.2
3 36.6 11.9 17 236.4 70.3 31 331.4 97.4
4 53.8 17.5 18 250.7 74.2 32 331.6 97.5
5 66.6 21.4 19 263.1 77.7 33 331.8 97.6
6 79.9 25.6 20 272.4 81.3 34 332.0 97.7
7 93 29.6 21 281.4 84.3 35 332.2 97.8
8 106 33.6 22 290.3 86.7 36 332.3 97.8
9 121.3 38 23 299.3 89.1 37 332.4 97.8

10 135.4 42.1 24 308.9 91.4 38 332.5 97.8
11 149.4 46.1 25 316.9 93.2 39 332.6 97.8
12 163.4 50.1 26 322.6 94.6
13 177.6 54.1 27 327.2 95.7

3.3. Numerical Test Verification

In this experiment, the CPO-LSTM, LSTM, CPO-GRNN and WOA-LSTM models are
selected for comparison experiments, and the monitoring data in Table 1 are substituted
into the models for computation; first, the model training set and test set are divided, the
first 70% of the data set (27 groups) is used as the training set, and the second 30% of the
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data set (12 groups) is used as the test set. The optimisation algorithm mainly optimises
the learning rate, hidden layer nodes and L2 regularisation coefficients, and the activation
function selects the nonlinear activation function ReLU. The learning rate and iteration
number of the model are set to 0.02 and 50, respectively, and the optimisation algorithm
globally searches for the optimal LSTM model hyper-parameters and completes the model
construction. The prediction of the vault settlement and the horizontal convergence of the
upper conductor is carried out, and the four models are iteratively trained; for comparison
graphs of the vault settlement and the horizontal convergence of the upper conductor, see
Figures 6 and 7, respectively.
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From Figures 6 and 7, it can be seen that the CPO-LSTM model achieves an accurate
prediction of the perimeter rock deformation in the ZK6 + 834 section, and the prediction
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accuracy meets the requirements for construction guidance. Comparing the prediction
curves of the CPO-LSTM and LSTM models, it can be seen that the LSTM model optimised
by CPO has been improved in both fit and accuracy, which further improves the prediction
accuracy of the LSTM model. Under the condition of different prediction models with
the same optimisation algorithm, the CPO-LSTM model has a higher prediction accuracy
than the CPO-RGNN model, which indicates that the LSTM deep learning method has a
stronger advantage than the traditional machine learning method. Under the condition of
different optimisation algorithms for the same prediction model, the CPO-LSTM model has
higher fitting and prediction accuracies compared to the WOA-LSTM model, indicating
that the optimisation ability of the CPO is stronger.

3.4. Model Performance Evaluation

In order to further evaluate the accuracy and generalisation of the model, three evalu-
ation criteria, namely, the goodness of fit (R2), mean absolute percentage error (MAPE),
and root mean square error (RMSE), were used to assess the prediction accuracy of the
prediction model, and the formulas are shown below:

R2 = 1 − ∑n
k=1(Pk − Qk)

2

∑n
k=1
(

Pk − Q
)2 (29)

MAPE =
1
n∑n

k=1
|Pk − Qk|

Qk
× 100% (30)

RMSE =

√
1
n∑n

k=1(Pk − Qk)
2 (31)

where n is the total number of samples, Pk is the predicted value of the kth sample and Qk is
the monitoring value of the k − th sample and is the average of the monitoring values of
all samples.

Substituting the experimental data of the CPO-LSTM, LSTM, CPO-GRNN and WOA-
LSTM models into Equations (29) to (31), the evaluation indexes of each model can be
obtained (see Table 2).

Table 2. Model performance evaluation form.

Predictive
Modelling

Evaluation
Indicators

ZK6 + 834 Section
Average ValueVault Monitoring

Points
Upper Conductor
Monitoring Point

R2 0.9996 0.9998 0.9997
CPO-LSTM MAPE/% 0.6346 0.1107 0.3727

RMSE 0.2262 0.1137 0.1700
R2 0.9991 0.9991 0.9991

LSTM MAPE/% 0.9012 0.8900 0.8956
RMSE 2.9976 0.8740 1.9358

R2 0.9975 0.9929 0.9952
CPO-RGNN MAPE/% 1.4289 2.2858 1.8574

RMSE 4.7731 2.2423 3.5077
R2 0.9984 0.9950 0.9967

WOA-LSTM MAPE/% 1.2797 2.2080 1.7439
RMSE 4.2697 2.1867 3.2282

When the R2 is larger and MAPE and RMSE are smaller, it indicates that the per-
formance of the model is better. As can be seen from Table 2, the average value of R2 of
the evaluation results of the CPO-LSTM model is 0.9997, which is the largest among the
four models, indicating that the CPO-LSTM model can respond well to the change rule of
convergence of tunnel-surrounding rock deformation and can accurately predict the change
trend of the surrounding rock. Meanwhile, the average values of MAPE and RMSE of the
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CPO-LSTM model are the smallest among all the models, which are 0.3727% and 0.1700,
respectively, indicating that the prediction accuracy of the CPO-LSTM model is the highest
compared with the other models, and it is able to accurately predict the convergence of the
tunnel-surrounding rock deformation and provide guidance for the actual project.

4. The Improved Crested Porcupine Optimiser (ICPO) Optimises the LSTM Model
4.1. Improved Crested Porcupine Optimiser (ICPO)

Through the validation of the numerical modelling experiments, it is concluded that
the CPO-LSTM model has the best performance compared to the LSTM, CPO-GRNN and
WOA-LSTM models. In order to further improve the optimisation ability of the CPO, some
preliminary improvements are made.

(1) Remove population shrinkage.

Maintaining population diversity is the first step. Population reduction may lead
to the removal of certain individuals, thus reducing the diversity of the population. The
diversity of the population can be maintained through removal, making it more likely that
the algorithm will find a globally optimal solution.

The complexity of the algorithm should be reduced. The population reduction op-
eration increases the complexity of the algorithm, requiring additional parameters and
calculations. Removing the population reduction simplifies the implementation and under-
standing of the algorithm, making it less difficult to implement.

It is necessary to avoid premature convergence. The population reduction may cause
the algorithm to converge to a local optimum solution too early, thus failing to discover
a better solution. Deleting this operation avoids premature convergence and allows the
algorithm more opportunities to explore in the search space.

Last but not least, increasing the robustness of the algorithm is an important task.
The population reduction may make the algorithm more sensitive to initial and tuning
parameters. Removing this operation increases the robustness of the algorithm, making the
algorithm more insensitive to the choice of parameters.

Overall, removing the population reduction operation can make the algorithm simpler,
more varied and more robust, which will help to improve the performance and effectiveness
of the algorithm.

(2) Improvement of the first defence stage.

Some randomness and variability are introduced for a better exploration of the search
space, and the improved expression is shown below:

→
xt+1

i =
→
xt

i +

∣∣∣∣ →
xt

CP −
→
xt

i

∣∣∣∣× θ (32)

where
→

xt
CP is the best solution of the evaluation function t and θ is a random value in the

interval [0, 1].

(3) The improved expression for the second defence phase is as follows:

→
xt+1

i =

(
1 −

→
U1

)
×

→
xt

i +
→
U1 ×

(
→
y + θ

( →
xt

r1
−

→
xt

r2

))
(33)

→
yt

i =

→
xt

i −
→
xt

r3

2
(34)

where r1, r2 and r3 are two random integers between [1, N].

(4) Improvements to the fourth defence stage.

It is necessary to reduce dependence on individual fitness. In the original equation,
Mi relies on individual fitness to calculate the probability distribution; the improvement
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directly uses random individuals in the population, reducing the calculation and the
dependence on fitness.

It is important to improved algorithmic diversity and exploration. The new form
introduces more randomness, which increases the diversity of the algorithm through the
random number θ. The use of random numbers adjusts the position of individuals, which
helps to explore the search space more extensively.

Dependence on a global optimal solution should be reduced. The improved catch
uses individuals from the population, reducing the dependence on global information and
making the algorithm more independent and flexible.

The improved expression for the fourth defence stage is shown as follows:

→
xt+1

i =
→

xt
CP + (θ(1 − τ2) + τ2)×

( →
xt

CP −
→
xt

i

)
(35)

where
→

xt
CP is the best solution obtained, which denotes the position of the i-th individual at

iteration t of
→
xt

i and denotes the predator at that position, and τ2 is a random value in the
interval [0, 1].

4.2. Application Analysis of the ICPO-LSTM Model

In order to verify the optimisation effect of the improved ICPO on the LSTM model,
the ICPO-LSTM soft rock tunnel deformation prediction model is constructed. In this
experiment, the ZK6 + 824 and ZK6 + 829 sections are used as the research object, and for
the vault settlement and the upper conductor convergence curves of the ZK6 + 824 and
ZK6 + 829 sections, see Figure 8a,b, respectively.
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Figure 8. (a) ZK6 + 824, ZK6 + 829 section vault settlement monitoring curves map; (b) ZK6 + 824,
ZK6 + 829 section of the upper conductor convergence monitoring curves map.

The data are divided into training and prediction sets; the top 70% of the data set is
taken as the training set, and the bottom 30% is taken as the prediction set; the population
number is 25, and the maximum number of iterations is 50. For the fitness evolution curves
of the ICPO and CPO optimisation algorithms, see Figure 9a,b, respectively.
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Figure 8. (a) ZK6 + 824, ZK6 + 829 section vault settlement monitoring curves map; (b) ZK6 + 824, 
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Figure 9. (a) ICPO fitness curve; (b) CPO fitness curve. Figure 9. (a) ICPO fitness curve; (b) CPO fitness curve.

From Figure 9a,b, it can be seen that with the same initial parameters, the ICPO starts
to converge at the 15th iteration with a fitness of 0.0058 and the CPO starts to converge at
the 32th iteration with a fitness of 0.0061. It is obvious that the ICPO can find the globally
optimal solution faster and its convergence error is smaller than the CPO, which indicates
that the ICPO has a faster convergence speed and better computational results. It can be
proved that the ICPO can successfully find the global optimal solution.

Figures 10 and 11 show the comparison of the prediction of vault settlement by
different models and the prediction of the upper conductor by different models, respectively.
From Figures 10 and 11 it can be seen that, in general, the improved ICPO-LSTM model
predicts better than the CPO-LSTM model and the prediction accuracy is improved.
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As shown in Table 3, the average values of R2, MAPE and RMSE of the ICPO-LSTM
model are 0.9999, 0.2970 and 0.6273, respectively, while the average values of the corre-
sponding metrics of the CPO-LSTM model are 0.9990, 0.9795 and 1.6639. It can be seen that
the R2 metrics of the ICPO-LSTM model are closer to 1, the fitting effect is better and it can
better capture the potential patterns of the time series data. The MAPE and RMSE of the
ICPO-LSTM model are significantly lower than those of the CPO-LSTM model, and the pre-
diction accuracy is significantly improved. This further demonstrates that the optimisation
capability of the improved CPO is further enhanced.

Table 3. Model evaluation index.

Predictive
Model

Evaluation
Indicators

ZK6 + 824 Section ZK6 + 829 Section
Average

ValueVault Monitoring
Point

Upper Conductor
Monitoring Point

Vault Monitoring
Point

Upper Guide
Monitoring Point

ICPO-LSTM
R2 0.9999 0.9998 0.9999 0.9999 0.9999

MAPE/% 0.2447 0.4607 0.2977 0.1847 0.2970
RMSE 0.9743 0.5404 0.6703 0.3240 0.6273

CPO-LSTM
R2 0.9999 0.9969 0.9999 0.9991 0.9990

MAPE/% 0.3659 2.0879 0.4324 1.0320 0.9795
RMSE 1.4600 2.4221 1.5909 1.1825 1.6639

5. Discussion

Soft rock tunnels are easily affected by surrounding rock deformation and instability
factors during construction, which can lead to tunnel collapse, cracking, deformation and
other problems, bringing risks and difficulties to construction. By intelligently predicting
the surrounding rock deformation, it can provide a guidance basis, reduce the construction
risk and improve the safety and economic benefits of the project. Therefore, an intelligent
prediction model based on CPO-LSTM is proposed. In order to verify the predictive effect
of the established model algorithm on the measured tunnel vault settlement and upper
guide-level convergence data, comparative analyses are carried out with the LSTM, CPO-
GRNN and WOA-LSTM models, and it can be seen in Figures 6 and 7 that the prediction
curves of the CPO-LSTM model are highly consistent with the actual curves, indicating
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that the model performs better in terms of predictive performance. According to the
information in Table 2, the goodness of fit of the CPO-LSTM model is 0.9997, the mean
absolute percentage error is 0.3727% and the root mean square error is 0.1700, while the
goodness of fit of the LSTM model is 0.9991, the mean absolute percentage error is 0.8956%
and the root mean square error is 1.9358. The goodness of fit of the CPO-GRNN model
is 0.9952, the mean absolute percentage error is 1.8574% and the root mean square error
is 3.5077, while the WOA-LSTM model has a goodness of fit of 0.9967, the mean absolute
percentage error is 1.7439% and the root mean square error is 3.2282. The three evaluation
indices of the CPO-LSTM model are optimal, which shows that the prediction performance
of the CPO-LSTM model is better than the LSTM, CPO-GRNN and WOA-LSTM models.

In order to investigate whether the performance of the CPO can be further improved,
some improvements are made to the CPO and an Improved Crested Porcupine Optimiser
(ICPO) is proposed. The ICPO-LSTM prediction model is built and compared with the
original CPO-LSTM model, to verify whether the optimisation performance of the improved
ICPO is improved. Figure 9 shows that the ICPO algorithm starts to converge at the
15th iteration, while the CPO algorithm starts to converge at the 32nd iteration. This
indicates that the ICPO algorithm converges faster and is able to find the optimal solution
in fewer iterations. The fitness value of the ICPO algorithm at the time of convergence is
0.0058, while that of the CPO algorithm at the time of convergence is 0.0061; because the
lower fitness value indicates a closer optimal solution to the optimal solution, the solution
obtained by the ICPO algorithm at the time of convergence is better than that of the CPO
algorithm. From Figures 10 and 11 and Table 3, it can be seen that the maximum error of
the ICPO-LSTM model is 2.161 mm, the minimum error is 0.012 mm, the goodness of fit is
0.9999, the average absolute percentage error is 0.2970% and the root mean square error
is 0.6273, and the maximum error of the CPO-LSTM model is 3.565 mm, the minimum
error is 0.378 mm, and the goodness of fit is 0.378 mm. The prediction accuracy of the
ICPO-LSTM model is significantly better than that of the CPO-LSTM model. Numerical
experimental studies have shown that the optimisation capability of the improved CPO
has been enhanced.

6. Conclusions

(1) The average values of R2, MAPE and RMSE of the CPO-LSTM model at
ZK6 + 834 section are 0.9999, 0.3727% and 0.1700, respectively, which are better
evaluation indices compared with the LSTM model, indicating that the optimisation
of the LSTM model by the CPO algorithm can significantly improve the prediction
accuracy of the model.

(2) The R2, MAPE and RMSE metrics of the CPO-RGNN and WOA-LSTM models are
worse than those of the CPO-LSTM model, indicating that the LSTM model optimised
by the new optimisation algorithm performs better than the traditional machine
learning and optimisation algorithms.

(3) The prediction accuracy of the improved ICPO-LSTM model is further improved
compared to that of the CPO-LSTM model, and the three evaluation metrics of the
ICPO-LSTM model, namely, R2, MAPE and RMSE, are all optimal. It is verified that
the performance of the improved ICPO is improved compared with that of the CPO,
and the ICPO-LSTM prediction model is able to provide a certain guidance basis for
tunnel construction.
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