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Abstract: The global shear capacity of steel–concrete composite downstand cellular beams with
precast hollow-core units is an important calculation as it affects the span-to-depth ratios and the
amount of material used, hence affecting the embodied CO2 calculation when designers are producing
floor grids. This paper presents a reliable tool that can be used by designers to alter and optimise
grip options during the preliminary design stages, without the need to run onerous calculations.
The global shear capacity prediction formula is developed using five machine learning models.
First, a finite element model database is developed. The influence of the opening diameter, web
opening spacing, tee-section height, concrete topping thickness, interaction degree, and the number
of shear studs above the web opening are investigated. Reliability analysis is conducted to assess the
design method and propose new partial safety factors. The Catboost regressor algorithm presented
better accuracy compared to the other algorithms. An equation to predict the shear capacity of
composite cellular beams with hollow-core units is proposed using gene expression programming.
In general, the partial safety factor for resistance, according to the reliability analysis, varied between
1.25 and 1.26.

Keywords: machine learning; composite floors; hollow-core units; shear capacity; reliability analysis

1. Introduction

Cellular steel beams are made by expanding a parent section through thermal cutting,
shifting, and welding. This process creates steel beams with a higher section and periodical
circular web openings, enhancing flexural stiffness about the strong axis. The web openings
allow airflow and the integration of services in closed environments. The cellular steel
beam when associated with concrete slabs by mechanical devices, i.e., shear studs, forms
composite cellular beams that have the capacity to span distances ranging from 12 to
20 m [1,2]. To overcome drawbacks, like high shear studs welding costs and concrete curing
time associated with solid or composite slabs (with steel formwork), precast hollow-core
slabs (PCHCS, aka PCU/HCU) offer a cost-effective and time-saving alternative [3].
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Flooring systems frequently utilize PCHCS due to their widespread applicability.
In this context, PCHCS can be arranged on rigid or flexible supports. The steel profiles
that support the PCHCS are considered flexible if the shear strength of the PCHCS is
reduced due to the deflection of the downstand steel beam [4]. This effect is known as shear
interaction between the slabs and beams. In the case of composite cellular beams with
PCHCS, this phenomenon is intensified due to the deflections through the web openings.
SCI P355 [5] describes how the magnitude of the resistance of the local composite action is
dependent on the flexibility of the beam in the opening, which causes relative deflections
between the cellular profile and the slab. This can cause the shear connector to pull out,
due to the tension from the vertical traction forces developed near the upper edge of the
opening. It is worth mentioning that this flexibility tends to increase with an increase in the
span length, as well as with an increase in the opening diameter [6].

Predicting the resistance of composite cellular beams with PCHCS is a complex task,
since all possible failure modes of the steel and concrete sections must be considered,
as well as the interaction degree. In this context, the application of machine learning
(ML) models is a useful tool. ML models and gene expression programming (GEP) have
seen extensive application in civil engineering, notably in predicting the shear resistance
of steel structures [7–11]. The present work aims to apply machine learning models
for predicting the global shear capacity of simply supported steel–concrete composite
cellular beams with PCHCS submitted to four-point bending. For this task, a finite element
database is employed [12]. CatBoost, gradient boosting, extreme gradient boosting, light
gradient boosting machine, random forest and gene expression programming algorithms
are assessed. Following this, comprehensive comparative and reliability analyses are
carried out.

2. Background

For the design and verification of composite cellular beams with composite slabs
(with steel formwork), two current recommendations are available: the SCI P355 [5] and
the Steel Design Guide 31 [13]. These publications primarily address scenarios where
shear stud positions are constrained by rib positioning. The literature includes studies
that have examined the impact of shear studs placed above the web opening length in
composite beams.

Redwood and Poumbouras [14] conducted tests to assess the necessity of shear studs
within the opening length at the steel–concrete interface for steel–concrete slabs (with trape-
zoidal steel formwork). The absence of shear studs in this length substantially decreased
the load-bearing capacity of composite beams with rectangular web openings. Additionally,
Redwood and Poumbouras [15] developed a model for predicting the load-bearing capacity
that accounted for the increased compression stress resulting from shear stud deformation-
induced slip. Their approach, however, was deemed conservative in contrast to earlier
experimental results. Donahey and Darwin [16] explored the impact of the moment/shear
ratio, shear stud quantity and position along the beam as well as the steel formwork ori-
entation. Their findings revealed that increasing the number of shear studs above the
opening led to an enhanced load-bearing capacity. Cho and Redwood [17] introduced a
methodology for estimating the load-bearing capacity of composite beams with rectangular
web openings, treating the shear studs above the web opening length as tensioned elements
based on the truss concept. This approach linked shear resistance to shear stud placement,
with the idea that shear studs in the opening length contributed to the shear resistance
of concrete slabs. This was later verified by Cho and Redwood [18]. Until now, it has
been noted that the research conducted on shear stud placement has exclusively focused
on composite beams composed of concrete slabs with steel formwork. Ferreira et al. [12]
performed a parametric analysis using the finite element method to explore the impact of
shear stud quantity on the load-bearing capacity of steel–concrete composite beams with
PCHCS. The authors emphasised the significance of shear studs when positioned near the
supports, as the global shear capacity experienced a reduction in the absence of shear studs.
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As discussed, studies of steel–concrete composite with web openings have highlighted
the necessity of using shear connectors along the length of the web openings. Ahmed
and Tsavdaridis [3] conducted research on composite beams with web openings, such as
ultra-shallow floor beams (USFB) and Deltabeam, focusing on their applications and design
calculation methods. Ferreira et al. [19] also explored advancements in composite beams
with web openings, discussing future research directions concerning composite beams
incorporating PCHCS.

As presented previously, the SCI P355 [5] and Steel Design Guide 31 [13] provide
design recommendations for composite cellular beams with steel–concrete composite
slabs (with steel formwork). In 2003, the Steel Construction Institute (SCI) released the
SCI P287 [20], a manual providing design guidelines for composite beams with PCHCS.
Following this, the SCI P401 [21] was published as an updated version, incorporating
revised recommendations. This updated document outlines the minimum dimension
requirements, addressing both the ultimate and service limit states during construction for
scenarios involving full and partial interaction. Nevertheless, these guidelines are meant
for steel–concrete composite beams without web openings. Therefore, it is possible to
conclude that there are no specified design recommendations for composite cellular beams
with PCHCS.

3. Finite Element Method

This section describes the methodology for developing the finite element (FE) models.
This task is thoroughly detailed in previous studies by Ferreira et al. [12,22]. These studies
include tables and figures that illustrate the geometric and physical characteristics of each
test considered in this validation study. The FE model is based on four tests of simply
supported composite cellular beams [23,24] and three tests of simply supported composite
beams with PCHCS [25,26]. Geometric and material nonlinear analyses are conducted in
the ABAQUS® [27] software (version 6.24). The concrete is modelled via concrete damage
plasticity (CDP) [28–30] using the Carreira and Chu model [31,32]. Three constitutive
models of steel are employed. The elastic-perfectly plastic model is adopted for transverse
bars and steel mesh. The bilinear model with hardening is used to model the headed shear
studs [33]. A multilinear model, proposed by Yun and Gardner [34], is used to model the
steel profiles. The interactions between steel and concrete are made using tangential and
normal behaviours [35]. Regarding the discretization, S4R, C3D8R and T3D2 elements are
used. The size of the finite element mesh is based on previous studies [36,37].

3.1. Validation Results

Figure 1 shows the validation results by load per displacement relationships. Models 1–4
and 5–7 refer to composite cellular beams and composite beams with PCHCS, respectively.
Models 1–4 failed due to web-post bucking, while models 5–7 failed due to excessive
cracking of the precast hollow-core slabs and steel yielding. According to all the results,
it can be stated that the finite elements are validated. Further details on the results of the
validation study, along with comparative analyses of the deformed configurations between
the tests and the finite elements (FEs), can be found in Ferreira et al. [12,22].
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Figure 1. Load vs. mid-span vertical displacements [12,22]. (a) Model 1; (b) model 2; (c) model 3; 
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Figure 1. Load vs. mid-span vertical displacements [12,22]. (a) Model 1; (b) model 2; (c) model 3;
(d) model 4; (e) model 5; (f) model 6; (g) model 7.

3.2. Parametric Study

In total, 240 finite element models were developed as shown in Figure 2, in which Do
is the opening diameter, d is the depth of the parent section, p is the length between the
opening diameter centres, ht is the height of the tee section, tc is the height of the concrete
topping, n is the number of shear studs between zero and the maximum moment regions,
nh is the number of shear studs above the web opening, and η is the interaction degree. The
number of models considered in the parametric analyses is presented in Figure 3.
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4. Machine Learning Models

When it comes to analysing a dataset, various methods can be employed to extract
valuable insights. This research compares different methods to examine their effectiveness
in analysing the same dataset. By examining each approach, the most suitable method
will be found. In the following sections, the different methods and their applicability
are explored.
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4.1. CatBoost

Prokhorenkova et al. [38] recently inherited CatBoost, a gradient-boosting algorithm.
A multi-platform gradient boosting library known as CatBoost solves both regression
and classification problems simultaneously. Gradient boosting is successively fitted to the
decision tree in the CatBoost algorithm, which uses the decision tree as the underlying weak
learner. Gradient learning information is arranged inconsistently to avoid overfitting when
implementing the CatBoost algorithm [39]. Figure 4 shows an explanation of the CatBoost
algorithm. The CatBoost algorithm’s training ability is determined by its framework
hyperparameters, such as the number of iterations, learning rate, maximum depth, etc. A
model’s hyperparameters can be determined by the user and it is a laborious process.
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4.2. Gradient Boosting

A gradient boosting decision tree (GBDT) is a supervised machine learning model
that learns a function mapping from known input variables to target variables through an
algorithm. It has been deployed as the fundamental component of the embedded failure pre-
diction methodology due to its capability to handle complex relationships and interaction
effects between measured inputs automatically [40]. It provides better interpretability than
other machine learning approaches like support vector machines or neural networks [41],
and lower computational complexity, which makes it realistic to utilise and implement to
produce valuable prediction results in a real world production environment [42–44]. As
illustrated in Figure 5, the GBDT consists of a series of decision trees with each successive
one correcting the error of the precedent trees.
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4.3. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is an important ensemble learning algorithm
in machine learning approaches [45]. In XGBoost, regression and classification trees are
combined with analytical boosting methods. As an alternative to developing an addressed
tree, the boosting method constructs different trees and then connects them to estimate
a systematic predictive algorithm. Gradient boosting algorithms are usually matched to
XGBoost’s subsequent assessment of the loss function. There are many ways to mine the
characteristics of gene coupling using XGBoost. The general structure of XGBoost models
is shown in Figure 6.
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4.4. Light Gradient Boosting Machine

The light gradient boosting machine, or LightGBM, is an open source graded boosting
machine learning model from Microsoft based on decision trees [47]. With LightGBM,
continuous buckets of elemental values are divided into separate bins with greater adept-
ness and a faster training rate. With histogram-based algorithms, the learning phase is
improved, memory consumption is reduced, and communication networks are integrated
to enhance training regularity, known as parallel voting decision trees. To select the top-k
elements and apply global voting techniques, the data to be learned are partitioned into
several trees. Figure 7 illustrates how LightGBM identifies the leaf with the maximum
splitter gain using a leaf-wise approach [48].
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4.5. Random Forest

A random forest combines multiple decision trees to reduce overfitting and bias-
related inaccuracy, resulting in usable results. It is a powerful and versatile algorithm that
grows and combines multiple decision trees to create a “forest” [49]. It can handle large
data sets due to its capability to work with many variables, running into the thousands [50].
The RF model’s basic structure is shown in Figure 8.
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4.6. Gene Expression Programming

Genetic algorithms (GAs) were pioneered by J. Holland [52], drawing inspiration from
Darwin’s theory of evolution. GAs mirror the biological evolution process, representing
solutions through fixed chromosomes. Similarly, genetic programming (GP) was introduced
by Cramer and advanced by Koza [53,54]. GP extends GAs, functioning as a form of
machine learning that constructs models via genetic evaluation. Operating on Darwinian
reproduction principles, GP stands as a powerful optimization technique leveraging neural
networks and regression methods. Further, Ferreira [55] proposed a modified version of GP
based on population evolution, dubbed gene expression programming (GEP). GEP encodes
chromosomes in a linear fixed array, outperforming GP, which uses a tree-like structure
with variable lengths [56]. A linear fixed length chromosome and a nonlinear expression
tree were inherited from GAs and GP in the evolutionary GEP algorithm, respectively.
The linear fixed width of genetic programming and the genetic algorithm make GEP an
excellent method. Figure 9 [57] shows a schematic diagram of the GEP algorithm. Based on
the experimental results, GEP itself adds and deletes various parameters.
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5. Assessing the Accuracy of Machine Learning Models

To assess how accurately a machine learning model can make predictions, its accuracy
needs to be measured. Some of the metrics that are often used to measure the performance
of regression models are the mean squared error (MSE), the mean absolute error (MAE), the
root mean squared error (RMSE), the coefficient of determination (R2), the mean absolute
percentage error (MAPE) and the root mean squared logarithmic error (RMSLE) [58–61],
according to Equations (1)–(6).

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2)

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
(3)

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑ i = 1n(yi − y)2 (4)

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (5)

RMSLE =

√
1
n

n

∑
i=1

[log(1 + yi)− log(1 + ŷi)]
2 (6)

Here, n is the total number of observations, yi is the actual value, ŷi is the predicted
value, and y is the mean of the actual value.

6. Results and Discussion

In this section, the performance of each algorithm used to predict the shear capacity of
four composite cellular beams with PCHCS will be discussed. Table 1 provides details of
the hyperparameters related to the models.

Table 1. Model hyperparameters.

Description Value

Session ID 1991
Original data shape (240, 11)
Transformed train set shape (168, 11)
Transformed test set shape (72, 11)
Categorical imputation mode
Normalize method robust
Fold generator KFold
Fold number 10
Transform target method yeo-johnson

6.1. CatBoost

Figure 10a,b show the train and test plots, respectively, and the validation curve (Figure 10c)
of the CatBoost regressor. According to the illustration, the residual distribution around
zero is highly concentrated, indicating excellent model precision. Its robust performance
is underscored by its high train R2 value of 0.997 and test R2 value of 0.939, which indi-
cates that the CatBoost regressor model is both highly precise and highly generalizable.
Regarding the validation curve, with a depth of 0, the training score starts at approximately
1.0, which indicates that the model is able to fit the training data well with a shallow tree.
With increasing depth, the training score decreases slightly, suggesting that the model is
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becoming less prone to overfitting and more generalised. Initially, the cross-validation
score is lower than the training score, but it peaks around 4 when the depth increases. It
is evident from this validation curve that the model is performing well; however, beyond
the depth of 4, there is a noticeable divergence between the training and validation scores.
The model performs exceptionally well on trained data, but less so on unseen or validation
data as a result of mild overfitting.
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Figure 10. CatBoost regressor performance. (a) Train; (b) test; (c) validation curve.

6.2. Gradient Boosting

A regression model typically assumes that the residuals are approximately normally
distributed around zero based on the histogram on the right side of the plot (Figure 11).
The absence of clear outliers in the residuals is a positive sign, as outliers can significantly
affect model fitting. As a result of the model explaining a large proportion of the variance in
the dependent variable, the R-squared values for both the train and test sets are quite high
(0.9557 and 0.9118, respectively). It is possible to have an overfitted model despite having
a high R-squared. It can be seen from Figure 11c that the model exhibits strong learning
and generalization capabilities. As the model complexity (depth) increases, the risk of
overfitting increases too. In order to achieve a balance between the bias and variance, the
optimal model depth appears to be around 6, when the cross-validation score is maximised.
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Figure 11. Gradient boosting regressor performance. (a) Train; (b) test; (c) validation curve.

6.3. Extreme Gradient Boosting

The residual plot is similar to that for CatBoost (Figure 12a), but with slightly more dis-
persion, as indicated by its similar R2 values for train (0.9982) and test (0.9134), respectively.
Even though the XGB regressor model is highly precise on the training data, it may not
generalize as well to unseen data. Regarding the validation curve, as shown in Figure 12,
as the depth increases, the cross-validation score (noted by the green line with circular
markers) begins lower than the training score but grows as the depth increases, reaching a
peak at around 4. These scores are shaded to illustrate their variance or uncertainty. This
validation curve is indicative of a well-performing model; however, a noticeable divergence
exists between the training and validation scores beyond the depth of 4. Essentially, this
divergence indicates a mild overfitting scenario in which the model performs exceptionally
well on the trained data, but less so on unseen or validation data.
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Figure 12. Extreme gradient boosting regressor performance. (a) Train; (b) test; (c) validation curve.

6.4. Light Gradient Boosting Machine

Figure 13 shows the residual plot (Figure 13a) and validation curve (Figure 13b)
for the light gradient boosting machine model. This model has a dispersed residual
distribution with significant variance at higher predicted values. Despite having a high train
R2 value (0.9866), the test R2 is significantly lower 0.9296, suggesting possible overfitting.
Consequently, although the light GBM regressor performs well on the training data, it may
not generalize to unknown data. Considering the validation curve with a depth of 2, the
training score starts at a high score of approximately 0.95, which implies that the model
is able to fit the training data quite well with a shallow tree. As the depth increases, the
training score decreases slightly, suggesting that the model is becoming more generalised
and less likely to overfit. In contrast to the training score, the cross-validation score exhibits
an upward trend as the depth increases, reaching a peak of around 4. There is a noticeable
divergence between the training and validation scores beyond the depth of 4, which
indicates that the model performs exceptionally well on the trained data, but significantly
less well on unseen or validation data. This divergence indicates mild overfitting.
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Figure 13. Light gradient boosting machine performance. (a) Train; (b) test; (c) validation curve.

6.5. Random Forest

Figure 14 shows the performance of the random forest model. This model presents
an intermediate residual spread with some concentration around zero but noticeable
dispersion at the extremes (Figure 14a). As a result, the random forest regressor model
appears to offer a good balance between precision and generalization, but there is room
for further optimization. A train R2 of 0.980 and test R2 of 0.871 suggest moderate model
accuracy, though room for improvement exists. For the validation curve (Figure 14b) at a
depth of around 6, the cross-validation score reaches a peak, indicating the variance and
uncertainty associated with the scores. The shaded area around this line illustrates the
variance or uncertainty associated with the scores. Despite the fact that this validation
curve indicates that the model is performing well, there is a noticeable divergence between
the training and validation scores beyond a depth of 6. In this case, mild overfitting occurs
when the model does exceptionally well on the trained data but less so on unseen or
validation data.
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Figure 14. Random forest regressor performance. (a) Train; (b) test; (c) validation curve.

6.6. Feature Importance

Figure 15 is a feature importance plot, which is commonly used in machine learning to
understand the contribution of each parameter analysed. The y-axis in this plot represents
the different features used in the model, while the x-axis represents the importance of each
feature. The importance of a feature is calculated based on the decrease in the model’s
performance when the feature’s values are randomly shuffled. The highest importance
value in the plot is associated with the p/Do feature, suggesting that it has the most
significant impact on the model’s predictions. Changes in this feature are likely to result in
significant changes in the predicted output. The η and n features also have high importance
values and significantly influence model predictions. Although other features have lower
importance values, they can still be useful in interactions with other features. Therefore,
it is essential to consider all features when building a machine learning model, as even
low importance features can have an impact on the overall performance of the model.
Understanding feature importance can help data scientists optimize machine learning
models and improve their accuracy.
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7. Proposed Equation by GEP

To precisely predict the shear capacity of composite cellular floors with PCHCS, this
study developed an equation incorporating all relevant parameters. These parameters
included mechanical and geometric properties, as well as the areas and detailing of re-
inforcements within the joint. Numerical constants are critical for successful modelling
in GEP’s learning algorithms. Thus, GEP employs an extra gene domain to encode these
random constants. Initially, these constants are randomly assigned to each gene. However,
the standard genetic operators of mutation (including transposition and recombination)
ensure their continued circulation and diversity throughout the population. The specific
details regarding the proposed model’s operation and functionality are outlined in Table 2.

Table 2. Model construction parameters.

Function Set +, −, *, /, Exp, Ln

Number of generations 365,000
Chromosomes 200
Head size 14
Linking function Addition
Number of genes 3
Mutation rate 0.044
Inversion rate 0.1
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.1
Gene transposition rate 0.1
Constants per gene 2
Lower/upper bound of constants −10/10

Several preliminary runs were necessary to identify the parameter settings that pro-
duce a GEP model with sufficient robustness and generalization to accurately solve the
problem. Additionally, overfitting, a common issue in machine learning, constitutes an-
other challenge to achieving satisfactory generalization. To avoid this issue, the developed
models can be tested. The proposed equations (Equations (7)–(12)) for predicting the shear
capacity of steel–concrete composite cellular floors with precast hollow-core slabs using
the GEP model are as follows, in which E is the Young’s modulus, ν is the Poisson’s ratio,
fy is the yield stress, and fv is the yield shear stress:

(N) =


η0.14

(
Vcr
Vy

)−0.12
Vy λv ≤ 0.68

η0.14
[

1 − 0.0026
(

Vcr
Vy

)4.7
](

Vcr
Vy

)0.04
Vy 0.68 < λv ≤ 1.01

35250 ln(Vcr) + η3.03 Vcr
0.91 λv > 1.01

(7)

Vcr =
π2EAw

12(1 − υ2)(bw/tw)
2 (8)

Aw =
(
dg − D0

)
tw (9)

Vy = Aw fv (10)

fv = fy/
√

3 (11)

λv =
√

Vy/Vcr (12)

8. Comparison Analysis

The comparative analysis is depicted in Figure 16, encompassing all explored machine
learning models. The discussion revolves around the ratio of predicted values to the finite
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element model (VPredicted/VFE). Focusing on the CatBoost algorithm (Figure 16a), the range
of relative errors extends from −13.90% to 16.54%. Meanwhile, the gradient boosting
algorithm (Figure 16b) exhibits relative errors ranging from −11.76% to 21.41%. In the
case of the extreme gradient algorithm (Figure 16c), the spectrum of relative errors spans
from −18.12% to 22.99%. As for the light gradient boosting algorithm (Figure 16d), its
minimum and maximum relative errors align closely with the gradient boosting algorithm,
standing at −11.77% and 24.00%, respectively. Turning to the random forest algorithm
(Figure 16e), the relative errors fluctuate between −16.50% and 21.48%. Lastly, gene
expression programming (Figure 16f) provides relative errors ranging from −12.84% to
2.69%. Additional summarized statistical analyses are presented in Table 3.
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Figure 16. Comparison analyses. (a) CatBoost; (b) gradient boosting; (c) extreme gradient boosting;
(d) light gradient boosting machine; (e) random forest; (f) gene expression programming.
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Table 3. Machine learning models comparative analysis.

Analysis Catboost Gradient
Boosting

Extreme
Gradient

Light
Gradient
Boosting

Random
Forest GEP

R2 0.9821 0.9694 0.9762 0.9442 0.9186 0.9531
RMSE (kN) 12.1504 15.3435 16.5446 21.5878 20.3665 30.1683
MAE (kN) 6.7814 10.9457 7.4057 16.5853 14.1428 24.8799
Minimum relative
error −13.90% −11.76% −18.12% −11.77% −16.50% −12.84%

Maximum
relative error 16.54% 21.41% 22.99% 24.00% 21.48% 2.69%

Mean 1.000 1.000 1.000 1.000 0.998 0.945
SD 2.86% 3.66% 3.88% 5.28% 4.79% 4.51%
CoV 2.86% 3.66% 3.88% 5.28% 4.80% 4.77%

9. Reliability Analysis

Reliability analysis based on Annex D EN 1990 (2002) [62] has been conducted to
assess the proposed design method and propose a partial safety factor for the shear capacity
of composite cellular beams with PCHCS. Within the context of this study, the proposed
prediction models underwent statistical evaluation against the finite element results. Table 4
illustrates the key statistical parameters, including the amount of data, n, the design fractile
factor (ultimate limit state), kd,n, the characteristic fractile factor, kn, the average ratio of FE
to resistance model predictions based on the least squares fit to the data, b, the combined
coefficient of variation incorporating both resistance model and basic variable uncertainties,
Vr, and the partial safety factor for resistance, γM0. The COV for geometric dimensions of
the concrete slab is 0.04 for the width and the thickness [63], while it is 0.02 for the steel
section geometries [64] and the stud diameter [65].

Table 4. Summary of the reliability analysis calculated according to EN 1990.

Machine Learning
Model n ¯

b kd,n kn Vr γM0

Catboost 240 1.00 3.04 1.64 0.163 1.255
Gradient boosting 240 1.002 3.04 1.64 0.163 1.257
Extreme gradient 240 0.999 3.04 1.64 0.163 1.258
Light gradient boosting 240 1.004 3.04 1.64 0.161 1.265
Random forest 240 1.009 3.04 1.64 0.165 1.263
GEP 240 1.058 3.04 1.64 0.161 1.263

The COV (Vx) of the yield strength of steel, ultimate strength of the steel stud, and
concrete compressive strength were assumed equal to 0.055 [64], 0.05 and 0.12 [65], respec-
tively. The COV between the experimental and the numerical results, which were found
equal to 0.025, was also considered. Performing the first order reliability method (FORM)
in accordance with the Eurocode target reliability requirements, the partial factors γM0
were evaluated for all ML models using the following procedure.

First, we estimate the mean value correction factor b:

b =
∑ rert

∑ r2
t

(13)

Here, re and rt are the experimental and theoretical resistance, respectively.
The error term δi for each experimental value rei should be determined from:

δi =
rei
brti

(14)

The coefficient of variation for the error term δi can be estimated from:

Vδ =
√

exp
(
s2

∆
)
− 1 (15)
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where:

s∆ =
1

n − 1

n

∑
i=1

(
∆i − ∆

)2 (16)

The estimated value of ∆ is taken as:

∆ =
1
n

n

∑
i=1

∆i (17)

∆i is the logarithm of the error term δi:

∆i = ln(δi) (18)

The coefficient of variation Vr can be determined from:

V2
r =

(
V2

δ + 1
)[ j

∏
i=1

(
V2

Xi + 1
)]

− 1 (19)

with:

V2
rt =

j

∑
i

V2
Xi (20)

Vxi is the coefficient of variation for the yield strength of the steel, the ultimate strength
of the steel stud, the concrete compressive strength, and the coefficient of variation between
the experimental and the numerical results. It is also for the geometric dimensions of the
concrete slab, the steel section, and the stud diameter.

The characteristic resistance rk is obtained from:

rk = bgrt
(
Xm

)
exp

(
−k∞αrtQrt − knαδQδ − 0.5Q2

)
(21)

with:

Qrt =
√

ln
(
V2

rt + 1
)
Qδ =

√
ln
(
V2

δ + 1
)
Q =

√
ln(V2

r + 1)αrt =
Qrt

Q
αδ =

Qδ

Q
(22)

The notation is as follows:
kn is the characteristic fractile factor from table D 1 for the unknown case Vx;
k∞ is the value of kn for n → ∞[k∞ = 1.64] ;
αrt is the weighting factor for Qrt;
αδ is the weighting factor for Qδ.
The design value rd is obtained from:

rd = bgrt
(
Xm

)
exp

(
−kd,∞αrtQrt − kd,nαδQδ − 0.5Q2

)
(23)

kd,n is the characteristic fractile factor from table D 2 for the case Vx unknown;
kd,∞ is the value of kd,n for n → ∞[k∞ = 3.04] .
The partial factor γM0 is:

γM0 =
rk
rd

(24)

As can be seen from Table 3, the partial factors for the shear capacity of steel–concrete
composite cellular beams with precast hollow-core slabs using different ML algorithms are
very similar, and the values are around 1.255 to 1.265. It is worth noting that the high value
for the partial factor is due to the high value for the COV of the concrete strength.

10. Conclusions

The present work aimed to apply machine learning models for predicting the global
shear capacity of composite cellular floors with PCHCS. The motivation for this was the
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connection between the hollow-core unit and the steel cellular beam, as the deflections are
intensified due to the web openings, causing the effect of pulling out the shear connector
and thus reducing the local composite action. This first study, considering the application of
machine learning to predict the global shear resistance of steel–concrete composite cellular
beams with hollow-core units, highlights the importance of the degree of interaction in
the resistance of the local composite action. A finite element model database, considering
steel–concrete composite cellular beams with precast hollow-core units, was employed to
assess the CatBoost, gradient boosting, extreme gradient boosting, light gradient boosting
machine, random forest and gene expression programming algorithms, since there are no
calculation recommendations for these beams. It was concluded that:

i. The CatBoost regressor produced an MAE of 6.7814 kN and demonstrated commend-
able performance with a R2 value of 0.9821, explaining around 98.21% of the variance.
This study highlighted the effectiveness of the CatBoost regressor due to its low MAE
and high R2 value, providing valuable insights for the design and assessment of
steel–concrete composite cellular beams.

ii. With a coefficient of determination (R2) of 0.9531, the gene expression programming
model displayed exceptional ability. This indicates that the model predicted approxi-
mately 95.31% of the variance in the shear capacity, establishing a strong correlation
between predictions and actual values. With its promising results, gene expression
programming emerges as a promising alternative for further research.

iii. A GEP-based equation was proposed to predict the global shear of composite cellular
beams with PCHCS. The suggested equation for predicting the global shear resistance
highlights areas necessitating revisions and offers insights into how these improve-
ments can be achieved. It can contribute to both the safety and cost-effectiveness of
steel–concrete composite construction, especially regarding sustainability.

iv. A reliability analysis was performed and the partial safety factor for resistance varied
between 1.25 and 1.26.
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