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Abstract: Digital twin (DT) is recognized as a pillar in the transition from traditional to digital
construction, yet the risks (opportunities and threats) associated with its implementation have not
been thoroughly determined in the literature. In addition, there is a scarcity of research relating the
risks of DT implementation to DT maturity levels, which has hindered the optimum consideration of
such risks when DT is adopted at different maturity levels. To address these gaps, this study conducted
a literature review of 1889 documents from Scopus and Web of Science databases. After rigorous
filtration, 72 documents were selected and comprehensively reviewed. A total of 47 risk factors
(RFs) were identified and categorized into opportunities (economic, technical, environmental and
sustainability, monitoring and safety, and management) and threats (economic, technical, and policy
and management). Subsequently, these RFs were mapped onto the five-level DT maturity model,
providing users with insights into opportunities and threats on each level. The exhaustive list of RFs
and proposed integration of a DT maturity model with corresponding RFs enables stakeholders to
identify the risks in their specific use cases and facilitate the decision-making and success in transition
across various levels of DT in real-life construction projects.

Keywords: digital twin; maturity level; construction risk; digital model; automation

1. Introduction

The advent of digital technologies is reshaping the execution of construction projects.
One such technology is digital twin (DT), which enables dynamic bidirectional data ex-
change between the physical assets and the digital model, showcasing its high potential
in improving the performance of construction projects [1,2]. The projected size of the DT
market is expected to reach USD 184.5 billion by 2030, with approximately 15–20% of the
total market share attributed to the construction context [3]. Being capable of representing
the near real-time status of the physical assets throughout the project lifecycle, DT has been
recognized to provide significant benefits to the construction industry, such as enhanced
safety monitoring, improved productivity, reduced costs, improved decision-making, and
optimization [4–7]. In addition, DT provides solutions to the fragmentation concerns of the
construction industry, such as information silos, isolated stakeholders, and decentralized
on-site labor caused by the slow adoption of digitization [8–12]. Therefore, the practice of
DT in the construction industry has emerged as an inevitable tendency.

Over the years, numerous definitions (e.g., [10,13–19]) of DT have emerged with the
continuous evolution of DT-enabling technologies. Still, there is no unified definition
of DT within the construction industry since the purposes and requirements of utilizing
DT technology vary in different use cases. The Digital Twin Consortium [20] defines a
digital twin as “a virtual representation of real-world entities and processes, synchronized at a
specified frequency and fidelity”. Therefore, Seaton et al. [21] outlined that key elements of
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DTs within the construction context include real-world entities, virtual representations,
synchronization, fidelity, and frequency. Notably, the real-world entities could be both
entities (e.g., construction equipment and products, workers, construction sites, and assets)
and processes (e.g., design, construction, operation and management, and demolition)
in the construction projects. Virtual representation is a digital duplicate of construction
objects and processes, which includes various linked digital assets (e.g., digital models,
images, documents, and videos) and supporting data [21]. Synchronization, which ensures
that the status of the DTs is consistent with that of their physical counterparts [22], is a
key element that differentiates a digital twin from other digital models. At the same time,
synchronization is affected by both frequency and fidelity, which determines the timing of
updates and precision of the virtual representation, respectively.

Research focusing on DT practice in the construction industry has gained momentum
recently [23–29], showcasing that further improvement and broad adoption of DT within
construction are crucial [30]. Nonetheless, the implementation of DT technology in the
construction industry is full of risks due to the complexity of the construction projects and
the inherent risks associated with adopting any emerging technology. According to the
PMBOK [31], the term “risk” denotes the uncertainty that may lead to deviations from
a project’s planned objectives. Such deviations can result in either positive outcomes,
referred to as “opportunities”, or negative consequences, known as “threats”, affecting
the achievement of these objectives. In this review, both opportunities and threats are
investigated and referred to as risk factors (RFs).

When it comes to reviewing articles, based on a thorough review of the literature
reviews pertaining to the practice of DT in the construction industry, it has been revealed
that the focus of these reviews is on four categories, including (1) exploration of DT-enabling
technologies (e.g., AR, AI, and IoT), (2) differentiation of DT from other similar concepts
(e.g., digital shadow, BIM, and cyber-physical systems), (3) identification of barriers or
challenges associated with DT adoption, and (4) investigation of DT’s applications in
construction projects (e.g., sustainability, fault detection, and monitoring). This indicates the
lack of a comprehensive review of RFs associated with DT implementation in construction
projects. In research articles, although there is some research that, to a certain extent, has
reviewed the RFs to DT implementation (e.g., [6,26,32–35]), the majority of them have
focused on exploring some RFs of implementing DT within the construction context, while
overlooking connecting them with the DT maturity levels. Regarding the maturity levels
of DT, the literature has introduced it based on the sophistication of the implemented DT,
outlining the progressive levels of DT development [36]. Since not all RFs are applicable to
every level of DT maturity, it is necessary to provide meaningful insights for stakeholders
in their DT practice to investigate the RFs’ relevance at each DT maturity level.

Given the significance of the topic and the above-mentioned gap in research on a
holistic review of RFs associated with DT implementation in construction projects, there is
a need for a study that comprehensively identifies such RFs and map them onto specific DT
maturity levels—as each level provide different opportunities and threats. This will enable
the stakeholders to identify the risks in their current practices according to the adopted
level of DT and to have a clear insight into RFs for the potential visioned DT level. To
address this gap, the following research questions were formulated to guide this review:

1. What is the current situation of DT implementation in the construction sector?
2. What are the existing risks associated with DT practice in the construction industry?
3. How are the risks associated with DT implementation in the construction industry

mapped onto the five DT maturity levels?

To answer the above questions, this study aimed to conduct a comprehensive review
of the risks related to DT practice in the construction industry and map them onto corre-
sponding DT maturity levels, thereby offering the stakeholders insights into opportunities
and threats at each level. The remainder of this review is organized as follows: Section 2
introduces the background of DT maturity models in the literature; Section 3 demonstrates
the comprehensive literature review approach; Section 4 shows the scientometric outcomes
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of the review; Section 5 shows the results of identified RFs and discusses the developed
conceptual DT maturity level-based risk model; Section 6 illustrates the limitations and
future directions; and Section 7 concludes with the contributions of this study.

2. Digital Twin Maturity Model

There are several DT maturity models proposed in different domains. In the manu-
facturing industry, Kritzinger et al. [37] outlined three hierarchical tiers of DTs based on
the degree of data integration: digital model, digital shadow, and digital twin. Building
upon this framework, Liu et al. [38] introduced two additional levels: Cognitive DT and
Federated DT. Another model specific to manufacturing was developed by Hu et al. [36],
including Basic, Connection, Integration, Perception, Interaction, and Autonomy. In the
field of systems engineering, Madni et al. [16] proposed a four-level model based on the
sophistication of the virtual model: Pre-digital Digital Twin, Digital Twin, Adaptive Digital
Twin, and Intelligent Digital Twin. Similarly, Kumar et al. [39] proposed a more comprehen-
sive model, including the Digital model, Digital Twin, Adaptive Digital Twin, Technical and
functional DT, and Autonomous DT. In the Aerospace area, Medina et al. [40] introduced a
four-level maturity model comprising Monitoring, Diagnostic, Prediction, and Prescription.

Several maturity models have also been developed in the construction industry.
ARUP [41] proposed a five-level evolution model based on four metrics, Autonomy, Intel-
ligence, Learning, and Fidelity, which are expected to increase as the DT progresses. Ac-
cording to the characteristics of each level, the five levels are named Linked, Feedback and
Control, Predictive and Analytic, Learning, and Autonomous. Chen et al. [42] developed
their six-level model grounded in asset management maturity stages: Unaware, Identifiable,
Aware, Communicative, Interactive, and Instructive and Intelligent. Furthermore, models
by Boje et al. [2] and Naderi et al. [43] emphasize technical advancements, while some mod-
els focus on functional completeness. For instance, Wagg et al. [44] proposed a five-level
model for asset management: Supervisory, Operational, Simulation, Intelligent, and Au-
tonomous Management. Similarly, Autodesk [45] introduced a tailored five-level model
for the Architecture, Engineering, and Construction (AEC) industry—Descriptive twin, In-
formative twin, Predictive twin, Comprehensive twin, and Autonomous twin—which was
also adopted by Seaton et al. [21]. The different DT maturity models are listed in Table 1.

Table 1. Digital twin maturity model in the literature.

Domain Reference Levels Name of the Levels

General
[38] 0~4 Digital model, Digital shadow, Digital twin, Cognitive DT,

Federated DT

[39] 1~5 Digital model, Digital twin, Adaptive digital twin, Technical and
functional DT, Autonomous DT

Manufacturing
[36] 1~6 Basic, Connection, Integration, Perception, Interaction, Autonomy

[37] 1~3 Digital model, Digital shadow, Digital twin

Systems engineering [16] 1~4 Pre-digital twin, Digital Twin, Adaptive Digital Twin, Intelligent
Digital Twin

Aerospace [40] 1~4 Monitoring, Diagnostic, Prediction, Prescription

Construction

[41] 1~5 Linked, Feedback and Control, Predictive and Analytic, Learning
and Autonomous

[44] 1~5 Supervisory, Operational, Simulation, Intelligent,
Autonomous management

[2] 1~3 Monitoring Platform, Intelligent Semantic Platform, Agent-driven
socio-technical platform
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Table 1. Cont.

Domain Reference Levels Name of the Levels

Construction

[45] 1~5 Descriptive twin, Informative twin, Predictive twin,
Comprehensive twin, Autonomous twin

[21] 1~5 Descriptive twin, Informative twin, Predictive twin,
Comprehensive twin, Autonomous twin

[42] 1~6 Unaware, Identifiable, Aware, Communicative, Interactive,
Instructive and Intelligent

[43] 0~4 BIM, Digital twin, enhanced DT, Metaverse

Given the relevance and comprehensiveness of the five-level model proposed by
Autodesk [45] and Seaton et al. [21], as shown in Figure 1, it was adopted in this review
paper. At the Descriptive level (level 1), DTs represent the digital model connected to
real-world systems but lack intelligence, learning, and autonomy [46]. At the same time,
the Informative level (level 2) involves converting data into valuable insights. This is
achieved with computer vision techniques, which are supported by artificial intelligence
(AI) (i.e., deep learning technologies) [47]. The Predictive level (level 3) employs operational
data for prediction. Specifically, with AI-based technologies (e.g., process mining), DTs
can utilize large volumes of data to make valuable analytics and predictions [47,48]. At the
Comprehensive level (level 4), DTs learn from diverse data sources within the surrounding
environment and are able to conduct real-time analytics through what-if simulations. Using
AI techniques such as machine learning, DTs can analyze historical data and real-time
information to simulate various what-if scenarios. Finally, at the Autonomous level (level
5), with the help of AI, DTs can learn and minimize reliance on human inventions through
automatic analytics and decision-making. Obviously, AI and AI-based technologies play a
significant role throughout the DT levels.
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3. Methods

A comprehensive literature review, as a methodical and reproducible technique [49],
is used in this research to identify, assess, and synthesize the existing body of research.
Elsevier’s Scopus and Web of Science (WoS) were selected as bibliographic databases for
their respective strengths [50]. Scopus offers broader coverage, higher precision, and user-
friendly article retrieval procedures [51], while WoS is recognized for its credibility, reliable
publication data derived from a robust peer-review process, and inclusion of authoritative
literature [52].

In addition to conducting a qualitative analysis of articles to identify risks associated
with DT implementation in the construction industry, this study also utilized two prominent
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tools for quantitative visualization of the current scientific landscape: Bibliometrix and
VOSviewer, which are widely employed for scientometric analysis [53]. It is worth noting
that since relying on individual databases may not provide a comprehensive picture of
the topic [54], this research adopts the innovative approach proposed by Caputo and
Kargina [55] to effectively combine bibliometric data from both Scopus and WoS.

For the purpose of this research, the novelty of DT and its relatively limited number of
publications specifically focusing on risks associated with DT was considered. As a result,
to ensure a comprehensive inclusion of relevant literature, two broad search terms, namely
“Digital Twin” and “Construction”, were selected without applying any time filter. These
terms were searched in May 2023 within the “Title, Abstract, and Keywords” field in Scopus
and the “All Fields” field in WoS. The initial search, as depicted in Figure 2, involved a
three-round filtering procedure. First, several filters were applied to refine the query further,
including subject area, source type, language, and document type. Additionally, duplicates
from both databases were removed. This process resulted in 530 articles remaining, which
were then exported from Scopus in comma-separated value (CSV) format and from WoS
in Excel (.xlsx) format. The second round involved a manual evaluation of the titles and
abstracts of the retrieved articles, considering their research scope and relevance to the topic.
Next, the results were exported in BibTex format for subsequent scientometric analysis.
In the third round of screening, the selected articles underwent a full-text assessment
to identify the risks associated with DT. The findings are outlined in the results section.
Overall, 72 articles were deemed eligible for further exploration and analysis.Buildings 2024, 14, x FOR PEER REVIEW 6 of 35 
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4. Scientometric Analysis

This section reveals the findings of the scientometric analysis. As depicted in Figure 3,
a comprehensive investigation was conducted to determine the number of publications
within the scope of DT and construction for each year during the study period. Notably,
the first study related to the implementation of DT technology in the construction field
was published in 2018, and there has been a steady rise in the number of publications on
this subject. It is significant to mention that there are only 14 publications recorded for
2023, which can be attributed to the timing of the publication search being conducted in
May 2023.
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Figure 4 presents the distribution of the publications by source, revealing that the
top three journals are Automation in Construction, Buildings, and Journal of Construction
Engineering and Management. According to Bradford’s law, the identified core journals
are Automation in Construction and Buildings, which contribute about one-third of the total
collection [56]. It is crucial to emphasize that the surge in the number of researchers engaged
in studying and implementing DT in construction signifies an important shift toward more
advanced and efficient practices within the construction sector. As more scholars contribute
to this field of study, it will undoubtedly drive further progress and advancements in the
practice of DT in the construction industry. In addition, the most globally cited documents
are shown in Table 2; details about the number of citations and average citation per year
that the document has received and the journal in which the document has been published
are illustrated. This table provides researchers insights into the most influential works and
significant trends within the field of DT practice in the construction industry.

To provide an overview of the distribution of publications by country, as presented in
Figure 5, only the countries that have produced a combined number of more than 10 articles
are presented. This figure reveals that China is a great example showcasing quick growth
and development in this regard. It is significant to highlight that the implementation of DT
technology in the construction industry is still in the preliminary stage worldwide. While
developed countries such as the United States and Europe embarked on DT exploration
earlier, considerable work remains to be accomplished before this technology attains
sufficient maturity for widespread implementation. The global interest in DT technology
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presents a promising opportunity for continuous growth and development within the
construction industry.
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Table 2. Most globally cited documents.

Documents Journal of Documents Total Citations Average Citations per Year

[47] Automation in Construction 220 73.33
[17] Data-Centric Engineering 117 29.25
[8] Automation in Construction 112 37.33
[57] Journal of Building Engineering 105 35
[58] Structure and Infrastructure Engineering 92 18.4
[59] Journal of Information Technology in Construction 83 27.66
[60] Mechanical Systems and Signal Processing 76 25.33
[61] Automation in Construction 72 14.4
[5] Automation in Construction 64 21.33
[62] Developments in the Built Environment 54 13.5
[63] Frontiers in Built Environment 51 8.5
[64] Journal of Construction Engineering and Management 36 18
[65] Automation in Construction 35 17.5
[24] Journal of Building Engineering 33 11
[66] Buildings 31 10.33
[67] Engineering, Construction and Architectural Management 30 7.5
[68] Automation in Construction 25 12.5
[69] Journal of Management in Engineering 16 8
[70] Journal of Building Engineering 15 7.5
[71] Journal of Engineering, Design and Technology 15

Figure 6 depicts a three-field Sankey plot indicating the relations between countries,
sources, and Keywords Plus. Keywords Plus, which is more comprehensive than Author
Keywords, is generated by a computer algorithm based on the phrase or words most fre-
quently used in the titles of an article’s reference list [72]. Author Keywords were not used
since there were many varying spellings of the same term (e.g., ‘Building Information Model-
ing’, ‘BIM’, ‘Building Information Modeling (BIM)’, and others). As can be seen, China, the
United Kingdom, Australia, and the United States are the leading countries in contributions.
Meanwhile, Automation in Construction and Buildings stand out as the most prominent journals
for publishing articles on this topic, establishing their significance in disseminating knowledge
and insights. Moreover, the utilization of Keywords Plus analysis highlights the current
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research hotspots in this field, such as construction, architectural design, lifecycle, and
building information modeling. Table 3 represents the top 20 most cited sources within
the collection of reviewed studies, and they are ranked based on the number of citations.
Automation in Construction is the most prominent journal with the highest citations. More-
over, compared with the other journals, Automation in Construction has the highest h-index
(which measures both the productivity and impact of the publications), g-index (which
considers the distribution of citations among the articles), and m-index (which takes into
account the median of the h-index distribution of the journal’s articles), illustrating that
it has the most significant impact among the journals. The details are shown in Table 4,
which ranked the journals according to their h-index.
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Table 3. Most local cited sources.

No. Cited Source No. of Citations

1 Automation in Construction 501
2 Energy and Built Environment 40
3 Sustainability 40
4 Buildings 30
5 IFAC-Papers Online 28
6 Sensors 28
7 IEEE Access 27
8 Journal of Building Engineering 24
9 Journal of Cleaner Production 24
10 Journal of Construction Engineering and Management 24
11 Journal of Manufacturing Systems 23
12 Computer in Industry 21
13 International Journal of Advanced Manufacturing Technology 20
14 Journal of Computing in Civil Engineering 20
15 Advances in Civil Engineering 19
16 Procedia CIRP 19
17 Advanced Engineering Informatics 18
18 International Journal of Project Management 18
19 Journal of Construction Engineering and Management 18
20 Journal of Management in Engineering 18

Note: The term “local” means the collection of articles in this review.

Table 4. Sources’ local impact.

No. Source h-Index g-Index m-Index Total
Citations

No. of
Articles

Publication
Year Start

1 Automation in Construction 8 17 1.6 580 17 2019
2 Advances in Civil Engineering 4 4 1 30 4 2020
3 Buildings 4 8 1.33 64 11 2021
4 Frontiers in Built Environment 3 3 0.5 58 3 2018
5 Journal of Building Engineering 3 3 1 153 3 2021

6 Journal of Construction Engineering
and Management 2 5 1 45 5 2022

7 Journal of Information Technology
in Construction 2 3 0.66 89 3 2021

8 Journal of Management in Engineering 2 2 1 24 2 2022
9 Advances in Building Energy Research 1 1 1 2 1 2023

10
ASCE-ASME Journal of Risk and Uncertainty
in Engineering Systems Part
A-Civil Engineering

1 1 0.5 4 1 2022

11 Computers and Electrical Engineering 1 1 0.5 8 1 2022
12 Data 1 1 0.5 2 1 2022
13 Data-Centric Engineering 1 1 0.25 117 1 2020
14 Developments in the Built Environment 1 1 0.25 54 1 2020
15 Dirección y Organización 1 1 0.5 1 1 2022
16 Energies 1 3 0.33 13 3 2021
17 Energy and Built Environment 1 1 1 9 1 2023

18 Engineering Construction and
Architectural Management 1 1 0.25 30 1 2020

19 International Journal of Applied Earth
Observation and Geoinformation 1 1 0.5 4 1 2022

20 Journal of Engineering Design and Technology 1 1 15 1

Figure 7 illustrates the co-occurrence of (a) Keywords Plus and (b) Author Keywords,
in which the size of the circle reflects its frequency of occurrence, while the thickness of
the lines represents the extent of co-occurrence of the circles. Also, each of the color in
Figure 7 represents different keywords clusters that are frequently co-occurring together.
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From Figure 7a, it is obvious that the top three keywords are “architectural design”,
“construction”, and “building information modeling”. These keywords represent their high
relevance and popularity among scholars in this field, and they are useful for researchers
to identify emerging trends in this field. In Figure 7b, it is obvious that the term “digital
twin” emerges as a prevalent topic among researchers in this field. Notably, its occurrence
is consistently observed with keywords such as “construction”, “blockchain”, “building
information modeling”, and “internet of things”. These keywords reflect prominent areas
of interest within the authors’ publications, providing valuable insights into the research
themes for the following researchers.
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Figure 8 presents a visual representation of the collaboration network among countries
and institutions. The size of the circles in the graph indicates the number of citations,
while the line thickness reflects the extent of collaboration between the circles. Also, each
of the color in Figure 8 represents different clusters of institutions or countries that are
frequently collaborating together. Specifically, in Figure 8a, it is evident that the University
of Cambridge is prominent both in terms of citation count and active engagement in
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collaboration with other institutions. From Figure 8b, it is apparent that China, the United
Kingdom, and the United States are the top three countries in citation volume.
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Several pieces of Appendix information are available online regarding the reviewed pa-
pers in Appendix materials, including most relevant authors and most locally cited authors
(Appendix A), most relevant affiliations (Appendix B), most cited countries (Appendix C),
most relevant keywords (Appendix D), most global cited reviewed articles (Appendix E),
and summary of reviewed articles (Appendix F).

5. Discussion

In the first step of this research, a thorough overview of the previous literature reviews
pertaining to the practice of DT in the construction industry was conducted, and a total of
45 published reviews from the last decade were explored. This was to justify the gap in
research for conducting a comprehensive review of the RFs, and it was shown that there is
no such review article in the body of the literature to investigate the RFs associated with
DT implementation in construction projects. To keep the focus of this review article on the
RFs, the results of this investigation are provided in Supplementary Section S1.

When it comes to the RFs, a total of 47 RFs regarding the practice of DT in construction
projects were identified through an analysis of filtered publications and the reference lists
of those publications. Tables 5 and 6 offer an overview of the RFs. The identified RFs were
classified into opportunities and threats, with 32 and 15 RFs, respectively. Following [32,73],
the opportunities were further divided into five sub-categories: Economic (4), Technical (9),
Environment (2), Monitoring and Safety (7), and Management (10). Similarly, the threats
were grouped into three categories: Economic (3), Technical (6), and Policy and Manage-
ment (6). An overview of categories in opportunities and threats is shown in Figure 9. A
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summary of the reviewed publications is presented in Supplementary Section S2, while
subsequent sections provide greater details about each category and its associated RFs.

Table 5. List of opportunities derived from the reviewed papers.

Category Code Factors Explanation Reference

Economic

OE1 Energy reduction
DT can provide precise energy monitoring

analysis and promotion of
energy-saving habits.

[74,75]

OE2 Cost optimization

e.g., Connecting to the cloud system to
effectively reduce overhead costs;

eliminating the costs associated with
physical simulation and diagnosis.

[17,57,76–79]

OE3 Project time reduction

DT’s real-time simulation and analysis
capability facilitates faster decision-making

and more efficient resource allocation,
resulting in a shorter construction timeline.

[9,69,80–83]

OE4 Higher productivity

DT offers increased productivity by
monitoring the progress of the project and

identifying potential issues before they
become costly problems.

[11,47,69,84]

Technical

OT1 Real-time bi-directional
communication

DTs are continuously updated with
real-time data from various sources

(e.g., sensors and IoT devices), and feedback
is sent to the physical asset.

[74,81,82,85–87]

OT2 Design optimization e.g., DT technology can be used to create
models with higher accuracy. [5,28,74,76]

OT3 Improved data navigation
and synchronization

DT facilitates data communication and
provides all stakeholders with seamless

access to siloed data.
[8,28,74,88]

OT4 Enhance cyber security

All transactions taking place in the DT can
be securely and permanently tracked in the
blockchain network, enhancing the security

and trust in all project data.

[9,66,80,85,89]

OT5 Anomaly detection
DT can anticipate abnormal actions and
handle ambiguous circumstances using

effective troubleshooting abilities.
[5,8,90,91]

OT6 Deformation correction

DT can simulate corrective scenarios to
make accurate adjustments to the virtual

model and align it with the current state of
the physical asset.

[5,91]

OT7 Automatic updates of the
digital representation

Web services were utilized to handle the
automatic updating of the model, ensuring
the accuracy of the DT through a real-time

information model.

[61,80,83,86,92]

OT8 Improved IT integration
Within a project, DT can seamlessly

integrate with existing IT systems, software,
and data resources.

[84]

OT9 Enhancement in key
digital enablers

The integration of DT with key digital
enablers, such as IoT, blockchain, and AI,

drives innovation and efficiency in the
construction industry.

[29]
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Table 5. Cont.

Category Code Factors Explanation Reference

Environmental
and

Sustainability

OEn1

Emissions tracking
(including greenhouse gas
and carbon emissions to air,

water, etc.)

DT can track emissions with its capabilities
of data collection, emissions modeling, and

real-time monitoring.
[74,75,93]

OEn2 Reduce waste generation
DT can reduce waste production and

enhance resource efficiency by optimizing
the projects’ processes.

[74,93]

Monitoring and
Safety

OMS1 Inform and update
worksite hazards

DT can align data in unpredictable and
intricate settings to address

potential accidents.
[74,93]

OMS2 Automatic construction
site monitoring

DT can track construction advancement,
assess construction excellence, ensure

construction safety, and monitor personnel,
equipment, and materials.

[5,8,17,47,57,66,
69,73,74,76,79,80,

89,94–97]

OMS3 Construction progress
monitoring

Data obtained through laser scanning,
photographs, and videos of the asset is

gathered and utilized to monitor the
progress of the project using DT.

[74,79,86,98]

OMS4 Risk control and safety
management

In the construction stage, DT can inform
and update worksite hazards, and workers
can get automatic navigations and alerts. In
the O&M stage, DT can also address risks

through the simulation of what-if scenarios.

[8,69,74,76,80,85,
93,96,99–101]

OMS5 Structural health
monitoring (SHM)

DT can offer promising models for
immediate and ongoing SHM utilization,

including recognizing damage to the
structure, evaluating safety, assisting in

failure prevention, and aiding
maintenance procedures.

[74,75,84,93,102]

OMS6 Building occupancy
monitoring

DT can enhance space utilization and sensor
system effectiveness and precision through

real-time occupancy tracking and
advanced algorithms.

[74,76]

OMS7 Enhance safety training
efficiency

The virtual practice platform can effectively
reduce the potential accidents associated

with on-site training.
[74]

Management

OM1 Real-time tracking
DT can track information on materials, the

movement of heavy equipment, and
in-house prefabrication processes.

[30,74]

OM2 Construction logistic

Stakeholders can optimize the planning and
management of construction logistics

activities utilizing DT, which has
capabilities like site planning, material

tracking, equipment tracking, and
resource allocation.

[74,94]

OM3 Improve configuration and
workflow efficiency

DT can improve the two-way cooperation
between the virtual and physical assets and

build up environment-aware abilities to
optimize the workflow process.

[74]
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Table 5. Cont.

Category Code Factors Explanation Reference

Management

OM4 Lifecycle management

DT has cognitive capabilities to identify
intricate and unforeseeable actions and

develop rational strategies for optimizing
dynamic processes that aid in
decision-making for building

lifecycle management.

[74]

OM5 Smart city development

DT can facilitate the demonstration and
openness of administrative tasks, urban

planning, and policy through visualization
and digital prototype analysis.

[74,79]

OM6 Improved decision-making

Employing VR technology throughout the
lifecycle of a building improves the
communication of data to relevant

stakeholders, leading to better
decision-making.

[5,17,19,57,76,85,
89,92]

OM7 Enhanced predictive
maintenance

DT can monitor the present operational
condition and performance of a physical

asset to pre-schedule maintenance activities,
such as calibration management.

[5,67,85,103]

OM8 Facility management
DT can obtain, produce, and display the

asset’s context, evaluate data irregularities,
and optimize services.

[47,58,59,70,75,84,
85,89,102,104]

OM9 Quality assurance
Using DT in the design stage can effectively

enhance the quality of the projects in the
subsequent stages.

[66,80]

OM10 Increase user engagement
DT can promote information sharing and

facilitate communication
between stakeholders

[8,9,84,85,94]

Table 6. List of threats derived from the reviewed papers.

Category Code Factors Explanation Reference

Economic

TE1
Potential needs for

additional resources in the
design stage

It requires the purchase of the necessary
hardware and software, as well as the

development of the DT model. Additionally,
the implementation of DT technology

requires additional training and resources to
ensure that the technology is used correctly.

[30,76,105]

TE2 High maintenance cost The cost of maintenance of software and
hardware is high. [62]

TE3
Increase of cost on human

resources (recruit
and training)

It requires more experienced staff who
possess the relevant knowledge with regard

to DT technologies.
[105]

Technical

TT1 Threat of software
incompatibility

There is a lack of a unified platform used by
all stakeholders for real-time

data integration.
[30,106,107]

TT2 Threat of inadequate data
processing ability

There is a wide range of data workflows,
which necessitates a high demand for

computing. Additionally, various software
is used for data processing, leading to an

overload of data.

[30,89,106,108]
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Table 6. Cont.

Category Code Factors Explanation Reference

Technical

TT3 Inadequate information
management

It is difficult to achieve transparency and
interconnectivity in the information

management database, which may hinder
data integration and interoperability among

different data sources.

[24]

TT4 Data deficiency issues

Inadequate data between physical and
virtual space would lead to a series of

problems, such as analytic inaccuracies and
flawed decision-making.

[24]

TT5 Data security issues
DT necessitates a substantial amount of

data flow, making it difficult to safeguard
data security and privacy.

[80,89,107,108]

TT6 Data quality issues Without reliable and accurate data, DT may
produce inaccurate results. [109]

Policy and
Management

TPM1 Human errors

This can be caused by a lack of professional
experience. For example, in the modeling

phase, the personnel may include too much
detail or omit necessary information.

[104,107]

TPM2 Staff’s resistance to DT
adoption

They are afraid that DT technology is taking
away their place. [76,80]

TPM3 Lack of client demand

The perceived dangers, scarcity of
knowledge, and time expenses of long-term
surveillance are the primary obstacles to the

widespread acceptance of DT.

[80,105]

TPM4 Inadequate collaboration
among stakeholders

Due to the complexity of the construction
projects, it is hard to integrate all the

participants to work as a team.
[30,80]

TPM5 Difficulties in recruiting
qualified staff/personnel

There are limited qualitative staff who can
handle DT, which increases the difficulties

of hiring.
[10]

TPM6 Absence of interoperability
standards and guidelines

There is a lack of unified standards for DT;
this may pose issues such as fragmentation,

data compatibility, data integration, and
data sharing.

[66]
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5.1. Opportunity

In this research, the term “opportunity” refers to the positive uncertainties that DT may
introduce to projects. After a comprehensive literature review, the identified opportunities
were sorted into five clusters: Economic, Technical, Environmental and Sustainability,
Monitoring and Safety, and Management. Detailed introductions of each category are
presented in the subsequent paragraphs.

5.1.1. Economic

The economic potentials of DT technology present a highly attractive opportunity for
project stakeholders, including cost reduction, project time reduction, energy efficiency,
and increased productivity [10,11], and numerous studies have explored the economic
benefits associated with its implementation [110,111]. It is estimated that by 2025, cost
savings caused by DT could reach approximately USD 950 million during the design
and construction stages, as well as USD 400 million during the O&M phase [24,112]. In
addition, by optimizing the construction process schedule and resource allocations, DT can
accurately predict energy consumption [10,11], enabling project managers to exercise better
control over budgetary considerations during the design and planning stage of the building
process. Moreover, through real-time data acquisition facilitated by reliable techniques
such as BIM, AI, blockchain, and IoT sensors, DT enables the automation of construction
processes, preventive operation, and maintenance, as well as monitoring [2,24,75]. As a
result, errors and rework can be effectively minimized, leading to increased productivity
and decreased costs and time [113].

5.1.2. Technical

DT has emerged as a powerful technical support to enhance the efficiency of construc-
tion projects. DTs are often referred to as cyber-physical systems that establish bidirectional
communication between the physical and digital realms, characterized by the seamless
flow of data [95,97]. Therefore, DT can facilitate effective data communication, providing
stakeholders with access to previously siloed data [9,17]. Furthermore, the implementation
of blockchain networks can significantly enhance cybersecurity within the DT framework,
ensuring transparent and traceable data flows [66,114]. Liu et al. [115] emphasize that
DT enables the tracing of historical product design steps and continuous monitoring for
achieving optimization. Adopting a DT-based approach facilitates an iterative design opti-
mization process spanning from static configuration to dynamic execution [116]. At the
same time, the accuracy of DT is ensured by the automatic update of BIM models utilizing
web services [86,117]. By harnessing these features, the construction industry can benefit
from improved efficiency and effectiveness in project execution.

5.1.3. Management

DT technology is significant in project management by enhancing overall project
efficiency. Firstly, DT fosters increased user engagement by promoting information sharing
and facilitating seamless communication between stakeholders [9,85,97]. Taking advantage
of its robust information communication abilities, DT enables real-time tracking of vari-
ous project aspects, including material information, movement of heavy equipment, and
in-house prefabrication processes [30]. This functionality extends to resource dispatching,
encompassing tasks such as resource scarcity detection, demand analysis, decision-making,
resource allocation, and database updates with the assistance of AI [118]. Meanwhile, the
virtual model enables DT to simulate and understand the construction logistics, which
leads to comprehensive data analysis and better communication with the physical sys-
tem [87]. Opoku et al. [6] highlight the predictive capabilities of DT in identifying potential
hazards related to construction logistics, which subsequently improves coordination ef-
ficiency within the supply chain and supports decision-making during activities such as
silo distribution and restocking [94]. Continuous data acquisition further enhances DT’s
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potential to support efficient asset management, enabling immediate surveillance and more
intelligent decision-making for smart buildings [24,76].

5.1.4. Environmental and Sustainability

DT technology is able to improve the sustainable performance of construction projects;
for example, DT minimizes construction waste throughout the project lifecycle and facili-
tates material recycling during decommissioning stages [93]. Furthermore, DT’s continuous
tracking of greenhouse gas emissions enables the development of energy efficiency and
pollution reduction plans. Sepasgozar [119] also proposed that DT, combined with AR,
IoT, blockchain, and digital 3D modeling, has the potential to monitor energy and water
consumption, air quality, carbon dioxide emissions, and noise. Additionally, by utilizing
cognitive capabilities, DT allows for the identification of intricate and unforeseeable actions,
enabling the development of rational strategies for dynamic process optimization that
assist in the decision-making of a building’s lifecycle management [120].

5.1.5. Monitoring and Safety

DT is highly regarded for its robust monitoring and safety management capabilities
within construction projects. During the construction phase, DT informs and updates
worksite hazards, providing workers with automatic navigations and alerts [74,93,121].
Moreover, DT enables the autonomous detection and monitoring of construction sites by
tracking advancements, assessing excellence in construction, ensuring safety, and monitor-
ing personnel, equipment, and materials [95,97]. Xie et al. [86] highlighted the ability of
DT to monitor assembly progress in the prefabricated building sector by analyzing data
obtained through laser scanning, photographs, and videos based on BIM. In addition,
DT offers promising models for immediate and ongoing utilization of SHM, including
damage recognition, evaluating safety, preventing failure, and aiding maintenance opera-
tions [74,93]. Through consistent collection of data from sensors throughout the building’s
operational lifespan, DT provides a comprehensive reflection of the building’s condition,
generating predictive warnings that help prevent potential hazards and conflicts.

5.2. Threats

In this research, the term “threat” refers to the negative uncertainties that DT may
introduce to projects. The identified threats were grouped into three categories: Economic,
Technical, and Policy and Management. Further discussions will be presented in the
following sections.

5.2.1. Economic

Concerns have been raised regarding DT’s associated economic costs [62,105].
Lei et al. [33] highlight two primary economic threats related to DT implementation:
equipment costs and human resource expenses. Implementing DT requires substantial
investment in both hardware and software, as well as significant expenses for data acqui-
sition. These costs can pose challenges to organizations seeking to adopt DT technology.
Additionally, the human resource aspect incurs various expenses, including recruiting and
hiring specialists with expertise in DT [33,105]. Another significant economic threat arises
from the absence of a unified program for the collaboration of DT technologies; this results
in increased development costs for specialized software [62]. In light of these concerns, it
is necessary for stakeholders to carefully consider the potential economic implications of
embracing DT, weighing the benefits against the associated costs.

5.2.2. Technical

There are also technical gaps that need to be addressed to achieve DT’s potential
completely. Lei et al. [33] identify data as a key technical factor in the implementation
of DT, including data accuracy, availability, standardization, integration, and complex-
ity. Ensuring the high quality of data remains a challenge in current implementation
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efforts, limiting the real-time update of twin models. Moreover, DT currently falls short of
achieving real-time data communication due to technical gaps associated with enabling
technologies like AI, blockchain, and IoT [106]. These constraints hinder the ability of DT to
provide real-time updates of twin models, limiting its potential impact on decision-making
processes. Furthermore, the uneven dispersion of DT hardware devices, such as smart
sensors, poses an additional challenge, making it difficult to capture real-time data from
various locations [33]. In addition, overload data workflows in construction projects re-
quire various software for data processing and computing, while the accessibility of the
software is also a significant challenge [33]. The insufficiency of data flow between physical
and virtual spaces in FM is another critical concern highlighted by Honghong et al. and
Ozturk [24,106], leading to errors in construction process control.

5.2.3. Policy and Management

While there is growing recognition by governments worldwide regarding the signifi-
cance of DT, including the UK’s establishment of the Gemini Principles for DT, practical
guidelines and frameworks for its development remain lacking [11]. The extensive flow of
data required by DT also raises concerns about data security and privacy [107]. Specifically,
the exchange of data between various devices and software presents a risk of potential
exposure or leakage of sensitive information [33]. Consequently, these issues significantly
impede effective information sharing among stakeholders. Practical guidelines would
facilitate the adoption of DT technologies while ensuring regulatory compliance, data
protection, and secure information sharing. The practice of DT in construction projects
is also significantly impacted by management-related factors that pose threats. One key
challenge is the need for effective collaboration among stakeholders, which proves difficult
due to the inherent complexity of the construction projects [80]. Furthermore, practitioners
in the field exhibit reluctance to embrace DT, primarily because they harbor doubts about
its ability to yield benefits during the design and construction stages within the construc-
tion industry [6,17]. Simultaneously, there exists an apprehension that this innovative
technology may render their roles redundant [76,80]. Another challenge lies in the limited
number of faculty members proficient in handling DT, which potentially leads to issues
in subsequent project stages. In summary, perceived dangers, lack of knowledge, and the
time-consuming nature of long-term monitoring are primary obstacles to the widespread
adoption of DT.

5.3. Conceptual DT Maturity Level-Based Risk Model

This conceptual model was developed based on mapping the RFs on different DT
maturity levels, as illustrated in Figure 10. Each level of DT maturity provides a certain
number of opportunities, and such opportunities are also relevant to the next levels. For
instance, DT maturity level 3, in addition to all benefits of levels 1 and 2, provides OEn1,
OEn2, OMS1, OMS2, OMS6, OM2, and OM7, given the capability of real-time analysis and
prediction. At level 4, which leverages the advancements from level 3, stakeholders can
perform insightful analysis through what-if scenarios, thus leading to improved decision-
making (OM6). For example, by running simulations, DTs can identify energy inefficiencies
and potential structural issues and optimize resource allocation and construction schedules,
thereby helping stakeholders make informed decisions to achieve opportunities like Energy
reduction (OE1), Cost optimization (OE2), Project time reduction (OE3), and Structural
health monitoring (OMS5).

At the most sophisticated level (level 5), DT is expected to comprehend the impact
and performance of assets, enabling autonomous decision-making. Therefore, certain
opportunities can only be exploited when DT is implemented at its full capability. For
instance, Anomaly detection (OT5) and Deformation correction (OT6) are categorized
into level 5. Here, DTs utilize unsupervised learning to assess the condition of physical
assets and identify anomalies [41]. Additionally, the DTs learn from historical feedback and
information to develop optimal strategies for addressing deformations. Level 5 DTs exhibit
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high accuracy, making them valuable for Risk control and safety management (OMS4).
With their advanced intelligence and fidelity, Level 5 DTs can operate safely with minimal
human intervention. Moreover, for Smart city development (OM5), fully semantic DT
systems at the highest level can be connected and provide feedback to support city-level
decision-making processes.
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When it comes to threats, in contrast with the opportunities, it is perceived that not
all threats of lower levels are applicable to higher levels. For instance, technical threats
(TT1-TT6) that were identified in this review are primarily related to data, once addressed
at level 2, and are expected to be no longer a concern for upper DT levels. In contrast,
Economic threats (TE1-TE3) are universal across all five levels due to the increased demands
for qualified software, hardware, and human resources, leading to higher investments. Sim-
ilarly, Policy and Management threats (TPM 1–5) must be addressed across all five levels, as
stakeholder involvement is essential even at the Autonomous level (Level 5), where human
supervision remains necessary [2]. Therefore, threats such as Human errors (TPM1) and
Poor collaboration among stakeholders (TPM4) persist from levels 1 to 5. The significance
of these threats varies across various levels. For instance, with increasing autonomy of
DT from level 1 to 5, it tends to replace more manual work in the construction projects
(e.g., structure design, anomaly detection, and construction site monitoring), thereby in-
tricating an increasing resistance from the staff (TPM2) toward DT. However, at the same
time, the effect of lacking client demand (TPM3) diminishes as the DT level develops.

Overall, similar to other technologies and processes, higher levels of DT maturity offer
increased opportunities. However, the highest level of DT is not a necessity for every project.
In other words, DT implementation should be purpose-driven, and the required maturity
level of DT is informed by the requirements of the projects, the capabilities needed, and
the readiness of the company. Notably, although the highest level is autonomous, human
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intervention is still required. From levels 1 to 4, humans are actively involved in operations
(human-in-the-loop), while at level 5, human oversight is primarily for supervision in most
cases (human-on-the-loop).

6. Limitations and Future Directions

Due to the novelty of the topic and the limited available discussions on DT-associated
risks, there were only a relatively small number of publications available for analysis.
Furthermore, in this study, conference proceedings and grey literature were excluded to
ensure that the selected articles had undergone rigorous peer review. Despite the challenges,
the present work remains significant as it contributes to the accumulation of knowledge
in this area. From a theoretical perspective, the RFs list provides an in-depth overview
of the potential positive and negative impacts of DT on construction projects. However,
most previous research addressed the opportunities of DT, giving little attention to its
threats. Therefore, further exploration of DT is necessary to understand its implications
fully. Having reviewed all the related works, the following future directions are put forward:

• To identify and address potential missing risks related to DT implementation in the
construction industry across various contexts because both opportunities and threats
may differ in diverse contexts. Developing a comprehensive list of risks will establish
a robust foundation for future context-based research;

• To identify the most important RFs and evaluate their potential impact on construction
projects considering the DT maturity levels. This will, in turn, assist in cultivating
response plans and help optimize risk management efforts, eventually enabling practi-
tioners to effectively manage the risks associated with DT implementation at various
maturity levels;

• To investigate the relationships among the identified RFs. This helps researchers to
better understand the complex relationships between them. Investigating these re-
lationships provides a foundation for conceptualizing research projects and enables
practitioners to better anticipate and manage potential opportunities and threats associ-
ated with DT implementation;

• Given the significance of the economic aspects of adopting a new technology, one inter-
esting future direction is to develop predictive cost-related risk models/tools/decision
support systems that can be adopted on a project-based basis to assess the financial
implications of DT adoption at any maturity level.

7. Conclusions

This study conducted a comprehensive review to investigate the RFs associated with
implementing DT in construction projects. The novel contribution of this review is twofold.
First, comprehensive identification of both positive and negative risks linked to DT im-
plementation within the construction projects. Second, the development of a conceptual
risk-mapped DT maturity model provides new insight into adopting any level of DT and
making risk-informed decisions on the transition from a certain level to a higher one.
According to the findings of this review, it was concluded that (1) there are 47 RFs affecting
the implementation of DT at various maturity levels; (2) all opportunities of lower DT
maturity levels are observed in higher levels; (3) some threats apply to certain DT maturity
levels while they will not necessarily observe at higher levels; (4) some threats apply to all
DT maturity levels while their significance at each level and their mitigation strategies are
not necessarily the same across the levels.

This comprehensive literature review highlights the importance of understanding
both opportunities and threats associated with implementing DT in construction projects.
In addition, the categorization of the RFs in this review provides clear perspectives on
the uncertainties in adopting DT. Finally, the conceptual DT maturity level-based risk
model that is developed for the opportunities and threats provides research and practical
implications to inform the decision-making process for adopting any level of DT and
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transition from conventional DT low levels to higher levels and also to be used by academics
as a novel model for further developments in this research area.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/buildings14082349/s1. References [122–127] are cited in the supplemen-
tary materials.
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Technical University of Munich 3

University of Malaya 3
University of Texas at Austin 3

Aalborg University 2
Aarhus University 2

Advanced Remanufacturing and Technology Centre 2
Bartlett School of Construction and Project Management (UCL) 2

Cardiff University 2
Chalmers University of Technology 2

Cornell University 2
Edith Cowan University 2
Illinois State University 2

Nanyang Technology University 2
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Swiss Federal Institute of Technology 2

Thammasat University 2
The University of New South Wales 2

University of Agder 2
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Appendix C

Table A3. Most cited countries.

Country Total Citations Average Article Citations

Australia 227 28.4
Singapore 225 56.2

United Kingdom 195 19.5
Israel 171 85.5
USA 132 22

Korea 92 92
China 79 5.3
Turkey 40 20
France 35 35

Switzerland 25 25
Hong Kong 16 16

Norway 16 5.3
South Africa 15 15

Italy 13 6.5
Iran 11 11

Malaysia 10 5
Germany 8 4
Canada 7 2.3
Spain 7 1.8

Portugal 5 2.5
Denmark 4 4

Netherlands 4 4
Sweden 1 1
Thailand 0 0
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Appendix D

Table A4. Most relevant keywords.

Keywords Occurrences

Architectural Design 13
Construction 13

Building Information Modeling 11
Construction Industry 10

Life Cycle 9
Information Management 8

Design 7
Digital Twin 7
Management 7

BIM 6
Information Theory 6
Project Management 6

System 6
Virtual Reality 6

Architecture Engineering 5
Decision Making 5

Framework 5
Future 5

Internet of Things 5
Artificial Intelligence 4
Augmented Reality 4

Facilities Management 4
Industry 4

Information 4
Optimization 4

Real-Time 4

Appendix E

Table A5. Most globally cited reviewed articles.

Article Journal Total Citations Average Citations
per Year

[47] Automation in Construction 220 73.33
[17] Data-Centric Engineering 117 29.25
[8] Automation in Construction 112 37.33
[57] Journal of Building Engineering 105 35
[58] Structure and Infrastructure Engineering 92 18.4
[59] Journal of Information Technology in Construction 83 27.66
[60] Mechanical Systems and Signal Processing 76 25.33
[61] Automation in Construction 72 14.4
[5] Automation in Construction 64 21.33
[62] Developments in the Built Environment 54 13.5
[63] Frontiers in Built Environment 51 8.5
[64] Journal of Construction Engineering and Management 36 18
[65] Automation in Construction 35 17.5
[24] Journal of Building Engineering 33 11
[66] Buildings 31 10.33
[67] Engineering, Construction and Architectural Management 30 7.5
[68] Automation in Construction 25 12.5
[69] Journal of Management in Engineering 16 8
[70] Journal of Building Engineering 15 7.5
[71] Journal of Engineering, Design and Technology 15 —
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Appendix F

Table A6. Summary of reviewed articles.

Reference Context Scope Method Aim Key Findings

[112] USA The AEC industry
Virtual design and

construction (VDC) and
digital twin approaches

To demonstrate VDC and DT’s
main benefits and applications,

and anticipate cost savings in the
AEC industry globally

The global demand and utilization of these DT
enabling technologies, such as BIM, IoT, VR and

AR, will largely save the cost in the
AEC industry.

[69] Hong Kong, China The construction industry Questionnaires and
interviews

To utilize DTs and improve the
existing level of details (LoDs) of

BIM for construction site
management.

The framework proposed in this study can be
utilized to monitor and manage construction

sites, enhance quality and efficiency, and
improve construction safety.

[128] Spain Construction industry Case study of a wind farm
under construction

To explore the application of DT
on construction monitoring

DT can assist in mitigating the risks that may
occur during construction

[81] China Foundation pit excavation
(FPE) Bow-tie model

To establish an intelligent DT
framework for risk prognosis and

control to ensure reliable and
efficient FPE processes.

The established model is able to support
prognosis and control of negative deviations

during FPE

[82] Canada Offsite construction Discrete-event and
continuous simulation

To improve production on offsite
construction shop-floors through

increasing labor flexibility

Although the multiskilled workers are
perceived to reduce productivity, the increased

labor flexibility actually enhances the
movements of shop-floors and reduces its cost.

[9] Australia The construction industry Qualitative interview

To develop a software
architecture and framework of

smart contracts for
blockchain-based digital twin

decentralized applications
through the lifecycle of projects

in Construction 4.0

The proposed BCDT architecture and
smart-contract framework effectively met the
requirements in the literature. By utilizing the

non-fungible token (NFT) standard, the
framework was developed to address the

identified key use cases, industry issues, and
functional requirements.

[89] UK The AEC industry
Case study based on the

Clifton Suspension Bridge in
Bristol (UK)

To develop a DT for an existing
asset in the built environment
and present a case study that
demonstrates its feasibility.

There are five steps in the workflow of building
DT in the built environment: data and demands

acquisition, construction of the digital model,
the transmission of real-time data, data/model

synchronization, and operation.
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Table A6. Cont.

Reference Context Scope Method Aim Key Findings

[90] Hongkong, China Prefabricated construction Numerical experiment and
robotic testbed demonstration

To enable panning, scheduling,
and execution (PSE) by utilizing

real-time resource status and
construction progress

information extracted from
high-fidelity DTs.

The developed digital twin-enabled real-time
synchronization system (DT-SYNC) has the

capability to simplify PSE decision-making, and
DT-SYNC allows for the efficient and seamless
execution of construction tasks, even in narrow

urban areas and small cities.

[78] Australia Civil infrastructure Semantic modeling To develop a DT for intelligent
infrastructure maintenance

The proposed DT concept enables predictive
maintenance to avoid operational disruptions

and subsequent financial loss.

[105] UK Civil and structural
engineering Questionnaire survey

To investigate current views of
long-term monitoring in civil and

structural engineering

Although long-term monitoring is generally
regarded as a beneficial tool in the engineering
design process, there is a significant difference

in its actual implementation. Furthermore, there
is little consensus on how it can provide the

most benefits to this area, and there is currently
no direct financial motivation to encourage its

use in the industry.

[129] China Structural safety monitoring Multi-fidelity
surrogate model

To enhance the accuracy of
real-time monitoring and

prediction for the structural
safety of a crane boom.

This study proved that the proposed DT can
enhance the accuracy of DTs built by

single-fidelity surrogate models and reduce the
computational costs of numerical methods.

Furthermore, the uncertainty of the lightweight
DT was quantified.

[130] Italy Building management Case study building in Italy
To define a novel approach in
order to properly manage the

retrofitting intervention.

The deep renovation of the current building
stock plays a vital role in reducing greenhouse
gas emissions. The outcomes of this renovation
project in this research effectively demonstrate

the efficiency of innovative modular
prefabricated systems.
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[108] Portugal Ocean engineering Realistic virtual models of
structural systems

To fill the gap between design
and construction and to mirror

the real and virtual worlds

The key advantages of improved trust
management using the DT include data
standardization and contextualization,

automated anomaly detection, and the ability to
constantly learn through sharing.

Main challenges: collection, translation and
sharing of data, and the threat of cyber-attacks.

[131] China Tower crane hoisting safety Tower crane hoisting
experiment based on DT

To realistically simulate different
hoisting behaviors and

dynamically analyze their
influence on the tower crane.

The results of the DT-based experiment showed
tilt hoisting is most likely to threaten the

stability of the tower crane. Also, both the
foundation and masts of the tower crane are

weak and easy to be influenced by dangerous
hoisting factors.

[70] UK FM in the AEC industry Illustrative case studies

To analyze and make
comparisons between the

traditional FM and the DT-driven
FM during the O&M phase
through four geospatially

representative cases.

By providing dynamic data on the building
assets, DT technologies are able to efficiently

make reactions to FM activities.

[88] Canada Offsite construction
Offsite construction DT

model and case study with a
Canadian company

To improve offsite construction
productivity by utilizing the

concept of DT.

The resulting assessment framework sets the
foundation for an offsite Construction DT and

enables easier technology application in practice
by offering a holistic DT framework.

[101] China Prefabricated construction
hoisting

Intelligent safety risk
prediction framework and

construction hoisting
case study

To create a real-time updating
model for predicting the

behaviors of assembly building
hoisting based on DT.

The framework can provide reliable solutions to
the problems, including high risks caused by

hoisting, difficulty in prediction, and low
intelligence degree, by utilizing DT in hoisting

risk prediction.
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[132] China Road construction industry Prototype system and case
demonstration

To establish a foundational
platform that utilizes BIM, IoT,

and intelligence compaction (IC)
to enable advanced monitoring

and management of
compaction quality.

The proposed framework enables the seamless
integration of BIM and IC, allowing for the

effective monitoring of road compaction quality
by combining IoT data. Based on the

monitoring results, the construction schedule
can be adjusted and optimized accordingly.

[133] Germany Modularized construction
Case study for detailed
design sub-model and

quality control

To create the initial template for
an asset administration shell
(AAS) for precast concrete
elements and establish a

methodology for generating
AASs using the BIM model of a

modularized building.

The research demonstrated the use of the DT
concept to organize and structure data and

information to realize the purposes of ensuring
production and quality. By implementing the

DT based on the AAS, advanced communication
methods are enabled, both within individual

DTs and between multiple DTs.

[134] China Construction of
subway station

DT- and IoT-based automatic
multi-information
monitoring system

To provide a digital solution to
the monitoring of constructing

dome method station

The DT system effectively reproduces and
accurately describes the construction status of
subway stations, offering advanced technical

capabilities for the information and
visualization management of arch cover method

construction in subway stations.

[118] China The construction industry Hybrid DT-BIM model

To enable rapid decision-making
recommendations for the

dispatching system based on
advanced data analysis

The hybrid DT-BIM technologies can effectively
assist in the dispatch systems for

construction projects.

[8] USA Construction industry Case study for DT-blockchain
integration framework

To develop and test an integrated
DT- blockchain framework to

make the data
communication traceable.

The integrated DT–blockchain framework has
high potential in tracing all data transactions.
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[60] Brazil Structural damage detection Physics-based models
integrated with ML

To maximize the potential of the
proposed DT framework by

investigating the integration of
physicals-based models with

ML techniques.

To solve a dynamic structural damage problem,
this paper introduces a DT conceptual
framework. Moreover, the three key

components of this framework are emphasized:
computational model, quantification of

uncertainty, and calibration utilizing data from
the physical twin.

[17] UK Buildings and civil
infrastructure Conceptual analysis

To establish a comprehensive and
practical workflow for the

planning and control of design
and construction stages, as well
as other facilities, through using

DT information systems.

This paper presents a workflow framework for a
comprehensive digital twin construction (DTC)
information system. Furthermore, it provides an
in-depth review of the necessary research and

development to implement this framework.
DTC’s approach to construction management
relies much on data that utilizes information
and monitoring technologies within a lean,
closed-loop planning and control system.

[61] Australia Construction industry
Case study-based System

Information Modeling
research

To highlight the importance of
organizations establishing a

benefits management process
before investing in digital
technology; thus, they can

understand how digital
technologies can combine to
create economic value and

enhance their competitiveness.

The changes brought about by digital
technologies include three categories:

automation, extension, and transformation.

[58] South Korea Bridge engineering Digital twin model with
digital inspection system

To enhance the bridge
maintenance process

The DT-based framework simplifies access and
management of information within the bridge

maintenance system (BMS). The DT model
ensures seamless interoperability, efficient

information exchange, and easy specification
and delivery of data drops. Parametric

modeling saves time in the design stage and
reduces the complexity of the model.
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[87] Singapore Construction project
management A data-driven DT framework

To propose a highly automated
and intelligent framework based

on the integration of BIM, IoT,
and DM to control and improve

complicated
construction processes.

Tactic decision-making serves a dual purpose: it
not only helps in proactively preventing

potential failures but also enables rational
organization of work and staffing to ensure

adaptability to changing conditions.

[100] Australia Construction workforce
safety

Visual warning system
integrating DT, DL, and

MR technologies.

To complete the existing body of
knowledge related to

construction safety

The developed real-time visual warning system
based on the integration of DT, DL, and MR

technologies enhances workers’ accuracy in risk
assessment, reinforces their safety behavior, and

offers construction safety managers a fresh
perspective to analyze construction

safety status.

[103] China O&M of buildings Fusion mechanism of the DT
and ML

To address the gap in research
regarding the application of DTs

in various aspects of building
O&M and enhance the

intelligence level of the model.

The study highlights that applying DT
technology and ML algorithms is an efficient

approach to achieving intelligent prediction and
diagnosis of building O&M status. This enables

intelligent operation and maintenance
of buildings.

[91] China Steel structure Three-point positioning
technique

To achieve full-loop tracking and
control of the assembly and

manufacturing process

Using a DT-based model is beneficial for
inspecting and verifying the structure, making it

easier to trace the causes of quality issues. It
also enables timely problem resolution,

ensuring consistent progress in quality control
and assessment.

[95] Singapore Construction facility
management

Digital twin model and
experimental study

To create a BIM-based and
IoT-driven digital twin that
monitors and manages the

condition of the built
environment related to wellbeing.

This includes effectively
handling associated data and

communicating valuable insights
for informed decision-making in

facility management.

The BIM-based and IoT-driven DT method
supports real-time environmental monitoring

and provides facility managers with more
actionable insights for maintaining the daily

operation of buildings.
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[93] UK Buildings and infrastructures
A framework for a

risk-informed digital
twin (RDT)

To introduce a novel automated
multidisciplinary technology

called the risk-informed digital
twin (RDT), which incorporates

all five levels of DT and is
specifically designed for the

built environment.

This article offers a clear definition of DT and
highlights its distinction from digital models

and mirrors. It also explores the potential
benefits of applying DT in enhancing

sustainability and resilience within the
built environment.

[92] Spain Structural engineering A DT framework
for structures

To place particular emphasis on
the aspects that are overlooked in

the civil engineering field,
including autonomous

communication between the
physical and digital entities, as

well as the construction of
DT workflow.

The proposed DT has the capability to support
decision-making in preventing failures.

Through the virtual entity (VE), reliability and
risk assessment can be conducted under

damaged conditions, and automatic alarms can
be triggered in case of failure scenarios.

Additionally, the tests demonstrate that the DT
enables automated decision-making to ensure

structural integrity.

[135] USA Architectural design DT approach with hands-on
experiment

(1) To develop a user-friendly
tool assistant in DT design. With
this tool, users can communicate

with CAD software and get
feedback on design outcomes

intuitively.
(2) To explore the mixed physical
and digital mode’s opportunities

and effectiveness when it is
adopted as a new medium in the

design phase.
(3) To evaluate the tool’s

feasibility and acceptability in
design education and

architectural design practice by
testing users.

The researchers integrate a DT platform, which
provides an excellent opportunity for students
to understand how design decisions influence

different project outcomes. It the enables
teaching of important aspects such as design

concepts, detailed processing, layout ideation,
function exploration, and energy consumption
analysis. Additionally, it serves as an assistant
to help students overcome the barriers to CAD
software and introduces them to 3D modeling,

digital analytics, and programming.
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[1] USA The AEC industry
Digitization framework using
design science research (DSR)

methodology.

To drive and encourage the
adoption of digital technologies
in the AEC industry, which has

been relatively slow in embracing
these advancements, through a

digitalization framework.

The digitalization framework supports
practitioners in choosing a corresponding DT
level by comparing the pros and cons of each

level, defining the DT system’s assessment
criteria, and evaluating the impacts of the

selected DT on the organizational workflows
and value creation.

[67] UK Construction O&M AR-enhanced
inspection system

To explain the creation of an
automated method for detecting

and isolating environmental
anomalies using augmented

reality (AR) in order to support
facility managers in effectively

addressing issues that impact the
thermal comfort of
building occupants.

The case study illustrates the utility of the
proposed AR-enhanced inspection system in

improving the O&M management process. By
comparing various anomaly detection

algorithms, it is found that binary
segmentation-based vary point detection is

efficient and successful in identifying abnormal
temperatures. The FTA (fault tree

analysis)-based decision-making tree formalizes
the connection between temperature issues and
the corresponding faulty assets. Moreover, the

AR-based model enhances the maintenance
procedures by visually highlighting concealed
faulty assets to on-site maintenance workers.
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