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Abstract: Building operations account for a large amount of energy use and CO2 emissions, and
the morphology of buildings in residential clusters strongly impacts energy efficiency performance.
However, little research has focused on the morphology and energy electricity usage of high-rise
residential clusters in hot summer and cold winter (HSCW) regions. We investigated 96 residential
clusters in Hangzhou, China, and established a corresponding morphology database. Additionally,
we obtained annual electricity consumption for 16 of these residential clusters. With this database, we
performed optimization of morphological parameters upon energy use intensity (EUI) using a genetic
algorithm (GA). Specifically, the cooling, heating, and lighting EUIs of high-rise residential clusters
were studied. After implementing the optimized morphological parameters, there was a reduction of
up to 7.73% in EUI. According to regression analysis, the average aspect ratio was the most significant
factor influencing EUI (r = −0.907), followed by floor area ratio (r = −0.755), average orientation
(r = 0.502), and average number of floors (r = −0.453). These results indicate that a higher intensity of
land development with a greater floor area ratio, average aspect ratio, and average number of floors
can reduce total energy consumption. Additionally, we found that an average building orientation of
southwest 15◦ (with respect to south) is optimal. The findings of this study can assist urban planners
and designers in developing more sustainable residential clusters, leading to decreased energy costs
and CO2 emissions.

Keywords: urban residential clusters; energy use intensity; morphological design; cluster optimiza-
tion; urban sustainability

1. Introduction

The building sector accounts for approximately 37% of global energy consumption and
34% of energy-related carbon emissions, as reported by the UN Environment Programme
(UNEP) [1]. According to the Professional Committee of Building Energy and Emissions
(CABEE), energy consumption by buildings in China reached the equivalent of 2.16 billion
tons of coal in 2020, with urban residential buildings accounting for 38.68% of this total [2].
Meanwhile, China’s CO2 emissions are soaring, increasing by 750 million tons between 2019
and 2021 [3]. From a global context, the 26th United Nations Climate Change Conference
(COP26) resulted in a promise to reduce carbon emissions and achieve net-zero by 2050 [4].
Additionally, the Chinese government promised to achieve peak carbon emissions by 2030
and carbon neutrality by 2050. Thus, the reduction in energy consumption and carbon
emissions is a national and global issue, and improving the energy efficiency of buildings
is crucial for achieving these goals.
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The migration of people from rural to urban areas, commonly referred to as urbaniza-
tion, has accelerated since the era of industrialization [5]. Over 50% of the global population
lived in urban areas in 2018, with projections exceeding 60% by 2030 [6]. The intertwined
consequences of urban development and climate change may be more significant in devel-
oping countries [7], such as China, where the urbanization rate has rapidly increased from
10.64% in 1949 to 63.9% in 2020 and continues to grow [8]. With increased urbanization,
more residential buildings need to be constructed, which leads to higher consumption of
resources and larger greenhouse gas emissions. Previous studies have analyzed energy
reduction strategies in residential buildings, mainly focusing on low-rise housing [9]. How-
ever, under rapid urbanization and land shortages in cities, high-rise residential buildings
are becoming more common. Accordingly, cities must take effective measures to reduce the
energy consumption of high-rise residential buildings.

Optimization objectives in energy-efficient building design can be broadly categorized
into four domains: comfort, energy, cost, and other factors. Among these, energy stands
out as the most pivotal objective [10]. At the same time, urban residential building design
can significantly impact energy use intensity and the local microclimate [7]. Building form,
or morphology, plays a vital role in reducing urban energy demand and usage [11]. It is
vital to implement effective urban planning and building design, as these are early steps
in urban development and affect later energy efficiency [12]. Energy-efficient building
design has demonstrated advantages in reducing energy usage and pollution [13]. Due to
the complexity of modeling and simulation of performance, current research on building
energy consumption has mostly focused on the scale of individual buildings, such as
building envelopes [14], thermal comfort [15–17], and ventilation performance [18]. While
there are a few case studies at the urban scale, they primarily rely on simulated data
and do not have empirical support from actual energy consumption data. For instance,
in Singapore, it was demonstrated that an effective urban typology can bring a 12-fold
higher rate of reduction in building cooling demand [19]. In Tehran, it was found that
urban morphology significantly influences the energy use intensity of buildings, decreasing
cooling demand by more than 10% [20]. Finally, in Northern Europe, researchers discovered
that the morphology of urban canyons affected overall performance, with energy efficiency
increases of up to 19% for housing [21].

Residential clusters act as basic constituent units of cities and have an impact on
their microenvironments, thereby significantly affecting building energy usage. Thus,
urban morphology may enhance or mitigate microenvironment effects on clusters and
building energy demand [22]. In addition, clusters are smaller in scope and consequently
easier to optimize than large urban areas. We therefore investigated the morphological
characteristics of residential clusters and propose appropriate design strategies. Due to
the complexity of comprehensive modeling and the difficulty in obtaining data on energy
consumption, we explore the impact on the energy objective by changing a single variable,
adopting a simple model that represents the morphology. Consequently, these models are
optimized to account for the lack of the ability to conduct dynamic searches.

Existing research has shown that cities can be effectively represented as several res-
idential clusters with different morphologies [23]. However, factors such as high model
complexity, lengthy simulation times, and challenges in obtaining real energy consump-
tion data for residential clusters have hindered progress. Previous studies that simulated
and optimized building performance lacked empirical data and primarily focused on the
scale of individual buildings, neglecting the impact of relative position between buildings.
Furthermore, current building energy optimization research typically involves fixed cases,
with limited consideration given to interactions between morphological factors. Given
this background, we present a case study on the morphology and electricity consumption
of residential clusters in Hangzhou, China, with objectives as follows: (1) build a mor-
phological database for Hangzhou, providing variables and corresponding value ranges
for the subsequent optimization model; (2) utilize the electricity consumption data from
16 residential clusters, identify keying morphological indicators influencing consumption;
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(3) develop an automated optimization parameter model using Grasshopper, employing the
genetic algorithm as its core; and (4) integrate Pareto results and quantitative analysis and
examine the relationship between building morphology and energy performance. Finally,
we formulate design recommendations for residential buildings in Hangzhou based on
the findings.

2. Literature Review
2.1. A Review of Building Morphology Parameters

In exploring energy-efficient strategy, it is crucial to discuss design prototypes for
existing buildings [24]. This is because prototypes are the starting point for research in
building design, energy efficiency, solar performance, and so on [25]. Hong et al. developed
a methodology for single low-rise office building prototypes in Shanghai, specifying the
construction year, average orientation, number of floors, window:wall ratio (WWR), and
plan form. Through correlation analysis, they determined that the number of floors and
WWR are the most influential factors affecting energy consumption [23]. Premrov et al.
studied a one-story timber-frame house under different climate conditions, also investi-
gating variations of building geometry, shape factor, and glazing-to-wall area ratio on the
south façade [26]. Looking at larger-scale trends, Li et al. built a database of single resi-
dential building shapes in Chongqing utilizing satellite images, including characteristics
such as aspect ratio, building height, and compactness ratio to define a representative
prototype [27]. Similarly, Schaefer et al. built a database on geometrical features of single-
family low-income housing in southern Brazil, using quantitative variables such as the
dimensions of the façade and floor plan shape and area [28]. Additionally, Bhatnagar
et al. identified single building typologies using numerical data like area, aspect ratio,
and number of floors [29]. Samuelson et al. identified the design parameters of single
residential buildings in urban contexts, including WWR, glass type, building orientation,
and building shape [30]. In a similar manner, Li et al. used average building height, floor
area ratio, and building cover ratio as quantitative indicators to characterize residential
districts [31]. Studying urban forms, Mangan et al. investigated building design parameters
of height, height-to-width ratio, and orientation, as well as the typology, plan type, and
number of floors [32]. A summary of morphological parameters of buildings is shown in
Table 1. Overall, morphological parameters can be classified into three categories: density,
geometry, and building type. Accordingly, studies commonly use parameters such as
building density, floor area ratio, and average number of floors [33].

Table 1. Summary of morphological parameters of buildings.

Theme Location Parameters References

Establish prototypical buildings using
performance index system Shanghai

Construction year
Average orientation
Number of floors
Window:wall ratio (WWR)
Plan form

Hong et al. [24]

Influence of the building shape on the
energy performance of timber
buildings

Athens and Seville

Building geometry
Shape factor
Glazing-to-wall area ratio on
south façade

Premrov et al. [26]

Developing typical residential
reference buildings at district level for
bottom-up energy modeling purposes

Chongqing
Aspect ratio
Building height
Compactness ratio

Li et al. [27]
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Table 1. Cont.

Theme Location Parameters References

Build a database on geometrical
features of houses Southern Brazil

Dimensions of the façade
Floor plan shape
Area

Schaefer et al. [28]

Reference building models of office
buildings and application of these
models by evaluating the energy
performance

India
Area
Aspect ratio
Number of floors

Bhatnagar et al. [29]

Identifying synergies and trade-offs
when designing for different energy
objectives of high-rise residential
buildings

Beijing, New York, and
Shenzhen

WWR
Glass type
Building orientation
Building shape

Samuelson et al. [30]

Investigating the relationship
between urban morphology
parameters and residential building
space heating energy performance

Qingdao
Average building height
Floor area ratio
Building cover ratio

Li et al. [31]

Impact of urban form on building
energy and cost efficiency Istanbul

Height
Height-to-width ratio
Orientation
Typology
Plan type
Number of floors

Mangan et al. [32]

Research on how morphology affects building performance mostly focuses on either
the micro level or the macro level, such as a single building or an entire city, and morpholog-
ical parameters are often categorized into the building scale or urban scale [34]. However,
there is little investigation at the scale of residential clusters, which form the basic building
blocks of many cities and showcase a huge influence on microclimate, energy consumption,
and comfort.

2.2. A Review of Building Morphology and Energy Performance

Conventional research to enhance the energy efficiency of buildings primarily focuses
on the materials and insulation capacity, but rarely considers urban or building morphol-
ogy [35]. For example, Gan et al. used simulations to optimize the layout of a 40-story
housing project in Hong Kong, and achieved a reduction in total energy usage of up to
30–40%. Specifically, they optimized the building orientation to minimize the solar radia-
tion from the east and west and maximized the natural ventilation [9]. In a study across
different cities in Italy, Mechri et al. used the analysis of variance (ANOVA) method to
conclude that the envelope transparent surface ratio is the most significant parameter for
heating and cooling efficiency, accounting for more than 50% of the variance [36]. Albatici
et al. also found that buildings in mild and warm climates with the same shape coefficient
exhibit lower heating demand if the south façade has a greater area, considering the amount
of received solar radiation [37]. Additionally, Li et al. investigated how urban morphology
parameters influenced the heating energy performance of residential buildings. Their
results showed that a larger floor area ratio (FAR) reduces heating energy consumption
due to greater received solar radiation. In particular, the heating energy consumption
varied from 43.3 W/m2 to 20.6 W/m2 when the FAR rose from 0.07 to 1.55 [31]. Leng
et al. analyzed the theoretical energy consumption with an external influence on energy
performance of 73 buildings in Harbin. They demonstrated how six urban morphological
factors can significantly reduce heating energy use and that the FAR is the most significant,
contributing to energy savings of up to 10.820 kWh/m2/y, due to the rise in outdoor
environmental temperature [38]. Mangan et al. used 120 urban forms to analyze the effect
of design indicators on building performance, specifically energy performance, CO2 emis-
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sions, and economic costs. Their results showed that building height and height-to-width
ratio have a great influence on energy and economic performance for three urban forms
in Istanbul [32]. Furthermore, Taleghani et al. discussed the energy impact of three urban
block configurations (point, slab, and courtyard) in the Netherlands. They demonstrated
that the courtyard type exhibits the lowest energy consumption for heating because it
has the least exposure to the sun [39]. Building orientation also greatly influences energy
consumption [39,40]. For instance, Valladares-Rendón achieved reductions in received solar
radiation and cooling demand by optimizing the building orientation and solar control
shading systems [40].

Based on this review, there are limitations in the current research on building mor-
phology’s impact on energy consumption. For instance, many parameters that characterize
block morphology and energy use intensity lack corresponding measurable data, which
may lead to inaccurate results. Real energy consumption data is important for verifying
morphologies that can reduce energy use intensity, especially in the context of residential
cluster morphology. Furthermore, previous studies have usually focused on single building
types such as office and residential buildings, but there is little work on residential clusters
because of difficulties in acquiring data and long simulation times for modeling. To address
these issues, we built a database of residential cluster morphology by surveying 1630 resi-
dential buildings from 96 different residential clusters and measured the energy usage of
16 residential clusters in Hangzhou, China. Through clustering and correlation analysis,
the key morphological parameters influencing energy consumption were determined, with
a genetic algorithm used to optimize the model. Using the optimized model, the correla-
tion between the morphological parameters and energy use intensity was obtained, and
suggestions for residential cluster morphology and planning are provided.

3. Methodology
3.1. Research Framework

The framework of this study is shown in Figure 1. This paper constructs an optimiza-
tion model using the genetic algorithm and real power consumption data, to minimize
energy consumption and elucidate an energy-saving design strategy for residential clusters
in Hangzhou.

The first step is to determine basic parameters describing the morphology of residential
clusters according to literature and relevant standards. These parameters are mainly
divided into three categories: urban plans, building geometry, and building types. Using
these basic indices, 96 residential clusters and 1630 individual buildings in Hangzhou were
investigated. Then, through collecting the corresponding spatial patterns, a morphological
database of residential clusters was built to provide variables and corresponding value
ranges for the optimization model.

The second step is to perform field research to obtain the electricity consumption of
16 residential clusters in Hangzhou over the last three years. Based on the morphological
database of Hangzhou constructed in the first step, we analyze the correlation between the
morphological indicators of the clusters and the energy consumption of heating, cooling,
and lighting. As a result, we can obtain the key morphological indicators that influence
energy consumption.

In the third step, the optimization model is constructed using the key indicators of
morphology and the corresponding value ranges clarified in step two. The optimization
model uses Grasshopper to build the geometric model, and then Ladybug and Honeybee
to simulate energy performance. Finally, through Wallacei, the genetic algorithm is used to
automatically adjust the model variables to achieve optimization.
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The fourth step is to perform regression analysis on the Pareto solution of the op-
timization model obtained in step three. Finally, we determine the key parameters and
corresponding morphological design strategies for residential clusters that lead to en-
ergy savings.

3.2. Study Area

The studied residential clusters are in Hangzhou City, which is located at 29◦11′ to
30◦34′ north latitude, 118◦20′ to 120◦44′ east longitude. Hangzhou is the provincial capital
of Zhejiang Province in China, and has an urbanization rate of 83.6%. By the end of 2021,
the permanent population of Hangzhou was 12.204 million, and the total area of the city is
16,850 square kilometers, yielding a population density of 724 inhabitants/km2. Hangzhou
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is located in a hot summer and cold winter (HSCW) climate zone, characterized by an
average temperature in January ranging from 0 ◦C to 10 ◦C, and an average temperature in
July ranging from 25 ◦C to 30 ◦C. As a rapidly urbanizing city, Hangzhou has a substantial
demand for building energy, particularly for heating and cooling during the winter and
summer, respectively.

3.3. Correlation Relationship Analysis

The correlation analysis between the morphology of residential clusters and energy
use was conducted using the Pearson correlation coefficient within SPSS Statistics V25
software. The Pearson correlation coefficient serves as a critical index reflecting the extent
of correlation between the indicator and the clusters’ energy use. Correlation analysis
is a statistical means for examining the extent of correlation between multiple variables.
The strength of correlation between variables is expressed by the correlation coefficient.
Further, the p-value determines the significance level of differences between variables. The
correlation coefficient r assesses the extent of linear correlation. A positive r value indicates
a positive correlation, and a negative r value indicates a negative correlation. The larger the
absolute value of r, the stronger the correlation between the variables. Pearson correlation
coefficients are calculated using Equation (1):

r = ∑n
1 (xi − x) ∗ (yi − y)[

∑n
i=1(xi − x)2∑n

i=1(yi − y)2
]−2 (1)

where r is Pearson’s correlation coefficient, xi, and x represent the dependent variable X
and its mean, and yi and y represent the dependent variable Y and its mean, respectively.

3.4. The Objective of Optimization

Building energy consumption can be categorized into life-cycle energy consumption
and operational energy consumption. In a narrow sense, building energy consumption
refers to the energy consumption as part of the operations of a building, such as heating,
cooling, lighting, providing hot water, and elevator operations, among other processes.
According to the China Building Energy Consumption Report of 2020 [41], on average, the
total energy consumption during the operational phase of a building accounts for 46.6%
of the total energy consumption throughout the building’s life cycle. Additionally, the
amount of carbon dioxide released in the operational phase accounts for 42.8% of the total
carbon emissions over the entire life cycle of buildings. Therefore, it is vital to reduce the
energy use intensity and carbon emissions during the operational phase of a building.

The optimization of this study is to evaluate the impact of morphological parameters
of residential clusters on building energy performance. The energy use intensity (EUI)
of hot water and elevator operation consumed by residential clusters is less affected by
changes in morphology; therefore, we do not include them in the calculation of EUI in
this study. Thus, we define the energy consumption of the building as the sum of heating,
cooling, and lighting energy consumption. The formula for calculating EUI is shown in
Equation (2):

EUI = EUIheating + EUIcooling + EUIlighting (2)

where EUI is the total energy use intensity, EUIheating is the energy use intensity of heating,
EUIcooling is the energy use intensity of cooling, and EUIlighting is the energy use intensity
of lighting.

3.5. Optimization Algorithm

The disciplines of building design and performance are inherently distinct areas of ex-
pertise. In exploring their interconnected relationship, overcoming disciplinary boundaries
poses a significant challenge in research. Recently, the combination of simulation tools and
optimization algorithms has been used in the building performance analysis [42], bridging
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the connection between building morphology and performance. In this building energy
performance study, energy simulation is conducted using the Grasshopper–Honeybee
platform, which is built on the EnergyPlus engine. Grasshopper 1.0.0007 software, a
multi-functional open platform, can efficiently perform simulations of energy consump-
tion, lighting, and solar radiation, thus facilitating the assessment of buildings in early
design stages [43,44]. In order to obtain progressively optimized building morphology, a
genetic algorithm (GA) is adopted for the optimization task. The morphologies with poor
performance are gradually eliminated, and better performance is achieved by adjusting
independent variables and generating residential groups in a performance simulation
based on the GA (Figure 2). GA-based optimization was first proposed by Holland [45],
with Darwin’s theory of evolution and Mendel’s doctrine of genetics as its foundation. This
method draws on evolutionary biology concepts such as heredity, mutation, crossover,
and variation, and utilizes the objective function of stochastic search and optimization
of solutions [46]. The genetic algorithm can account for the links and mutual influence
between various factors, such as architectural morphology in our case, and has an abil-
ity to handle complex situations [47]. Meanwhile, Wallacei is an evolutionary objective
optimization engine in Grasshopper, using GA as its core, implementing the NSGA-II
(non-dominated sorting genetic algorithm II) and the K-means clustering algorithm. To
achieve minimum energy use intensity, the values of independent variables are frequently
updated, different morphologies are obtained, and the results of the Grasshopper energy
consumption simulation are entered in Wallacei. In the subsequent optimization, the total
number of optimization generations is set to 100, and the number for each generation is 50.
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4. Building the Database and Optimization Model
4.1. Morphological Characteristics of Residential Clusters

This paper selects 96 high-rise residential clusters as the basis of the database, with
16 of them used for model validation, as listed in Figure 3. Table 2 shows the parameters of
classification for the high-rise residential cluster prototypes, and these indices are based on
the previous work described in Section 2.1. The relevant indicators are analyzed statistically
to inform the construction of the model. These residential clusters adequately represent the
current morphology and development trends of residential clusters in Hangzhou, which
makes their analysis useful for the construction of future communities and facilitation of
future studies.
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Table 2. Classification of high-rise residential cluster parameters.

Classification Core Parameters Calculation Formula

Site plan Floor Area Ratio (FAR) FAR = ∑n
i=1 Si
A

Building Density (BD) BD = ∑n
i=1 Fi
A

Geometry

Average Number of Floors (AF) AF = ∑n
i=1 Si

∑n
i=1 Fi

Average Depth (AD) AD = ∑n
i=1 Di

n
Average Orientation (AO) AO = ∑n

i=1 Oi
n

Average Aspect Ratio (AAR) AAR =
∑n

i=1
Li
Di

n

Type Building Shape (BS) -
Building Layout (BL) -

Note: n is the number of buildings; Si is the gross floor area; A is the area of block; Fi is the gross footprint area; Di
is the depth of the building; Oi is the orientation of the building; Li is the length of the building.

Then, the basic data of the 96 high-rise residential clusters, comprised of 1630 individ-
ual buildings in total, were collected to summarize the basic information related to floor
area ratio (FAR), building density (BD), average number of floors (AF), average orientation
(AO), building shape (BS), building layout (BL), average aspect ratio (AAR), and average
depth (AD) for each residential cluster.
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(1) The building shapes

According to the statistical results, it was found that there were 66 slab-type build-
ings, accounting for 68.75% of the total; Accordingly, there were 30 point-type buildings,
accounting for 31.25%. Thus, the slab-type building is the most common among residential
groups in the Hangzhou area (Table 3).

Table 3. The number and proportion of different building shapes of residential clusters.

Shapes Number Proportion (%)

Slab type 66 68.75
Point type 30 31.25

(2) The building layout

There are three main layout forms for the clusters: parallel, staggered, and courtyard.
However, based on field research and analysis of CAD drawings and satellite maps, there
are also layout forms that are a mix of the three categories, as well as “free-form” layouts
formed by the influence of the base restriction: these are collectively referred to as “other”
in this study. According to the statistical results shown in Table 4, among the four types
of layout forms, the number and proportion of parallel layout is the largest, with a count
of 52 groups and accounting for 54.17% of the total. This is followed by staggered layout,
with a count of 26 groups and accounting for 27.08%. The number of courtyard and other
layouts is relatively small. Therefore, we select the most typical row and column layouts as
the main object for subsequent tests.

Table 4. The number and proportion of different building layouts of residential clusters.

Layout Number Proportion (%)

Parallel 52 54.17
Staggered 26 27.08
Courtyard 6 6.53
Other 12 12.5

(3) The average orientation

Statistical analysis of the average orientation (AO) of the research sample is shown
in Figure 4a, in which the southeast direction is defined as positive and the southwest
as negative (with due south as 0◦). The building orientations of residential groups in
Hangzhou range from southwest 30◦ to southeast 30◦. In addition, most are concentrated in
the range of southwest 10◦ to southeast 10◦. Therefore, we select southwest 30◦ to southeast
30◦ as the range of the orientation variable for the subsequent tests.
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Figure 4. Violin plots of the distribution of morphology parameters of surveyed residential clusters.
(a) Average orientation (AO) statistical, (b) average aspect ratio (AAR) statistical, (c) average depth of
point-type (AD-point) statistical, (d) average depth of slab-type (AD-slab) statistical.
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(4) The aspect ratio and depth

Statistical analysis of the average aspect ratio (AAR) for slab-type buildings in the
sampled clusters is shown in Figure 4b. It is found that the aspect ratio ranges from 2.0 to
3.5, with most values concentrated between 2.2 and 2.8. Therefore, in subsequent analysis,
we adopt 2.0–3.5 as the range of variation for the aspect ratio of slab-type buildings.

The average depths of point-type buildings (AD-point) in the sampled residential
clusters studied are shown in Figure 4c. We can see that the depths of point-type buildings
range from 10 to 25 m, and they are mainly concentrated around 15 m. Statistics on the
depths of slab-type buildings are shown in Figure 4d. The average depths of slab-type
buildings (AD-slab) in Hangzhou are mainly distributed between 13 and 16 m, and the
most common depth is 15 m, accounting for about 25% of the total. Thus, we use the depth
of 15 m as one of the basic parameters for slab-type buildings in our model construction.

4.2. Electricity Usage of Residential Clusters

Electricity consumption of residential clusters is recorded every month by the Hangzhou
Electricity Bureau. We collected information on 16 residential clusters in Hangzhou, totaling
176 buildings, as well as their power consumption over the past three years. Information
on the morphology of these 16 residential clusters is then summarized according to the
previously described indices. Due to the source of data being aggregate values from
the Hangzhou Electricity Bureau, it is impossible to get the sub-energy of EUIheating and
EUIcooling directly. Therefore, it is necessary to process the obtained data. This involves
obtaining the average monthly energy consumption during the transitional seasons (from
March to May and September to November) and then subtracting the average energy
consumption from the energy consumption during both the heating and cooling seasons
separately, thus obtaining EUIheating and EUIcooling.

Table 5 and Figure 5 present the total EUI, EUIheating, and EUIcooling of the surveyed
high-rise residential clusters and corresponding images, respectively. Table 4 shows that
the total EUI of residential clusters in Hangzhou ranges from 22.35 to 45.91 kWh/m2/y,
with EUIheating ranging from 1.62 to 6.95 kWh/m2/y in winter and EUIcooling ranging from
12.39 to 22.35 kWh/m2/y in summer.

Table 5. The electricity consumption and morphology of the 16 sampled residential clusters.

No. EUI
(kWh/m2/y)

EUIheating
(kWh/m2/y)

EUIcooling
(kWh/m2/y)

FAR BD (%) BS BL AD AF AO AAR

R1 32.82 3.49 15.20 2.00 22 1.00 4.00 17.28 18.00 −22.52 4.00
R2 28.72 2.72 13.44 2.15 32 1.00 3.00 18.29 7.00 3.55 3.80
R3 23.74 1.62 12.89 2.15 31 1.00 1.00 26.64 8.00 −17.42 4.00
R4 29.71 4.71 14.87 2.15 31 2.00 3.00 21.93 18.00 0.00 1.00
R5 32.01 4.69 15.25 2.15 31 1.00 1.00 11.35 10.00 −12.69 3.80
R6 36.16 5.26 15.08 2.15 31 1.00 1.00 16.29 8.00 −19.72 3.50
R7 38.33 5.60 15.09 2.15 31 1.00 1.00 11.17 8.50 −16.31 3.60
R8 29.50 4.45 14.88 2.15 31 1.00 1.00 16.93 8.40 −20.70 3.00
R9 33.62 6.95 17.40 1.24 22 1.00 1.00 20.75 6.00 0.00 4.00
R10 34.37 5.40 15.00 1.24 22 1.00 1.00 20.75 6.00 23.10 4.00
R11 30.37 3.21 12.39 2.71 22 3.00 3.00 33.02 19.00 −13.94 1.20
R12 22.35 1.91 13.11 2.60 19 1.00 1.00 14.05 13.00 13.35 2.40
R13 45.91 2.47 12.83 2.20 19 3.00 1.00 13.95 14.00 20.00 3.00
R14 23.83 3.60 17.28 2.71 22 3.00 2.00 14.23 20.00 −25.76 1.10
R15 31.16 3.79 22.35 2.10 25 1.00 1.00 16.00 13.00 −19.79 3.60
R16 30.76 2.58 16.15 2.59 18 1.00 1.00 16.09 12.00 16.96 2.60

Notes: BS: 1, 2, and 3 represent slab, point, and slab-point mixed, respectively; BL: 1, 2, 3, and 4 represent parallel,
staggered, courtyard, and other, respectively; AO: negative numbers represent southwest, positive numbers
represent southeast, and 0◦ represents due south direction.
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Figure 5. Satellite images of the 16 sampled residential clusters.

4.3. Extracting the Key Parameters of Morphology Based on Energy Use Intensity

Table 6 presents the correlation analysis between the morphology indicators and the
electricity consumption. The most impactful parameters are subsequently selected for
further classification. The correlation coefficients showcase the following trends, in order
of decreasing importance: for EUIheating—FAR > AAR > AD > AO > AF > BL > BS > BD;
for EUIcooling—FAR > AF > BD > BS > AAR > BL > AO > AD; and for total EUI—AD > AO
> BS > FAR > BL > AAR > BD > AF. The f-value assesses the collective impact of all the
indicators. This result suggests that FAR, AF, AO, and AAR are the most impactful on the
energy consumption of the residential clusters.

Table 6. Correlation analysis of residential clusters’ average annual electricity consumption per unit
floor area for each indicator.

Classification Indicator

Total EUI EUIheating EUIcooling

Pearson
Correlation

f-Value
(2-Tailed Sig.)

Pearson
Correlation

f-Value
(2-Tailed Sig.)

Pearson
Correlation

f-Value
(2-Tailed Sig.)

Floor area ratio (FAR) −0.359 0.172 −0.654 0.006 −0.209 0.438

Building density (BD) −0.080 0.767 0.254 0.342 −0.071 0.793

Average number of floors (AF) −0.176 0.514 −0.345 0.190 0.019 0.945

Average depth (AD) −0.255 0.341 −0.133 0.625 −0.310 0.243

Average orientation (AO) 0.249 0.353 −0.146 0.589 −0.289 0.277

Average aspect ratio (AAR) 0.306 0.250 0.212 0.432 0.130 0.630

Building Shape (BS) 0.136 0.615 −0.449 0.405 −0.221 0.410

Building Layout (BL) −0.164 0.544 −0.970 0.550 −0.208 0.440

Table 7 and Figure 6 show a 3 to 4 class K-means clustering of the indices influencing
energy consumption. For the 4-class clustering, BS, BL and FAR formed the first cluster; AF
and AD formed the second cluster; BD and AAR formed the third cluster; and AO was the
last cluster. Under the 3-class clustering, BS, BL, FAR, AF, AD formed the first cluster, BD
and AAR formed the second cluster, and AO formed the last cluster.
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Table 7. Variable cluster analysis results for the residential clusters.

Classification Indicator 4-Class Clustering 3-Class Clustering

FAR 1 1
BD 2 2
BS 1 1
BL 3 1
AD 3 1
AF 1 1
AO 4 3
AAR 2 2
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By analyzing the 4-class K-means clustering results, we determine that AO, AAR, AF,
and FAR are the major factors influencing the total EUI of the residential clusters. Notably,
this result aligns with the Pearson correlation analysis described above.

4.4. Optimization Model for the Residential Clusters

Using the key parameters of the residential model for energy use reduction, we can
construct a corresponding hypothetical block model. The Standard for Urban Residential
Area Planning and Design (GB50180-2018) [48] specifies that the scale of residential clusters
should be approximately 150–250 m. Furthermore, Xia et al. found that in the central area
of Hangzhou, the distance between road intersections is typically 50–150 m [49]. Thus,
this study selected a 150 m × 150 m block size and a default direction of north—south for
the simulation study. Recall from Section 3.3 that Hangzhou residential clusters with a
parallel layout accounted for 54.17% of the total. Therefore, we use a parallel layout as the
basic layout type, and subsequently perform optimization for high-rise parallel-slab and
parallel-point shape classifications.

According to the Neighborhood Land Use and Building Control Index Table from
GB50180-2018 [48], the number of floors for high-rises should be 10–18, the floor area ratio
2.2–2.8, the maximum value of building density 22%, the minimum value of the green
space rate 35%, and the maximum height 54 m (Table 8).
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Table 8. Standard regulations for high-rise residential buildings (GB50180-2018).

Type FAR Average Number of Floors Building Density Green Area Ratio Height

High-rise Class I 2.2–2.8 10–18 ≤22% ≥35% ≤54

Based on the key residential cluster morphology parameters discussed in Section 3.5
and the corresponding variable value ranges obtained from the standard regulations and
survey database, a hypothetical block model is constructed. The variables and their ranges
are shown in Table 9, and the model for high-rise residential clusters is shown in Figure 7.

Table 9. High-rise model variables and the range of values.

Factors Range Step

AF [10, 18] 1
FAR [2.20, 2.80] 0.01
AAR [2.0, 3.5] 0.1
AD [10, 25] 1
AO (◦) [−30, 30] 1
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Figure 7. Benchmark model for high-rise residential clusters.

The parameters are largely set according to the Design Standard for Energy Efficiency
of Residential Buildings (DB33/1015-2021) [50], with Table 10 presenting these settings for
the building energy simulation in Honeybee.

Table 10. Settings for the energy simulation model.

Parameters Setting

Weather data Typical meteorological year of Hangzhou in EPW files

Simulation period From 1 January to 31 December

Constructions Wall U value = 0.8 W/(m2·K)

Roof U value = 0.25 W/(m2·K)

Floor U value = 1.2 W/(m2·K)
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Table 10. Cont.

Parameters Setting

Window U value = 1.8 W/(m2·K),
SHGC = 0.4

Internal loads People Occupant density:0.05 people/m2

Lighting 5 W/m2

HVAC System Heating/cooling season and setpoints Heating: 15 December to 20 February, 18 ◦C
Cooling: 15 June to 15 September, 26 ◦C

Infiltration 1 ACH

5. Results
5.1. Energy Use Intensity of the Benchmark Model

The optimization trend of each performance indicator is shown in Figure 8. It can be
found that the optimization objectives gradually become stable as the number of simula-
tions increases and tend to converge after 600 simulations. This indicates that the simulation
data are reasonable and useful for subsequent analysis and research.
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During the optimization process, all morphological parameters and the energy perfor-
mance at each generation were recorded. The results are shown in Table 11. Comparing
the total energy use intensity (EUI) of residential clusters before and after optimization,
we find the optimized clusters all have reduced energy usage to differing degrees, and the
energy efficiency ratio is 7.73%. For the subcategories of EUIheating and EUIcooling, there
are reductions compared to the pre-optimization states, but the energy consumption of
lighting has increased compared to the pre-optimization states.

Table 11. Optimization results for the various types of energy consumption of residential clusters.

Benchmark Clusters Optimization Clusters Energy Reduction Efficiency Ratio (%)

Total EUI (kWh/m2/y) 28.96 26.72 2.24 7.73
EUIcooling (kWh/m2/y) 17.43 15.72 1.71 9.81
EUIheating (kWh/m2/y) 2.21 1.32 0.89 40.27
EUIlighting (kWh/m2/y) 9.32 9.68 −0.36 −3.86

5.2. Correlation between the Morphology Parameters and Energy Use Intensity

To analyze the correlation between the morphological parameters and energy use
intensity (EUI), a scatter diagram was generated. The simulation results are shown in
Figure 9. All the results were statistically significant at a level of 0.01. The correlation
coefficients of AAR, FAR, AF, AO with the EUI of the residential clusters were −0.907,
−0.755, −0.453, and 0.502, respectively. In addition, the absolute values of the correlation
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coefficients of AAR, FAR, and AO with EUI all exceeded 0.5, suggesting strong relation-
ships. The absolute value of the correlation coefficient between AF and EUI exceeded 0.4,
suggesting a moderate correlation between them. In the meantime, AAR, FAR, and AF
had a significant negative correlation with EUI. Figure 9a–c demonstrate that as AAR, FAR,
and AF increase, there is a gradual decrease in the EUI of the residential clusters. FAR
and AF reflect the intensity of development and the capacity of the area for construction.
Therefore, as the intensity of development of the clusters increase, the EUI will decrease.
Also, these results match the conclusion put forward by Liu [34]. Based on the scatterplots,
AO between −30◦ (30◦ southwest) and 0◦ shows an EUI of approximately 29.20 kWh/m2

when averaged at 30◦ southwest. Shifting AO to 15◦ southwest, the EUI is reduced to
28.85 kWh/m2 (Figure 9d). This corresponds to a decrease of about 0.35 kWh/m2 and an
energy saving rate of 1.2%. Therefore, energy consumption decreases and then increases as
the building orientation changes from west to east, with the minimum energy consumption
occurring at 15◦ southwest. Within the AO range of 0 to 30◦, there is a positive relationship
between AO and EUI.
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5.3. Regression between Urban Morphological Parameters and Energy Use Intensity

Based on the results of the correlation analysis, we set the residential cluster morphol-
ogy variables that exhibited significant correlation as independent variables and EUI as the
dependent variable to perform multiple regression analysis. The final regression equation
is as follows:

EUI = −1.093 ∗ FAR−0.03 ∗ AF + 0.004 ∗ AO − 0.804 ∗ AAR + 33.254 (3)

The regression analysis also produced standardized coefficients, as shown in Table 12.
The multiple correlation coefficient R is 0.919, which corresponds to an R2 of 0.844. In
statistical terms, a higher determination coefficient (R2 value) signifies a better fit of the
model to the objective, with a maximum value of 1. Thus, there is a strong fit of the
equation and the data, suggesting a linear relationship between the residential cluster
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morphological parameters and EUI. Furthermore, there is a significance value (Sig.) of
0.000, which demonstrates a high level of statistical significance and reliability.

Table 12. Results of the multiple regression analysis.

Dependent Variables R Square (R2) Sig. Standardized Coefficients
FAR AF AO AAR

EUI 0.844 0.000 −0.162 −0.088 0.062 −0.719

The validity of the model is also confirmed by comparing EUI values calculated using
the regression equation with surveyed values of 12 slab-type residential clusters from the
database (Table 13). The validation index used is the coefficient of variation of root mean
square error (CV(RMSE)) [51]. The equation of CV(RMSE) is as follows:

CV(RMSE) =

√
∑n

i=1(ei − êi)
2

n − p
(4)

where e represents the mean of measured values, ei and êi represent measured and predicted
values of cluster i, respectively, n is the overall number of buildings, and p is the number
of model factors. The CV(RMSE) value resulting from the model predictions is 21.68%.
According to ASHRAE Guideline 14, a CV(RMSE) lower than 30% is indicative of a credible
model estimation. Therefore, this regression equation can be employed to describe the
relationship between residential cluster morphology and EUI in Hangzhou.

Table 13. Validation of the model comparing EUI and morphological parameters of sampled residen-
tial clusters.

No. Measured EUI (kWh/m2/y) Predicted EUI (kWh/m2/y) FAR AF AO AAR

1 32.82 27.22 2.00 18.00 −22.52 4.00
2 28.72 27.65 2.15 7.0 3.55 3.8
3 23.74 27.38 2.15 8.0 −17.42 4.0
4 32.01 27.50 2.15 10.0 −12.69 3.8
5 36.16 27.78 2.15 8.0 −19.72 3.5
6 38.33 27.70 2.15 8.5 −16.31 3.6
7 29.50 28.16 2.15 8.4 −20.70 3.0
8 33.62 28.50 1.24 6.0 0.00 4.0
9 34.37 28.60 1.24 6.0 23.10 4.0
10 22.35 28.15 2.60 13.0 13.35 2.4
11 31.16 27.60 2.10 13.0 −19.79 3.6
12 30.76 28.04 2.59 12.0 16.96 2.6

Investigating the multiple linear regression results above, one can observe the following.

(a) The high R2 value of 0.844 indicates that the morphology of residential clusters
significantly influences energy use intensity in Hangzhou. Furthermore, the model
accounts for 84.4% of the variation in EUI, leaving only 15.6% to be caused by other
factors, such as the transparent envelope, materials of enclosure, occupant behavior,
and so on.

(b) AAR, FAR, and AF have a negative impact on the annual energy use intensity of
residential clusters. Furthermore, when AO ranges from 0 to 30◦, AO has a positive
impact on EUI, but in the range of −30 to 0◦, it has the lowest energy use intensity
when AO is 15◦ southwest.

(c) The magnitudes of the standardized coefficients indicate that among the four mor-
phological parameters, AAR has the strongest influence on the annual energy use
intensity of residential clusters (−0.719). Concordantly, FAR (−0.162), AF (−0.088),
and AO (0.062) have a smaller impact on energy use intensity.
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6. Discussion

The optimization results demonstrate that varying morphologies of residential clusters
have different impacts on energy use intensity in Hangzhou, a hot summer and cold winter
(HSCW) area. Many researchers, architects, and urban planners are broadly interested in
energy-efficient building design [52,53]. However, it is crucial to explicitly quantify how the
morphology of residential clusters influences energy use intensity. This study accordingly
offers data-driven suggestions for early-stage design of residential clusters, particularly
with regard to morphological parameters of residential clusters that significantly impact
energy consumption, such as floor area ratio, average number of floors, average orientation,
and average aspect ratio.

According to the optimization results, the EUI differs by approximately 7–8% across
various morphologies, which is in line with the findings of [54]. From the results of the
correlation analysis, it is apparent that AAR, FAR, AF, and AO exhibit notable correlations
with the total energy use intensity of the clusters. AAR, FAR, and AF negatively influence
energy use intensity. The greater the FAR is, the higher the energy consumption efficiency
of the cluster. FAR, AF, and AAR are three principal indicators that characterize the spatial
intensity of residential clusters. In cities, the density of land development closely aligns
with FAR, AF, and AAR, which is a situation that often entails trade-offs. In general, a high
intensity of land development means a greater FAR, a taller AF, and a higher AAR, and
a lower intensity of land means smaller values of FAR, AF, and AAR. Thus, residential
clusters on land with high-density development are more amenable to reductions in energy
use intensity though optimizing building morphology.

Energy flow within a residential cluster is realized through heat conduction, convec-
tion, and radiation between the buildings and the outdoor air. Under the constraint of
FAR, if the AF or AAR becomes larger, the morphology of clusters will be scattered and
the amount of outdoor open space will be larger. When development density of clusters
becomes higher, the building compactness within high-rise clusters increases, resulting in a
reduction in heat exchange between the building and the outdoor space. For regions with
HSCW climates, solar radiation is the main source of heat gain for buildings. However,
high-development-intensity clusters gain less solar radiation due to more shade between
buildings, which reduces cooling energy consumption in summer. Additionally, in this
situation, there is an increase in heat exchange through the external air. This is attributed to
the higher buildings, leading to a corresponding acceleration in wind speed [39]. Wang
et al. also found that an increase in the distribution of building heights will contribute
to increased diversity of the buildings within a parcel of land, facilitating more effective
dissipation of heat [55]. Building height significantly influences outdoor temperature distri-
butions, with greater heights resulting in potentially lower outdoor temperatures in the
summer [56,57], which can further reduce cooling energy use. During winter, the energy
consumption is more significantly affected by the heat exchange in the outdoor space,
even though the building façade receives less solar radiation. Also, reasonably deep urban
canyons can lead to decreased ventilation efficiency [58]. Accordingly, the space of high-
building-intensity settlements is more conducive to the reduction in indoor heat exchange
from the building to the outdoor area. Leng et al. showed that a higher spatial intensity of
city blocks contributes to improved heating energy efficiency [38]. Additionally, Liu found
that for FAR in the range of 0.8–3.0, as FAR increased, the total energy consumption inten-
sity decreased [34]. Additionally, Natanian studied the energy performance of building
prototypes across various FAR values. The results showed that as the FAR increases, the
energy cooling demand of residential buildings tends to decrease [59]. Previous studies
conducted in various climates have also demonstrated that increased building compactness
contributes to enhanced building energy efficiency [60,61]. Thus, whether the primary goal
is to reduce costs for developers or to increase energy efficiency, a higher development
density is preferable for high-rise residential clusters. Consequently, some researchers have
proposed high-density development models, especially for residential buildings in urban
areas, as a strategy to increase energy savings [61].
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From the optimization results, it can be concluded that the ideal AO for the residen-
tial clusters was southwest 15◦. This is primarily because the prevailing summer wind
direction in Hangzhou is southeast, and the southwest orientation of buildings is more
conducive for natural ventilation efficiency in the clusters. This natural ventilation can
facilitate the removal of internal heat, resulting in lower outdoor ambient temperatures
during summer and reducing the cooling energy consumption. At the same time, this
orientation is conducive to the building façade gaining more solar radiation in the winter,
thus reducing the heating energy consumption in winter. Liu et al. also found that in
Jianhu, China, another region with an HSCW climate, a building facing south or southwest
at 15◦ is advantageous for capturing optimal solar radiation and preventing overheating or
overcooling [34].

7. Conclusions

As CO2 emissions increase, it has become increasingly important to construct energy-
efficient residential clusters. With an improved understanding of building morphology,
urban planners and designers can design more sustainable residential clusters and commu-
nities [62]. The main aim of this study was to identify building morphologies for residential
clusters that reduce energy use intensity based on modeling and comparisons to real energy
use data. Consequently, we quantitatively investigated the collective impact of morphology
parameters on the energy use intensity of residential clusters in Hangzhou, China, which is
characterized by a hot summer and cold winter (HSCW) climate. We compare 16 residential
clusters’ real electricity usage data with 780 simulated data cases through a combination of
statistical analysis and modeling. Accordingly, we develop a model to predict the energy
use intensity of residential clusters.

For the area of Hangzhou, China, a morphological database of 1630 residential build-
ings from 96 residential clusters and an energy use database of 16 residential clusters were
built. The residential clusters were mostly dominated by slab-type buildings, accounting for
68.75% of the total, while the form of building layouts was dominated by parallel layouts,
accounting for 54.17%. At the same time, the average orientation ranged from southwest
30◦ to southeast 30◦, and was mainly distributed between southwest 10◦ and southeast 10◦.
The average aspect ratios of the building floors ranged from 2.0 to 3.5, while the depths
ranged from 10 to 25 m, mainly being concentrated around 15 m. According to the surveyed
data, the EUIs of residential clusters in Hangzhou ranged from 22.35 to 45.91 kWh/m2/y,
with EUIheating ranging from 1.62 to 6.95 kWh/m2/y in winter and EUIcooling ranging from
12.39 to 22.35 kWh/m2/y in summer.

From analyzing the electricity usage and morphology database, we found that AAR,
FAR, AF, and AO are the most crucial factors influencing the energy consumption of
residential clusters. Using the optimized morphological parameters, the total EUI can be
reduced by 7.73%. The correlation analysis results highlight that AAR is the most significant
factor influencing EUI, which is followed by FAR (r = −0.755), AO (r = 0.502), and AF
(r = −0.453). AAR, FAR, and AF show negative correlations with EUI. The optimal AO
is southwest 15◦, which is beneficial in decreasing EUI. When AO ranges from southeast
0 to 30◦, it shows a positive correlation with EUI. The crucial morphological parameters
influencing the EUI of residential clusters are AAR and FAR, with standard coefficients
of −0.719 and −0.162, respectively. Furthermore, the AAR has 4.43 times the impact on
EUI compared to FAR. High-intensity land development with greater FAR, taller AF, and
higher AAR is therefore suggested to promote energy savings, especially for residential
buildings in urban areas.

The findings of this study demonstrate that urban morphology profoundly affects
building energy consumption. For policymakers and designers, selecting appropriate clus-
ter morphologies can effectively reduce energy usage, thereby advancing efforts toward
achieving carbon emission peaks and promoting sustainable development. By integrating
empirical databases with performance simulations, this study aims to enhance under-
standing of the relationships and mechanisms between morphological parameters and
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energy consumption. Additionally, the results will offer crucial insights and support for
developing energy-efficient urban design strategies in the HSCW climate.

This study also has some limitations. The analysis was conducted on high-rise build-
ing data from Hangzhou, China, making the results applicable to the HSCW climate zone
of China and high-rise residential clusters. Moreover, this study solely considered morphol-
ogy as influencing the EUI. Subsequent studies could investigate microclimate, envelope
materials, and differing climates to enhance the universality of the model.
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26. Premrov, M.; Žegarac Leskovar, V.; Mihalič, K. Influence of the building shape on the energy performance of timber-glass
buildings in different climatic conditions. Energy 2016, 108, 201–211. [CrossRef]

27. Li, X.; Yao, R.; Liu, M.; Costanzo, V.; Yu, W.; Wang, W.; Short, A.; Li, B. Developing urban residential reference buildings using
clustering analysis of satellite images. Energy Build. 2018, 169, 417–429. [CrossRef]

28. Schaefer, A.; Ghisi, E. Method for obtaining reference buildings. Energy Build. 2016, 128, 660–672. [CrossRef]
29. Bhatnagar, M.; Mathur, J.; Garg, V. Development of reference building models for India. J. Build. Eng. 2019, 21, 267–277. [CrossRef]
30. Samuelson, H.; Claussnitzer, S.; Goyal, A.; Chen, Y.; Romo-Castillo, A. Parametric energy simulation in early design: High-rise

residential buildings in urban contexts. Build. Environ. 2016, 101, 19–31. [CrossRef]
31. Li, Y.; Wang, D.; Li, S.; Gao, W. Impact Analysis of Urban Morphology on Residential District Heat Energy Demand and

Microclimate Based on Field Measurement Data. Sustainability 2021, 13, 2070. [CrossRef]
32. Mangan, S.D.; Koclar Oral, G.; Erdemir Kocagil, I.; Sozen, I. The impact of urban form on building energy and cost efficiency in

temperate-humid zones. J. Build. Eng. 2021, 33, 101626. [CrossRef]
33. Pont, M.Y.B.; Haupt, P. Space, Density and Urban Form. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands,

2009.
34. Liu, K.; Xu, X.; Zhang, R.; Kong, L.; Wang, W.; Deng, W. Impact of urban form on building energy consumption and solar energy

potential: A case study of residential blocks in Jianhu, China. Energy Build. 2023, 280, 112727. [CrossRef]
35. Oh, M.; Kim, Y. Identifying urban geometric types as energy performance patterns. Energy Sustain. Dev. 2019, 48, 115–129.

[CrossRef]
36. Mechri, H.E.; Capozzoli, A.; Corrado, V. USE of the ANOVA approach for sensitive building energy design. Appl. Energy 2010, 87,

3073–3083. [CrossRef]
37. Albatici, R.; Passerini, F. Bioclimatic design of buildings considering heating requirements in Italian climatic conditions. A

simplified approach. Build. Environ. 2011, 46, 1624–1631. [CrossRef]
38. Leng, H.; Chen, X.; Ma, Y.; Wong, N.H.; Ming, T. Urban morphology and building heating energy consumption: Evidence from

Harbin, a severe cold region city. Energy Build. 2020, 224, 110143. [CrossRef]
39. Taleghani, M.; Tenpierik, M.; van den Dobbelsteen, A.; de Dear, R. Energy use impact of and thermal comfort in different urban

block types in the Netherlands. Energy Build. 2013, 67, 166–175. [CrossRef]
40. Valladares-Rendón, L.G.; Schmid, G.; Lo, S.-L. Review on energy savings by solar control techniques and optimal building

orientation for the strategic placement of façade shading systems. Energy Build. 2017, 140, 458–479. [CrossRef]
41. China Association of Building Energy Efficiency. China Building Energy Consumption Research Report (2020). 2020. Available

online: https://www.cabee.org/site/content/24021.html (accessed on 1 July 2024).
42. Freitas, J.d.S.; Cronemberger, J.; Soares, R.M.; Amorim, C.N.D. Modeling and assessing BIPV envelopes using parametric

Rhinoceros plugins Grasshopper and Ladybug. Renew. Energy 2020, 160, 1468–1479. [CrossRef]
43. Roudsari, M.S.; Pak, M. (Eds.) Ladybug: A parametric environmental plugin for grasshopper to help designers create an

environmentally-conscious design. In Proceedings of the 13th International Conference of the International-Building-Performance-
Simulation-Association (IBPSA), Chambery, France, 25–28 August 2013.

44. Konis, K.; Gamas, A.; Kensek, K. Passive performance and building form: An optimization framework for early-stage design
support. Sol. Energy 2016, 125, 161–179. [CrossRef]

45. Holland, J.H. Adaptation in Natural And Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
46. Goldberg, D.E. Optimization, and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989.

https://doi.org/10.1016/j.jobe.2023.107425
https://doi.org/10.1016/j.apenergy.2019.02.033
https://doi.org/10.1016/j.apenergy.2018.09.116
https://doi.org/10.1016/j.enbuild.2011.04.007
https://doi.org/10.1016/j.rser.2020.110030
https://doi.org/10.1016/0378-7788(91)90097-M
https://doi.org/10.1016/j.enbuild.2020.109959
https://doi.org/10.1016/j.enbuild.2019.04.037
https://doi.org/10.1016/j.energy.2015.05.027
https://doi.org/10.1016/j.enbuild.2018.03.064
https://doi.org/10.1016/j.enbuild.2016.07.001
https://doi.org/10.1016/j.jobe.2018.10.027
https://doi.org/10.1016/j.buildenv.2016.02.018
https://doi.org/10.3390/su13042070
https://doi.org/10.1016/j.jobe.2020.101626
https://doi.org/10.1016/j.enbuild.2022.112727
https://doi.org/10.1016/j.esd.2018.12.002
https://doi.org/10.1016/j.apenergy.2010.04.001
https://doi.org/10.1016/j.buildenv.2011.01.028
https://doi.org/10.1016/j.enbuild.2020.110143
https://doi.org/10.1016/j.enbuild.2013.08.024
https://doi.org/10.1016/j.enbuild.2016.12.073
https://www.cabee.org/site/content/24021.html
https://doi.org/10.1016/j.renene.2020.05.137
https://doi.org/10.1016/j.solener.2015.12.020


Buildings 2024, 14, 2245 23 of 23

47. Charron, R. Development of a Genetic Algorithm Optimisation Tool for the Early Stage Design of Low and Net-Zero Energy
Solar Homes. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2007.

48. GB50180-2018; Standard for Urban Residential Area Planning and Design. Ministry of Housing and Urban-Rural Development of
China: Beijing, China, 2018.

49. Xia, B.; Li, Z. Optimized methods for morphological design of mesoscale cities based on performance analysis: Taking the
residential urban blocks as examples. Sustain. Cities Soc. 2021, 64, 102489. [CrossRef]

50. DB33/1015-2021; Design Standard for Energy Efficiency of Residen. Zhejiang Provincial Department of Housing and Urban-Rural
Development: Hangzhou, China, 2021.

51. Ruiz, G.; Bandera, C. Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587. [CrossRef]
52. Yan, J.; Zhang, H.; Liu, X.; Ning, L.; Hien, W.N. The Impact of Residential Cluster Layout on Building Energy Consumption and

Carbon Emissions in Regions with Hot Summers and Cold Winters in China. Sustainability 2023, 15, 11915. [CrossRef]
53. Evins, R. A review of computational optimisation methods applied to sustainable building design. Renew. Sustain. Energy Rev.

2013, 22, 230–245. [CrossRef]
54. Xu, S.; Li, G.; Zhang, H.; Xie, M.; Mendis, T.; Du, H. Effect of Block Morphology on Building Energy Consumption of Office

Blocks: A Case of Wuhan, China. Buildings 2023, 13, 768. [CrossRef]
55. Wang, M.; Yu, H.; Yang, Y.; Jing, R.; Tang, Y.; Li, C. Assessing the impacts of urban morphology factors on the energy performance

for building stocks based on a novel automatic generation framework. Sustain. Cities Soc. 2022, 87, 104267. [CrossRef]
56. Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures

and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [CrossRef]
57. Skarbit, N.; Stewart, I.D.; Unger, J.; Gál, T. Employing an urban meteorological network to monitor air temperature conditions in

the ‘local climate zones’ of Szeged, Hungary. Int. J. Climatol. 2017, 37 (Suppl. S1), 582–596. [CrossRef]
58. Krishnan, A.; Baker, N.; Yannas, S.; Szokolay, S.V. Climate Responsive Architecture: A Design Handbook for Energy Efficient Buildings;

Tata McGraw-Hill Publishing Co. Ltd.: New Delhi, India, 2001.
59. Natanian, J.; Auer, T. (Eds.) Balancing urban density, energy performance and environmental quality in the Mediterranean: A

typological evaluation based on photovoltaic potential. In Proceedings of the Applied Energy Symposium and Forum—Low-
Carbon Cities and Urban Energy Systems (CUE), Shanghai, China, 5–7 June 2018.

60. Vartholomaios, A. A parametric sensitivity analysis of the influence of urban form on domestic energy consumption for heating
and cooling in a Mediterranean city. Sustain. Cities Soc. 2017, 28, 135–145. [CrossRef]

61. Trepci, E.; Maghelal, P.; Azar, E. Urban built context as a passive cooling strategy for buildings in hot climate. Energy Build. 2021,
231, 110606. [CrossRef]

62. Coutts, A.; Beringer, J.; Tapper, N. Changing Urban Climate and CO2 Emissions: Implications for the Development of Policies for
Sustainable Cities. Urban Policy Res. 2010, 28, 27–47. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.scs.2020.102489
https://doi.org/10.3390/en10101587
https://doi.org/10.3390/su151511915
https://doi.org/10.1016/j.rser.2013.02.004
https://doi.org/10.3390/buildings13030768
https://doi.org/10.1016/j.scs.2022.104267
https://doi.org/10.1016/j.ufug.2014.03.003
https://doi.org/10.1002/joc.5023
https://doi.org/10.1016/j.scs.2016.09.006
https://doi.org/10.1016/j.enbuild.2020.110606
https://doi.org/10.1080/08111140903437716

	Introduction 
	Literature Review 
	A Review of Building Morphology Parameters 
	A Review of Building Morphology and Energy Performance 

	Methodology 
	Research Framework 
	Study Area 
	Correlation Relationship Analysis 
	The Objective of Optimization 
	Optimization Algorithm 

	Building the Database and Optimization Model 
	Morphological Characteristics of Residential Clusters 
	Electricity Usage of Residential Clusters 
	Extracting the Key Parameters of Morphology Based on Energy Use Intensity 
	Optimization Model for the Residential Clusters 

	Results 
	Energy Use Intensity of the Benchmark Model 
	Correlation between the Morphology Parameters and Energy Use Intensity 
	Regression between Urban Morphological Parameters and Energy Use Intensity 

	Discussion 
	Conclusions 
	References

