Thermo-Acoustic Properties of Four Natural Fibers, Musa textilis, Furcraea andina, Cocos nucifera, and Schoenoplectus californicus, for Building Applications
Abstract
:1. Introduction
Fibrous Insulation Material | Density (kg/m3) | Thermal Conductivity (W/m·K) | Ref. |
---|---|---|---|
Glass wool (inorganic) | 13–100 | 0.030–0.045 | [49,50,51] |
Rock wool (inorganic) | 30–180 | 0.033–0.045 | [49,50,51] |
Jute | 35–100 | 0.038–0.055 | [44,49] |
Rice straw | 154–168 | 0.046–0.056 | [44,49] |
Hemp | 20–68 | 0.04–0.05 | [44,49] |
Bagasse | 70–350 | 0.046–0.055 | [44,49] |
Coir | 70–125 | 0.04–0.05 | [44,49,52] |
Pineapple leaves | 178–232 | 0.035–0.042 | [44,53] |
Reeds | 190 | 0.056 | [44] |
2. Materials and Methods
2.1. Materials Description and Importance in the Ecuadorian Economy
2.1.1. Abaca (Musa textilis)
2.1.2. Cabuya (Furcraea andina)
2.1.3. Coir Fiber (Cocos nucifera)
2.1.4. Totora (Schoenoplectus californicus)
2.2. Non-Woven Sample Preparations
2.3. Thermal Conductivity
2.4. Sound Absorption Coefficient
3. Results and Discussion
3.1. Mechanical Sample Properties
3.2. Thermal Conductivity Assessment
3.3. Sound Absorption Coefficient
3.4. Alignment with the United Nations Sustainable Development Goals
- ○
- SDG 1: No poverty. The production and installation of insulation materials made from natural fibers can create jobs in rural and underdeveloped regions, helping to reduce poverty. Additionally, the use of these materials can make construction and building maintenance more affordable, benefiting low-income communities.
- ○
- SDG 3: Good health and well-being is supported by the fact that insulation materials made from natural fibers generally do not contain harmful chemicals, improving indoor air quality and reducing health issues related to indoor pollution. Furthermore, the effective soundproofing provided by these fibers can reduce noise pollution, creating quieter and more restful living and working environments, which positively impacts mental and physical health.
- ○
- SDG 7: Affordable and clean energy, natural fibers possess excellent thermal insulation properties, significantly reducing the need for heating and cooling. This results in lower energy demand and associated costs, promoting more affordable and sustainable energy use.
- ○
- SDG 8: Decent work and economic growth benefits from the sustainable employment generated in the production, processing, and application of natural fiber insulation materials, particularly in the agricultural and manufacturing sectors. This type of employment promotes inclusive and sustainable economic growth.
- ○
- SDG 9: Industry, innovation, and infrastructure is supported by encouraging the use of natural fibers, which promotes innovation in building materials and more sustainable construction techniques. Additionally, buildings insulated with natural fibers can be more energy efficient and resilient to environmental changes, supporting long-term infrastructure development.
- ○
- SDG 11: Sustainable cities and communities is directly impacted by the use of eco-friendly building materials, such as natural fibers, which help create sustainable and resilient buildings, reducing the environmental footprint of urban development. Moreover, improved living conditions resulting from better acoustic and thermal insulation make homes and workplaces more comfortable and energy efficient.
- ○
- SDG 12: Responsible consumption and production is promoted through the use of natural fibers, which are renewable resources. Their use in insulation encourages responsible consumption by reducing reliance on synthetic materials and fostering sustainable production methods. Additionally, since natural fibers are biodegradable, waste is reduced at the end of the insulation’s lifecycle compared to synthetic materials.
- ○
- SDG 13: Climate action, using natural fibers for insulation can lower greenhouse gas emissions associated with heating and cooling buildings, contributing to climate change mitigation. Furthermore, the plants used to produce these fibers absorb CO2 during their growth, helping to offset carbon emissions.
- ○
- SDG 15: Life on land is supported by sustainable land use in cultivating natural fibers, which can aid in sustainable land management practices and biodiversity conservation. Crops like cabuya or abaca can improve soil health and prevent erosion, promoting sustainable agriculture.
- ○
- Finally, SDG 17: Partnerships for the goals underscores the importance of collaboration among governments, the private sector, academia, and civil society to promote natural fiber insulation. These partnerships are crucial for driving research, policy development, and market adoption of sustainable materials.
3.5. Study Limitations and Future Lines of Research
4. Conclusions
- The tensile strength values of the fiber samples range from 593.33 (N) of the AB20 to 6110.00 (N) of the OSTB20. The tensile stress varies from 56.55 (kPa) (AB20) to 669.33 (kPa) (OSTB20).
- The thermal conductivity of the fiber samples varied from 0.0439 W/m·K (CB20) to 0.0564 W/m·K (OSTB20), performing good thermal insulation attributes for building applications.
- The NRC of the fiber samples ranges from 0.12 (OSTB20) to 0.53 (CN60). The fibers’ samples have an average sound absorption coefficient of 0.84 above 2 kHz for thicknesses of 40–60 mm and of 0.69 for thicknesses of 20–30 mm. The fibers also have comparable sound absorption coefficients with other natural fibers.
- The results suggest that the assessed fibers can be used as natural and sustainable materials to replace traditional synthetic thermo-acoustic absorbers. The materials of the study have a natural origin and potential to be biodegradable or recycled after use, which means that they will have a low environmental impact compared to artificial materials traditionally used in construction for thermoacoustic applications. The use of these natural materials near collection and production sites also reduces the environmental footprint, not only because their manufacturing processes are environmentally friendly, but also because they can reduce pollution due to the transportation and distribution of the construction materials. They can also promote the creation of small family industries at the local or regional level, promoting the economic strengthening of low- or middle-income countries. The use of natural fibers as thermal and acoustic insulators can offer significant social benefits, including improved health and comfort, job creation, economic development, sustainable living, cultural preservation, and affordable housing solutions, which should be demonstrated in further research. Industrial applications span various sectors such as building and construction, automotive, consumer electronics, furniture, aerospace, and packaging, highlighting the versatility and potential of natural fibers in contributing to a more sustainable and eco-friendly future.
- The use of natural fibers as thermal and acoustical insulators also aligns with the UN- SDGs. Leveraging natural fibers directly supports SDG 9 (Industry, Innovation, and Infrastructure) by promoting innovative, eco-friendly construction materials that advance sustainable industrial practices. This also aligns with SDG 11 (Sustainable Cities and Communities) by enhancing building efficiency and comfort, leading to healthier living environments. The production and use of natural fibers bolster SDG 8 (Decent Work and Economic Growth) by creating jobs in rural areas and stimulating local economies, thus supporting SDG 1 (No Poverty) and SDG 10 (Reduced Inequalities). Furthermore, natural fibers contribute to SDG 12 (Responsible Consumption and Production) by reducing reliance on non-renewable resources and minimizing environmental impact, and SDG 13 (Climate Action) by lowering greenhouse gas emissions through sustainable agricultural practices and the use of biodegradable materials. Integrating these fibers into building practices not only improves thermal and acoustic performance but also fosters a holistic approach to sustainable development.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Environmental Protection Department. Monitoring of Solid Waste in Hong Kong—Waste Statistics for 2021; Environment and Ecology Bureau: Tamar, Hong Kong, 2022. [Google Scholar]
- Li, Y.; Zhang, X. Comparison and Analysis of International Construction Waste Management Policies. In Construction Research Congress ASCE 2012; ASCE: Reston, VA, USA, 2012; pp. 1672–1681. [Google Scholar]
- Kartam, N.; Al-Mutairi, N.; Al-Ghusain, I.; Al-Humoud, J. Environmental Management of Construction and Demolition Waste in Kuwait. Waste Manag. 2004, 24, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, X.; Kua, H.; Geng, Y.; Bleischwitz, R.; Ren, J. Construction and Demolition Waste Management in China through the 3R Principle. Resour. Conserv. Recycl. 2018, 129, 36–44. [Google Scholar] [CrossRef]
- European Commission. Buildings and Construction—European Commission. Available online: https://single-market-economy.ec.europa.eu/industry/sustainability/buildings-and-construction_en (accessed on 30 May 2024).
- Kofoworola, O.F.; Gheewala, S.H. Estimation of Construction Waste Generation and Management in Thailand. Waste Manag. 2009, 29, 731–738. [Google Scholar] [CrossRef]
- Lordsleem Júnior, A.C.; Fucale, S.P. Quantitative Assessment of Waste Management in Brazilian Construction Sites. In Proceedings Sardinia 2009, Twelfth International Waste Management and Landfill Symposium; RILEM Publications SARL: Descartes, France, 2009. [Google Scholar]
- Buildings Lands and Planning Departments. Second Package of Incentives to Promote Green and Innovative Buildings Introduction Joint Practice Note No. 2; Planning Department: Hong Kong, China, 2002. [Google Scholar]
- Hao, J.L.; Hills, M.J.; Tam, V.W.Y. The Effectiveness of Hong Kong’s Construction Waste Disposal Charging Scheme. Waste Manag. Res. 2008, 26, 553–558. [Google Scholar] [CrossRef]
- Commission to the European Parliament and the Council. Strategy for the Sustainable Competitiveness of the Construction Sector and Its Enterprises. COM 2012, 66, 37–39. [Google Scholar]
- The European Parliament and the Council of the European Union—Official Journal of the European Union. Directive 2008/98/EC of 19 November 2008 on Waste and Repealing Certain Directives; European Sources Online: Cardiff, UK, 2008; pp. 3–30. [Google Scholar]
- Regions Commission to the European Parliament and the Council—The European Economic and Social Committee. A New Circular Economy Action Plan For a Cleaner and More Competitive Europe; Publications Office of the European Union Luxembourg: Luxembourg, 2020. [Google Scholar]
- Islam, R.; Hassan, T.; Yuniarto, A.; Uddin, A.S.M.S.; Salmiati, S. An Empirical Study of Construction and Demolition Waste Generation and Implication of Recycling. Waste Manag. 2019, 95, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Commission to the European Parliament and the Council. Reglamento Europeo Sobre Productos de Construcción. P9_TA(2023)0253. 2024. Available online: https://www.europarl.europa.eu/doceo/document/TA-9-2023-0253_EN.pdf (accessed on 17 July 2024).
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Hebel, D.E.; Heisel, F. Cultivated Building Materials: Industrialized Natural Resources for Architecture and Construction; Birkhäuser: Basel, Switzerland, 2017. [Google Scholar]
- Sahat, S.; Ahmad, N.F.; Razali, S.N.A.M.; Kaamin, M.; Mokhtar, M.; Hamid, N.B.; Nyadiman, N. Effectiveness of Corn Cob as a Thermal Isolation Material. AIP Conf. Proc. 2018, 2016, e020127. [Google Scholar]
- Dewi, S.M.; Wijaya, M.N.; Christin Remayanti, N. The Use of Bamboo Fiber in Reinforced Concrete Beam to Reduce Crack. In AIP Conference Proceedings. Green Construction and Engineering Education for Sustainable Future; AIP Publishing: Melville, NY, USA, 2021; Volume 020003. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 5 July 2024).
- Gramez, A.; Boubenider, F. Acoustic Comfort Evaluation for a Conference Room: A Case Study. Appl. Acoust. 2017, 118, 39–49. [Google Scholar] [CrossRef]
- Arenas, J.P.; Crocker, M.J. Recent Trends in Porous Sound-Absorbing Materials. Sound Vib. 2010, 44, 12–18. [Google Scholar]
- Kicińska-Jakubowska, A.; Bogacz, E.; Zimniewska, M. Review of Natural Fibers. Part I—Vegetable Fibers. J. Nat. Fibers 2012, 9, 150–167. [Google Scholar] [CrossRef]
- Abd Rashid, A.F.; Yusoff, S. A Review of Life Cycle Assessment Method for Building Industry. Renew. Sustain. Energy Rev. 2015, 45, 244–248. [Google Scholar] [CrossRef]
- Asdrubali, F.; Schiavoni, S.; Horoshenkov, K.V. A Review of Sustainable Materials for Acoustic Applications. Build. Acoust. 2012, 19, 283–311. [Google Scholar] [CrossRef]
- Horoshenkov, K.V.; Khan, A.; Benkreira, H. Acoustic Properties of Low Growing Plants. J. Acoust. Soc. Am. 2013, 133, 2554–2565. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.S.; Kang, J.; Cheal, C. Random-Incidence Absorption and Scattering Coefficients of Vegetation. Acta Acust. United Acust. 2013, 99, 379–388. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Asdrubali, F.; Mencarelli, N. Experimental Evaluation and Modelling of the Sound Absorption Properties of Plants for Indoor Acoustic Applications. Build. Environ. 2015, 94, 913–923. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Membrane-Type Acoustic Metamaterial Using Cork Sheets and Attached Masses Based on Reused Materials. Appl. Acoust. 2022, 189, 108605. [Google Scholar] [CrossRef]
- Ciaburro, G.; Puyana-Romero, V.; Iannace, G.; Jaramillo-Cevallos, W.A. Characterization and Modeling of Corn Stalk Fibers Tied with Clay Using Support Vector Regression Algorithms. J. Nat. Fibers 2021, 19, 7141–7156. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G.; Puyana-Romero, V.; Trematerra, A. A Comparison between Numerical Simulation Models for the Prediction of Acoustic Behavior of Giant Reeds Shredded. Appl. Sci. 2020, 10, 6881. [Google Scholar] [CrossRef]
- Lim, Z.Y.; Putra, A.; Nor, M.J.M.; Yaakob, M.Y. Sound Absorption Performance of Natural Kenaf Fibres. Appl. Acoust. 2018, 130, 107–114. [Google Scholar] [CrossRef]
- Putra, A.; Or, K.H.; Selamat, M.Z.; Nor, M.J.M.; Hassan, M.H.; Prasetiyo, I. Sound Absorption of Extracted Pineapple-Leaf Fibres. Appl. Acoust. 2018, 136, 9–15. [Google Scholar] [CrossRef]
- Ersoy, S.; Küçük, H. Investigation of Industrial Tea-Leaf-Fibre Waste Material for Its Sound Absorption Properties. Appl. Acoust. 2009, 70, 215–220. [Google Scholar] [CrossRef]
- Moghaddam, M.K.; Safi, S.; Hassanzadeh, S.; Mortazavi, S.M. Sound Absorption Characteristics of Needle-Punched Sustainable Typha /Polypropylene Non-Woven. J. Text. Inst. 2015, 107, 145–153. [Google Scholar] [CrossRef]
- Asdrubali, F.; Pisello, A.L.; D’Alessandro, F.; Bianchi, F.; Fabiani, C.; Cornicchia, M.; Rotili, A. Experimental and Numerical Characterization of Innovative Cardboard Based Panels: Thermal and Acoustic Performance Analysis and Life Cycle Assessment. Build. Environ. 2016, 95, 145–159. [Google Scholar] [CrossRef]
- Mati-Baouche, N.; de Baynast, H.; Michaud, P.; Dupont, T.; Leclaire, P. Sound Absorption Properties of a Sunflower Composite Made from Crushed Stem Particles and from Chitosan Bio-Binder. Appl. Acoust. 2016, 111, 179–187. [Google Scholar] [CrossRef]
- Othmani, C.; Taktak, M.; Zain, A.; Hantati, T.; Dauchez, N.; Elnady, T.; Fakhfakh, T.; Haddar, M. Acoustic Characterization of a Porous Absorber Based on Recycled Sugarcane Wastes. Appl. Acoust. 2017, 120, 90–97. [Google Scholar] [CrossRef]
- Martellotta, F.; Cannavale, A.; De Matteis, V.; Ayr, U. Sustainable Sound Absorbers Obtained from Olive Pruning Wastes and Chitosan Binder. Appl. Acoust. 2018, 141, 71–78. [Google Scholar] [CrossRef]
- Reixach, R.; Del Rey, R.; Alba, J.; Arbat, G.; Espinach, F.X.; Mutjé, P. Acoustic Properties of Agroforestry Waste Orange Pruning Fibers Reinforced Polypropylene Composites as an Alternative to Laminated Gypsum Boards. Constr. Build. Mater. 2015, 77, 124–129. [Google Scholar] [CrossRef]
- Ricciardi, P.; Torchia, F.; Belloni, E.; Lascaro, E.; Buratti, C. Environmental Characterisation of Coffee Chaff, a New Recycled Material for Building Applications. Constr. Build. Mater. 2017, 147, 185–193. [Google Scholar] [CrossRef]
- Gómez Escobar, V.; Maderuelo-Sanz, R. Acoustical Performance of Samples Prepared with Cigarette Butts. Appl. Acoust. 2017, 125, 166–172. [Google Scholar] [CrossRef]
- Yeon, J.O.; Kim, K.W. Analysis of Absorption Coefficient for Eco-Friendly Acoustical Absorbers. Adv. Mater. Res. 2014, 831, 58–61. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Acoustic Characterization of Natural Fibers for Sound Absorption Applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Schiavoni, S.; D’Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation Materials for the Building Sector: A Review and Comparative Analysis. Renew. Sustain. Energy Rev. 2016, 62, 989–1011. [Google Scholar] [CrossRef]
- Madhumathi, A.; Sundarraja, M.C.; Shanthipriya, R. A Comparative Study of the Thermal Comfort of Different Building Materials in Madurai. Int. J. Earth Sci. Eng. 2014, 7, 1004–1018. [Google Scholar]
- Asdrubali, F.; Baldassarri, C.; Fthenakis, V. Life Cycle Analysis in the Construction Sector: Guiding the Optimization of Conventional Italian Buildings. Energy Build. 2013, 64, 73–89. [Google Scholar] [CrossRef]
- Gori, P.; Bisegna, F. Thermophysical Parameter Estimation of Multi-Layer Walls with Stochastic Optimization Methods. Int. J. Heat Technol. 2010, 28, 109–116. [Google Scholar]
- Ingeli, R.; Gašparík, J.; Paulovičová, L. Impact of an Innovative Solution for the Interruption of 3-D Point Thermal Bridges in Buildings on Sustainability. Sustainability 2021, 13, 11561. [Google Scholar] [CrossRef]
- Hung Anh, L.D.; Pásztory, Z. An Overview of Factors Influencing Thermal Conductivity of Building Insulation Materials. J. Build. Eng. 2021, 44, 102604. [Google Scholar] [CrossRef]
- Al-Homoud, M.S. Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials. Build. Environ. 2005, 40, 353–366. [Google Scholar] [CrossRef]
- Berardi, U.; Naldi, M. The Impact of the Temperature Dependent Thermal Conductivity of Insulating Materials on the Effective Building Envelope Performance. Energy Build. 2017, 144, 262–275. [Google Scholar] [CrossRef]
- Harish, S.; Michael, D.P.; Bensely, A.; Lal, D.M.; Rajadurai, A. Mechanical Property Evaluation of Natural Fiber Coir Composite. Mater. Charact. 2008, 60, 44–49. [Google Scholar] [CrossRef]
- Tangjuank, S. Thermal Insulation and Physical Properties of Particleboards from Pineapple Leaves. Int. J. Phys. Sci. 2011, 6, 4528–4532. [Google Scholar] [CrossRef]
- Symington, M.C.; Banks, W.M.; West, O.D.; Pethrick, R.A. Tensile Testing of Cellulose Based Natural Fibers for Structural Composite Applications. J. Compos. Mater. 2009, 43, 1083–1108. [Google Scholar] [CrossRef]
- Takagi, H.; Kako, S.; Kusano, K.; Ousaka, A. Thermal Conductivity of PLA-Bamboo Fiber Composites. Adv. Compos. Mater. 2007, 16, 377–384. [Google Scholar] [CrossRef]
- Stanković, S.B.; Popović, D.; Poparić, G.B. Thermal Properties of Textile Fabrics Made of Natural and Regenerated Cellulose Fibers. Polym. Test. 2008, 27, 41–48. [Google Scholar] [CrossRef]
- Patnaik, A.; Mvubu, M.; Muniyasamy, S.; Botha, A.; Anandjiwala, R.D. Thermal and Sound Insulation Materials from Waste Wool and Recycled Polyester Fibers and Their Biodegradation Studies. Energy Build. 2015, 92, 161–169. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A Review of Unconventional Sustainable Building Insulation Materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Mohammadi, M.; Taban, E.; Tan, W.H.; Din, N.B.C.; Putra, A.; Berardi, U. Recent Progress in Natural Fiber Reinforced Composite as Sound Absorber Material. J. Build. Eng. 2024, 84, 108514. [Google Scholar] [CrossRef]
- Taiwo, E.M.; Yahya, K.; Haron, Z. Potential of Using Natural Fiber for Building Acoustic Absorber: A Review. J. Phys. Conf. Ser. 2019, 1262, 012017. [Google Scholar] [CrossRef]
- Divya, D.; Devi, S.Y.; Indran, S.; Raja, S.; Sumesh, K.R. Chapter 2—Extraction and Modification of Natural Plant Fibers—A Comprehensive Review. In Plant Fibers, Their Composites and Applications; The Textile Institute Book Series; Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S., Ozbakkaloglu, T., Wang, H., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 25–50. [Google Scholar] [CrossRef]
- Bande, M.M.; Grenz, J.; Asio, V.B.; Sauerborn, J. Morphological and Physiological Response of Abaca (Musa Textilis Var. Laylay) to Shade, Irrigation and Fertilizer Application at Different Stages of Plant Growth. Int. J. AgriScience 2013, 3, 157–175. [Google Scholar]
- Torres-Guillen, E.N. Production and Exportation of Abacá in Ecuador. 2021. Available online: https://cia.uagraria.edu.ec/Archivos/TORRES%20GUILLEN%20ELENA%20NARCISA.pdf (accessed on 18 July 2024). (In Spanish).
- Yaguachi-Andrade, F.M. Agronomic Management of Abaca (Musa Textilis) Cultivation in Ecuador. 2024. Available online: http://dspace.utb.edu.ec/handle/49000/16096?show=full (accessed on 18 July 2024). (In Spanish).
- Naranjo, A. Analysis of the Tax Impact on the Abacá Producing-Exporting Sector during the Years 2009–2013. Bachelor’s Thesis, Universidad de Guayaquil-Ecuador, Guayaquil, Ecuador, 2015. [Google Scholar]
- Ponce-Medina, J.E. Production of Abacá Fiber (Musa Textilis) with Organic Fertilization. 2015. Available online: https://repositorio.uteq.edu.ec/items/cd2712c5-0995-47db-a7fa-62c97bf08ac6 (accessed on 18 July 2024). (In Spanish).
- Richter, S.; Stromann, K.; Müssig, J. Abacá (Musa Textilis) Grades and Their Properties—A Study of Reproducible Fibre Characterization and a Critical Evaluation of Existing Grading Systems. Ind. Crops Prod. 2013, 42, 601–612. [Google Scholar] [CrossRef]
- Alcivar-Bastidas, S.; Petroche, D.M.; Cornejo, M.H.; Martinez-Echevarria, M.J. Effect of Aging Process on Mechanical Performance of Reinforced Mortar with NaOH Abaca Fibers. Case Stud. Constr. Mater. 2024, 20, e03122. [Google Scholar] [CrossRef]
- Delicano, J.A. A Review on Abaca Fiber Reinforced Composites. Compos. Interfaces 2018, 25, 1039–1066. [Google Scholar] [CrossRef]
- Lapuz, A.R.P.; Torres, A.S.; Lapuz, R.B.; Mari, E.L.; Basilia, B.A. Nanocrystalline Cellulose from Abaca Fibers. J. Mater. Sci. Eng. 2017, 6, 4172. [Google Scholar] [CrossRef]
- Shahri, W.; Tahir, I.; Ahad, B. Abaca Fiber: A Renewable Bio-Resource for Industrial Uses and Other Applications. In Biomass and Bioenergy: Processing and Properties; Hakeem, K.R., Jawaid, M., Rashid, U., Eds.; Springer International Publishing: Cham, Germany, 2014; pp. 47–61. [Google Scholar] [CrossRef]
- Del Río, J.C.; Gutiérrez, A. Chemical Composition of Abaca (Musa Textilis) Leaf Fibers Used for Manufacturing of High Quality Paper Pulps. J. Agric. Food Chem. 2006, 54, 4600–4610. [Google Scholar] [CrossRef] [PubMed]
- Cayanan, N.D.C.; Gozun, S.C.; Tongol, E.R.M.; Bautista, L.G. Hibla: Acoustic Fiber. Proc. Meet. Acoust. Acoust. Soc. Am. ASA 2019, 39, 015002. [Google Scholar] [CrossRef]
- Gade, D.W. La Ethnobotánica Del Perú: Desde La Prehistoria Al Presente. J. Ethnobiol. 2010, 30, 175–176. [Google Scholar] [CrossRef]
- Jara-Vinueza, O.; Pavon, W.; Remache, A. Sustainable Construction with Cattail Fibers in Imbabura, Ecuador: Physical and Mechanical Properties, Research, and Applications. Buildings 2024, 14, 1703. [Google Scholar] [CrossRef]
- Jorgensen, P.; Yánez, S. Catalogue of the Vascular Plants of Ecuador: Schoenoplectus Californicus; Missoury Botanical Garden Press: St. Louis, MO, USA, 2009; pp. 11–12. [Google Scholar]
- PFAF Newsletter. Furcraea andina—Trel. In Plants For a Future; The Catalogue of Life Partnership: Leiden, Netherlands, 1915. [Google Scholar]
- Torre, L.D.L.; Muriel, P.; Balslev, H. Etnobotánica En Los Andes Del Ecuador. In Botánica Económica los Andes Cent; Moraes, R.M., Øllgaard, B., Kvist, L.P., Borchsenius, F., Balslev, H., Eds.; Univ. Mayor San Andrés: La Paz, Bolivia, 2006; pp. 246–267. [Google Scholar]
- De La Torre, L.; Cummins, I.; Logan-Hines, E. Agave Americana and Furcraea Andina: Key Species to Andean Cultures in Ecuador. Bot. Sci. 2018, 96, 246–266. [Google Scholar] [CrossRef]
- Moreano-Moreano, D.J.; Zambrano-Romero, D.A. Design and Construction of Front and Rear Bumper of a Chevrolet Optra Vehicle Year 2008 from Natural Fiber from the Abacá Plant. Bachelor’s Thesis, Universidad de las Fuerzas Armadas, Sangolquí, Ecuador, 2016. (In Spanish). [Google Scholar]
- Pruna, L.; Velasco, F.; Chachapoya, F.; Paredes, C. Preparation of Flat-Woven Cabuya Fiber as a Reinforcement Matrix for the Construction of a Rear-View Mirror. Ingenius 2020, 24, 81–86. [Google Scholar] [CrossRef]
- Khan, T.; Singh, B.; Ahmad, K.A.; Pai, R. Chapter 2—Extraction of Coir Fibers by Different Methods. In Woodhead Publishing Series in Composites Science and Engineering; Jawaid, M.B.T.-C.F., Its, C., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 19–42. [Google Scholar] [CrossRef]
- Then, K.H. The Current Scenario and Development of the Coconut Industry. Plant. Kuala Lumpur 2018, 94, 1108. [Google Scholar] [CrossRef]
- Rojas-Torres, A.M. Addition of Coconut Fiber to Concrete and Its Impact on Compressive Strength. 2015. Available online: https://repositorio.uta.edu.ec/jspui/handle/123456789/17066 (accessed on 19 July 2024). (In Spanish).
- Romero Delgado, V.M.; Rosado Zambrano, G.V.; Cossío, S.; Neyfe Burbano Mera, L. Analysis of the Coconut (Cocos Nucifera) Agri-Food Chain in the Province of Manabí, Ecuador. Rev. Las Agrociencias. Univ. Técnica Manabí 2020, 24, 43–72. (In English) [Google Scholar] [CrossRef]
- Pham, L.J. Chapter 9: Coconut (Cocos Nucifera). In Industrial Oil Crops; AOCS Press: Urbana, IL, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 231–242. [Google Scholar] [CrossRef]
- Coir Fiber: Properties. Production Process and Advantages—The Textile Journal. Available online: https://thetextilejournal.com/coir-fiber-properties-production-process-and-advantages/ (accessed on 5 June 2024).
- David, I.; Giler Loor y Junior, G.; López Carrera. Feasibility Analysis of Incorporating Coconut Fiber into Traditional Mortar to Improve Its Mechanical Capabilities. 2022. Available online: http://repositorio.sangregorio.edu.ec:8080/bitstream/123456789/2647/1/ARQ-C2022-009.pdf (accessed on 19 July 2024). (In Spanish).
- Jouve-Loor, A.D.; Andrade-Lastra, A.O.; Areche-García, J.N. Mortar with the Incorporation of Coconut Fiber and Ceramic for Interior Finishes of Buildings 2021, Volume 6. Available online: https://dialnet.unirioja.es/descarga/artiuclo/7926986.pdf (accessed on 19 July 2024). (In Spanish).
- Taban, E.; Tajpoor, A.; Faridan, M.; Samaei, S.E.; Beheshti, M.H. Acoustic Absorption Characterization and Prediction of Natural Coir Fibers. Acoust. Aust. 2019, 47, 67–77. [Google Scholar] [CrossRef]
- Fouladi, M.H.; Ghassem, M.; Ayub, M.; Mohd Nor, M.J. Implementation of Coir Fiber as Acoustic Absorber Material. Noise Vib. Worldw. 2011, 42, 11–16. [Google Scholar] [CrossRef]
- Hidalgo-Cordero, J.F.; García-Navarro, J. Totora (Schoenoplectus Californicus (C.A. Mey.) Soják) and Its Potential as a Construction Material. Ind. Crops Prod. 2018, 112, 467–480. [Google Scholar] [CrossRef]
- Hidalgo, J.; García, J. Constructive Applications of Totora. In Libro de Actas del Congreso de Ingeniería Rural 2017; 2017; pp. 179–190. Available online: https://oa.upm.es/56706/ (accessed on 19 June 2024). (In English)
- Macía, M.J.; Balslev, H. Use and Management of Totora (Schoenoplectus Californicus, Cyperaceae) in Ecuador. Econ. Bot. 2000, 54, 82–89. [Google Scholar] [CrossRef]
- Fernando, J.; Cordero, H. Constructive Applications of Totora (Schoenoplectus Californicus) in Binderless Boards. Ph.D. Thesis, Universiti Malaysia Pahang, Pekan, Malaysia, 2019. [Google Scholar]
- Rodríguez Larraín, S.; Meli, G. Insulation with Totora (CTIERRA-PUCP). In Abrigando Hogares, Experiencias con Medidas de Confort Térmico en Viviendas Rurales Altoandinas; Cooperación alemana, Ministerio de Vivienda, Construcción y Saneamiento and Programa Nacional de Vivienda Rural, Eds.; Instituto de las Ciencias de la Naturaleza, Territorio y Energía Renovables, Centro Tierra, 2015; pp. 32–37. Available online: https://issuu.com/melissakatherynpalma/docs/abrigando-hogares (accessed on 19 June 2024). (In Spanish)
- ASTM D575-91(2018); Standard Test Methods for Rubber Properties in Compression. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- Simbaña, E.A.; Ordóñez, P.E.; Ordóñez, Y.F.; Guerrero, V.H.; Mera, M.C.; Carvajal, E.A. 6-Abaca: Cultivation, Obtaining Fibre and Potential Uses. In Handbook of Natural Fibres: Second Edition; Woodhead Publishing: Sawston, UK, 2020; Volume 1, pp. 197–218. [Google Scholar] [CrossRef]
- Muñoz-Blandón, O.; Ramírez-Carmona, M.; Rendón-Castrillón, L.; Ocampo-López, C. Exploring the Potential of Fique Fiber as a Natural Composite Material: A Comprehensive Characterization Study. Polymers 2023, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Oladele, I.O.; Adelani, S.O.; Makinde-Isola, B.A.; Omotosho, T.F. Coconut/Coir Fibers, Their Composites and Applications. Plant Fibers Their Compos. Appl. 2022, 181–208. [Google Scholar] [CrossRef]
- ISO 8302:1991(En); Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Guarded Hot Plate Apparatus. International Organization for Standardization: Geneva, Switzerland, 1991.
- Asdrubali, F.; Bianchi, F.; Cotana, F.; D’Alessandro, F.; Pertosa, M.; Pisello, A.L.; Schiavoni, S. Experimental Thermo-Acoustic Characterization of Innovative Common Reed Bio-Based Panels for Building Envelope. Build. Environ. 2016, 102, 217–229. [Google Scholar] [CrossRef]
- ASTM C518-21; Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- ISO 10534-2:1998(En); Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 354:2003(En); Acoustics—Measurement of Sound Absorption in a Reverberation Room. International Organization for Standardization: Geneva, Switzerland, 2003.
- Rossing, T.D. Springer Handbook of Acoustics, 1st ed.; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Fahy, F. Foundations of Engineering Acoustics; Academic Press Elsevier: Southampton, UK, 2001. [Google Scholar] [CrossRef]
- Cox, T.; D’Antonio, P.; D’Antonio, P. Acoustic Absorbers and Diffusers, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017; Taylor Francis Group: Abingdon, UK, 2016. [Google Scholar] [CrossRef]
- Venegas, R.; Umnova, O. Acoustical Properties of Double Porosity Granular Materials. J. Acoust. Soc. Am. 2011, 130, 2765–2776. [Google Scholar] [CrossRef]
- Mehrzad, S.; Taban, E.; Soltani, P.; Samaei, S.E.; Khavanin, A. Sugarcane Bagasse Waste Fibers as Novel Thermal Insulation and Sound-Absorbing Materials for Application in Sustainable Buildings. Build. Environ. 2022, 211, 108753. [Google Scholar] [CrossRef]
- Lian, X.; Tian, L.; Li, Z.; Zhao, X. Thermal Conductivity Analysis of Natural Fiber-Derived Porous Thermal Insulation Materials. Int. J. Heat Mass Transf. 2024, 220, 124941. [Google Scholar] [CrossRef]
- Siqueira, F.F.; Cosse, R.L.; Pinto, F.A.; Mareze, P.H.; Silva, C.F.; Nunes, L.C. Characterization of Buriti (Mauritia Flexuosa) Foam for Thermal Insulation and Sound Absorption Applications in Buildings. Buildings 2021, 11, 292. [Google Scholar] [CrossRef]
- Boukhattem, L.; Boumhaout, M.; Hamdi, H.; Benhamou, B.; Ait Nouh, F. Moisture Content Influence on the Thermal Conductivity of Insulating Building Materials Made from Date Palm Fibers Mesh. Constr. Build. Mater. 2017, 148, 811–823. [Google Scholar] [CrossRef]
- Kosiński, P.; Brzyski, P.; Szewczyk, A.; Motacki, W. Thermal Properties of Raw Hemp Fiber as a Loose-Fill Insulation Material. J. Nat. Fibers 2018, 15, 717–730. [Google Scholar] [CrossRef]
- Thilagavathi, G.; Muthukumar, N.; Neela Krishnanan, S.; Senthilram, T. Development and Characterization of Pineapple Fibre Nonwovens for Thermal and Sound Insulation Applications. J. Nat. Fibers 2020, 17, 1391–1400. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, Y.; Musso, F. Hygrothermal Performance of Natural Bamboo Fiber and Bamboo Charcoal as Local Construction Infills in Building Envelope. Constr. Build. Mater. 2018, 177, 342–357. [Google Scholar] [CrossRef]
- Brzyski, P.; Kosiński, P.; Zgliczyńska, A.; Iwanicki, P.; Poko, J. Mass Transport and Thermal Conductivity Properties of Flax Shives for Use in Construction Industry. J. Nat. Fibers 2021, 18, 995–1006. [Google Scholar] [CrossRef]
- Iannace, G.; Berardi, U.; Bravo-Moncayo, L.; Ciaburro, G.; Puyana-Romero, V. Organic Waste as Absorbent Materials. INTER-NOISE NOISE-CON Congr. Conf. Proc. 2020, 261, 1821–1830. [Google Scholar]
- Silva, C.C.B.d.; Terashima, F.J.H.; Barbieri, N.; Lima, K.F.d. Sound Absorption Coefficient Assessment of Sisal, Coconut Husk and Sugar Cane Fibers for Low Frequencies Based on Three Different Methods. Appl. Acoust. 2019, 156, 92–100. [Google Scholar] [CrossRef]
- Taban, E.; Soltani, P.; Berardi, U.; Putra, A.; Mousavi, S.M.; Faridan, M.; Samaei, S.E.; Khavanin, A. Measurement, Modeling, and Optimization of Sound Absorption Performance of Kenaf Fibers for Building Applications. Build. Environ. 2020, 180, 107087. [Google Scholar] [CrossRef]
DD | Density (kg/m3) | Thickness (m) | Sound Absorption Coefficients | NRC | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
125Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | |||||
Glass wool | 24 | 0.05 | 0.18 | 0.52 | 0.90 | 0.99 | 0.95 | 0.85 | [42] |
Rock wool | 60 | 0.04 | 0.17 | 0.48 | 0.98 | 0.99 | 0.95 | 0.95 | [42] |
Kenaf | 100 | 0.04 | 0.08 | 0.18 | 0.32 | 0.70 | 0.94 | 0.55 | [43] |
Wood fibers | 100 | 0.06 | 0.20 | 0.40 | 0.50 | 0.65 | 0.91 | 0.60 | [43] |
Hemp | 50 | 0.03 | 0.01 | 0.15 | 0.25 | 0.51 | 0.70 | 0.40 | [43] |
Coconut | 60 | 0.05 | 0.10 | 0.2 | 0.34 | 0.67 | 0.79 | 0.50 | [43] |
Cane | 145 | 0.04 | 0.10 | 0.12 | 0.38 | 0.64 | 0.62 | 0.45 | [43] |
Pineapple leaf | 175 | 0.02 | NP | NP | 0.38 | 0.5 | 0.98 | NP | [32] |
Tea-leaf | 27.5 | 0.03 | NP | NP | 0.12 | 0.2 | 0.4 | NP | [33] |
Typha | 10.4 | 0.03 | NP | 0.62 | 0.66 | 0.78 | 0.81 | 0.72 | [34] |
Fiber | Label | Thickness (mm) | Bulk Density (kg/m3) | Tensile Strength (N) | Tensile Stress (kPa) |
---|---|---|---|---|---|
Abaca | AB30 | 30 | 163.2 | 758.33 | 70.58 |
AB20 | 20 | 132.0 | 593.33 | 56.55 | |
Cabuya | CB45 | 45 | 185.1 | 2860.83 | 574.63 |
CB20 | 20 | 85.3 | 1880.83 | 380.48 | |
Coir | CN60 | 60 | 114.9 | 3370.83 | 575.75 |
CN40 | 40 | 117.1 | 1167.50 | 225.66 | |
Totora | TV14 | 14 | 155.0 | 4694.17 | 500.19 |
OSTB20 | 20 | 244.0 | 6110.00 | 669.33 |
Material | Label | Keff (W/m·K) | Density (kg/m3) | Reference |
---|---|---|---|---|
Abaca | AB20 | 0.0428 [0.0014] | 163 [1.16] | Current study |
AB30 | 0.0456 [0.0018] | 132 [3.649] | ||
Cabuya | CB20 | 0.04039 [0.0016] | 185 [4.65] | Current study |
CB45 | 0.0404 [0.0011] | 85 [9.51] | ||
Coir | CN40 | 0.0643 [0.0011] | 117 [0.36] | Current study |
CN60 | 0.0468 [0.0010] | 115 [4.6] | ||
Totora | TV14 | 0.056 [0.0026] | 155 [16.4] | Current study |
OSTB20 | 0.0517 [0.0028] | 244 [12.8] | ||
Bagasse | - | 0.034–0.042 | 100–200 | [110] |
Buriti foam | - | 0.0398 | 49 | [112] |
Hemp | - | 0.039–0.076 | 18–85 | [113,114] |
Pineapple leaf | - | 0.031–0.039 | Not indicated | [115] |
Bamboo fiber | - | 0.042–0.046 | 70–170 | [116] |
Flax | - | 0.035–0.045 | 20–300 | [117] |
Fiber | Label | Min Sd | Max Sd | Repeated Measures ANOVA | |
---|---|---|---|---|---|
F | p-Value | ||||
Abaca | AB20 | 0.000 | 0.020 | 2.502 | 0.129 |
AB30 | 0.000 | 0.002 | 1.872 | 0.189 | |
Cabuya | CB20 | 0.000 | 0.000 | 3.148 | 0.090 |
CB45 | 0.000 | 0.001 | 0.661 | 0.474 | |
Coir | CN40 | 0.000 | 0.000 | 0.901 | 0.384 |
CN60 | 0.000 | 0.000 | 1.411 | 0.257 | |
Totora | TV14 | 0.001 | 0.026 | 1.188 | 0.313 |
OSTB20 | 0.000 | 0.005 | 1.064 | 0.322 |
Material | Thickness (mm) | NRC | Reference |
---|---|---|---|
Coir | 60 | 0.53 | Current work |
Coir | 40 | 0.42 | Current work |
Cabuya | 45 | 0.46 | Current work |
Cabuya | 20 | 0.24 | Current work |
Abaca | 30 | 0.38 | Current work |
Abaca | 20 | 0.23 | Current work |
Totora | 14 | 0.28 | Current work |
Totora | 20 | 0.12 | Current work |
Cocoa | 25 | 0.31 | [118] |
Buriti | 15–25 | 0.20–0.25 | [112] |
Bagasse | 20–40 | 0.27–0.62 | [110] |
Sisal | 20 | 0.16 | [119] |
Kenaf | 20–40 | 0.29–0.52 | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo-Moncayo, L.; Argotti-Gómez, M.; Jara, O.; Puyana-Romero, V.; Ciaburro, G.; Guerrero, V.H. Thermo-Acoustic Properties of Four Natural Fibers, Musa textilis, Furcraea andina, Cocos nucifera, and Schoenoplectus californicus, for Building Applications. Buildings 2024, 14, 2265. https://doi.org/10.3390/buildings14082265
Bravo-Moncayo L, Argotti-Gómez M, Jara O, Puyana-Romero V, Ciaburro G, Guerrero VH. Thermo-Acoustic Properties of Four Natural Fibers, Musa textilis, Furcraea andina, Cocos nucifera, and Schoenoplectus californicus, for Building Applications. Buildings. 2024; 14(8):2265. https://doi.org/10.3390/buildings14082265
Chicago/Turabian StyleBravo-Moncayo, Luis, Marcelo Argotti-Gómez, Oscar Jara, Virginia Puyana-Romero, Giuseppe Ciaburro, and Víctor H. Guerrero. 2024. "Thermo-Acoustic Properties of Four Natural Fibers, Musa textilis, Furcraea andina, Cocos nucifera, and Schoenoplectus californicus, for Building Applications" Buildings 14, no. 8: 2265. https://doi.org/10.3390/buildings14082265
APA StyleBravo-Moncayo, L., Argotti-Gómez, M., Jara, O., Puyana-Romero, V., Ciaburro, G., & Guerrero, V. H. (2024). Thermo-Acoustic Properties of Four Natural Fibers, Musa textilis, Furcraea andina, Cocos nucifera, and Schoenoplectus californicus, for Building Applications. Buildings, 14(8), 2265. https://doi.org/10.3390/buildings14082265