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Abstract: Freeze–thaw damage significantly contributes to the degradation of concrete structures.
A critical precondition for concrete to experience frost damage is reaching its critical saturation
level. This study conducted freeze–thaw experiments on concrete specimens under both open and
sealed moisture conditions to elucidate the mechanisms of freeze–thaw damage and the pivotal
role of moisture. The research assessed concrete’s water absorption, ultrasonic pulse velocity, and
compressive strength under restricted water conditions to study damage accumulation patterns.
The findings indicate that implementing water limitation measures during freeze–thaw cycles can
regulate concrete’s water absorption rate, reduce the loss of ultrasonic pulse velocity, and minimize
strength degradation, with an observed strength increase of up to 36.22%. Consequently, these
measures protect concrete materials from severe frost damage. Furthermore, a predictive model
for concrete freeze–thaw deterioration was established based on regression analysis and relative
dynamic modulus theory, confirming the critical role of water limitation in extending the service life
of concrete structures in cold regions.

Keywords: freeze–thaw damage; concrete sealing; mechanical properties; prediction model

1. Introduction

Frost damage is the primary cause of concrete deterioration in cold and humid regions.
As the temperature decreases, water within the concrete pores freezes, generating pore
pressure that acts on the pore walls and other solid components. When this stress exceeds
the material’s strength, microcracks form [1–6]. As the temperature continues to drop,
water and ice gradually infiltrate the micro-pores and microcracks. Consequently, with
an increasing number of freeze–thaw cycles (FTCs), the internal pores of the concrete
expand [7], penetrate, and interconnect, leading to the continuous accumulation of micro-
damage, as shown in Figure 1 [8]. These defects further accelerate the intrusion of moisture
and harmful ions, such as chloride and sulfate ions, exacerbating other durability problems,
including carbonation and steel corrosion [9–12]. Consequently, this accelerates the overall
deterioration of concrete structures due to the compounded effects of multiple factors.
Therefore, studying the frost damage mechanism of concrete is crucial for assessing the
durability and service life of concrete structures in cold regions.

Concrete durability is closely related to water intrusion, which is both a primary cause
of concrete damage and a transport medium for harmful substances [13–16]. Concrete
structures are often exposed to environments with abundant water; consequently, with
increasing FTCs, water is continuously replenished, expansion strain damage accumulates,
and the degree of frost damage deepens [17–19]. In open freeze–thaw experiments (allowing
water intake) conducted by Hasan et al. [20], the strain continued to increase even up to
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300 FTCs. However, concrete typically does not suffer from frost damage until after a
certain number of FTCs [21–23]. Sicat et al. [24] conducted a closed (no water supplied)
freeze–thaw experiment on both dry and saturated mortar samples. The results showed
that the strain of dry samples remained steady and did not increase with FTCs. In contrast,
saturated samples developed positive strains within the first few cycles, reaching maximum
strain within 2–4 cycles, while the elastic modulus ceased to decrease after 3–5 cycles. Bentz
et al. [25,26] developed a model based on water absorption tests, utilizing the secondary
stage absorption rate to predict the time for concrete to reach critical saturation. This model
serves as a foundation for predicting the service life of concrete. Furthermore, Maekawa
et al. [27] studied the impact of water kinetics under moving loads, monitoring the history
of pore water pressure and principal strain in concrete. Their results indicated that high
pore water pressure leads to the development of internal stress within the concrete, thereby
accelerating its deterioration.
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Figure 1. Diagram of moisture and crack development.

Previous research has utilized small-scale concrete specimens to establish freeze–thaw
models [28]. Recently, significant progress has been made in studying the non-uniform
frost damage of reinforced concrete members, including the simulation of mechanical
properties of frost-damaged components such as reinforced concrete beams, columns, and
shear walls [29–34]. In actual engineering, frost damage to structural members is influenced
by many factors, including the size effect, hydrothermal boundaries, and reinforcement
distribution, often resulting in non-uniform frost damage distribution [35–37]. To assess
the performance of concrete in complex freezing–thawing environments, it is crucial to
establish a link between microscopic local damage and macroscopic structural performance.
In practical applications, concrete structures often experience frost damage before any
curing measures are implemented. Research on water limitation measures for concrete
remains incomplete. This study investigates the accumulation of freeze–thaw damage in
concrete under varying humidity conditions using freeze–thaw cycle tests. Key indicators
such as the water absorption rate, ultrasonic pulse velocity, and compressive strength
were tested to evaluate the effectiveness of water limitation. Additionally, a concrete
freeze–thaw deterioration prediction model was established using regression analysis and
relative dynamic modulus theory. This model confirms the crucial role of water limitation
in extending the service life of concrete structures in cold regions. This research aims to
enhance understanding of the role of water in the deterioration of concrete during FTCs.
Figure 2 delineates the workflow of this study.
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2. Experimental Program
2.1. Materials

Ordinary Portland cement (P·O 32.5) was used, meeting the requirements of “General
Portland Cement” (GB 175-2020) [38]. The fine aggregate was medium river sand with a
moisture content of 3%. The coarse aggregate was continuously graded crushed stone with
a maximum particle size of less than 20 mm and a moisture content of 1.4%. Tap water,
complying with the “Standard for Water Used in Concrete” (JGJ 63-2006) [39], was used for
mixing and curing.

2.2. Mixture Proportions and Specimen Preparation

The concrete specimens used in this experiment measured 100 mm × 100 mm ×
100 mm, with the mix proportions listed in Table 1. The specimens were divided into
four groups: OF15CF60, OF30CF45, OF45CF30, OF75, and NS (“OF” denotes open FTCs,
“CF” denotes closed FTCs, and the “NS” group comprises original specimens that have
not undergone FTCs). Specimens in the experimental groups OF15CF60, OF30CF45, and
OF45CF30 were sealed at different numbers of FTCs (i.e., at the 15th, 30th, and 45th
cycles, respectively) to prevent further water absorption and create a closed environment.
Specimens in the OF75 group did not receive any special treatment (Table 2). The entire
experimental process is illustrated in Figure 3.

Table 1. Mix proportion of concrete (1 m3).

W/C C (kg) W (kg) S (kg) G (kg)

0.50 320 160 754.7 1132.5
Note: W/C—water to cement ratio, C—cement, W—water, S—natural sand, G—natural coarse aggregate.

Table 2. Assignment of specimens for different procedures and tests (1 m3).

ID Ultrasonic Testing and Compressive
Strength Specimens Water Absorption Test Specimens

NS NS-1 NS-2 NS-3 - -
OF75 OF75-1 OF75-2 OF75-3 - -

OF15CF60 OF15CF60-1 OF15CF60-2 OF15CF60-3 OF15CF60-4 OF15CF60-5 OF15CF60-6
OF30CF45 OF30CF45-1 OF30CF45-2 OF30CF45-3 OF30CF45-4 OF30CF45-5 OF30CF45-6
OF45CF30 OF45CF30-1 OF45CF30-2 OF45CF30-3 OF45CF30-4 OF45CF30-5 OF45CF30-6
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2.3. Vacuum Water Saturation Test

Before the freeze–thaw cycle test, a 100 mm × 100 mm × 100 mm specimen was
selected and cut into four 20 mm × 100 mm × 100 mm pieces, labeled 1 to 4. Pieces 1 and 2
were used to determine the bilinear water absorption curve, while pieces 3 and 4 were used
for the vacuum water saturation test. The initial mass of each slice was recorded as m1, the
dried mass as m2, and the mass after water absorption/saturation as m3. The specimen
saturation degree was calculated using Equation (1).

Sr =
m1 − m2

m3 − m2
(1)

2.4. Water Absorption Test

The water absorption test was conducted using specimens with dimensions of 20 mm
× 100 mm × 100 mm. The timer was started after adding water to the predetermined
height and the mass of the slices was measured at the specified intervals according to the
American standard [40] and Table 3. To ensure data accuracy, we avoided measuring the
mass after 60 s of water absorption due to the large number of slices.

Table 3. Measurement times and tolerances for water absorption test.

Time 60 s 5 min 10 min 20 min 30 min 60 min 1 h Hourly
Measurement

Daily
Measurement 4–7 Days 7–9 Days

Tolerance 2 s 10 s 2 min 2 min 2 min 2 min 5 min 2 h 2 h 2 h 2 h

Note: Hourly measurements for the first 6 h; daily measurements for the first 3 days; three measurements from
days 4 to 7, with 24 h intervals; one measurement from days 7 to 9.

The capillary water absorption rate, S, is defined as the coefficient between the ab-
sorbed water mass (ML−2) and the square root of time (T1/2), thus expressed in units
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of ML−2 T1/2 [41]. In this experiment, the water absorption rate, I, is represented by
Equation (2) [42].

I =
mt

ad
(2)

where I represents the water absorption rate of the sample in mm, mt represents the mass
change of the sample in grams, a represents the area of the absorbing surface in mm2, and d
represents the density of water in 1000 g/mm3.

2.5. Sealing of Specimens

Specimens in groups OF15CF60, OF30CF45, and OF45CF30 were sealed in waterproof
bags at the end of the 15th, 30th, and 45th cycles (Figure 4). Before the main experiment,
a backup specimen underwent a pre-experiment: its initial mass was recorded before
undergoing five FTCs. After returning to room temperature, the specimen’s mass was
checked again, with a mass difference of less than 0.1 g, confirming the sealing method’s
effectiveness in maintaining constant water content within the concrete. Throughout the
freezing–thawing experiment, the mass of each specimen was measured at the end of each
cycle to ensure the continued effectiveness of the waterproofing method.
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Figure 4. Specimen sealing process: (a) waterproof plastic sheet; (b) waterproof electrical tape; (c)
waterproof plastic bag.

2.6. Freeze–Thaw Cycle Test

Specimens were grouped into sets of three and placed in specialized boxes filled with
tap water, ensuring a 5 mm water level above the specimens. The boxes were then placed in
a freeze–thaw chamber, initiating the cycles. The temperature was monitored with sensors,
with each stage comprising five cycles, as shown in Figure 5. Every five cycles, specimens
were removed for mass and ultrasonic pulse velocity measurements, then returned to the
chamber. The experiment ended after 75 cycles for all specimens.
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2.7. Ultrasonic Pulse Velocity Test

The ultrasonic velocity test was conducted using specimens with dimensions of
100 mm × 100 mm × 100 mm. The ultrasonic velocity of cement mortar samples was
measured using a ZBL-U5200 non-metallic ultrasonic detector from Beijing ZhiBoLian
Technology Co. (Beijing, China). After each freeze–thaw stage, ultrasonic pulse velocity
measurements were conducted on all specimens. We connected the ultrasonic testing
device to the main unit and the transducer, then calibrated the zero time to 5.90 µs. The
sampling parameters were set as follows: sampling interval, 0.05 µs; sampling length,
2048; and transmission voltage, 500 V. Using the through-transmission method (Figure 6),
three measurements were taken at the center of the test surface, and the average value was
recorded.
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Considering the uncertainties and material losses during specimen preparation, we
measured the distance between the testing surfaces of each specimen with a micrometer
before starting the FTCs. After recording the pulse velocity displayed, we calculated the
ultrasonic pulse velocity using Equation (3).

v =
l
t

(3)

where v represents the ultrasonic pulse velocity in km/s, l represents the distance between
the transducers in mm, and t represents the ultrasonic travel time in µs.

2.8. Compressive Strength Test

Compression strength tests were conducted using specimens with dimensions of
100 mm × 100 mm × 100 mm. The loading rate of the compression testing machine was
set between 0.3 and 0.5 MPa/s, approximately 4 kN/s. The compressive strength of the
cube was calculated using Equation (4). Given that the cube specimen size is 100 mm,
which is non-standard for compressive strength tests, the calculated compressive strength
was multiplied by a conversion factor of 0.95. The main apparatuses used in the experiment
are shown in Figure 7.

f cu =
F
A

(4)

where fcu represents the compressive strength of the specimen in MPa, F represents the
maximum load at failure in N, and A represents the load-bearing area in mm2.
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3. Results and Discussion
3.1. Initial State Parameters of Specimens

Table 4 presents the mass changes of specimens after initial vacuum saturation and
water absorption tests, including initial mass, oven-dried mass, and mass after water
absorption or saturation. Using the mass data from Table 4 and Equation (1), the initial
saturation degrees of the specimens were determined as Sr3 = 90.03% and Sr4 = 93.29%,
with an average saturation degree of 91.66%.

The air content of ordinary concrete (without entrained air) is approximately 2%. It is
assumed that aggregates are essentially free of air bubbles, which are all present in cement
mortar [43–46]. Given the mix proportions of the concrete used in this experiment and
the densities of tap water (1000 kg/m3), ordinary Portland cement (3000 kg/m3), coarse
aggregates (1700 kg/m3), and fine aggregates (1600 kg/m3) [47,48], the volume proportion
of cement mortar in the concrete is approximately 52.6% (Equation (5)). Consequently, the
air content in the cement mortar is calculated to be approximately 3.8% (2%/52.6% ≈ 3.8%).
By comparing the vacuum saturation results of slices 3 and 4, it can be inferred that the
specimens were not fully saturated prior to the experiment, as air bubbles remained in
voids.

Table 4. Masses of specimens in vacuum saturation and water absorption tests.

Slice Numbering Initial Mass m1 (g) Mass after Drying m2 (g) Mass after Water
Absorption/Saturation m3 (g)

1 573 537.8 570.9
2 542 509.8 539.6
3 542 510.4 545.5
4 524 492.0 526.3

mW
ρW + mC

ρC + mS
ρS

mW
ρW + mC

ρC + mS
ρS + mG

ρG
= 52.6% (5)

Figure 8 illustrates the water absorption curves for slices 1 and 2 in their initial state.
The actual water absorption process of cement-based materials is divided into two stages,
marked by a distinct inflection point [49–51]. The first stage involves capillary water
absorption, influenced by the water to cement ratio, the degree of cement hydration,
and the material’s permeability. This stage concludes approximately 2–3 days after the
onset of water absorption. The second stage involves the gradual filling of air voids by
displacing air, a process that takes significantly longer and is typically measured in years.
The water absorption amount (I) is normalized to the cross-sectional area exposed to water,
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as specified by ASTM C1585. Based on the bilinear fitted water absorption curves in the
figure, the initial masses (m1) of slices 1 and 2 correspond to water absorption times of 46
days and 33 days, respectively. It can be concluded that the specimens are still in the early
phase of the second water absorption stage.
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Figure 8. Initial state specimen water absorption curve.

A thorough analysis of the water absorption tests for slices 1 and 2, coupled with
the vacuum saturation tests for slices 3 and 4, indicates that the specimens were in the
early phase of the second stage of water absorption before commencing the freeze–thaw
cycle experiments. Specifically, the capillary and gel pores within the material were nearly
saturated, indicating thorough infiltration of moisture into the microstructure of the speci-
mens [52–54]. However, experimental results also revealed significant air voids within the
specimens, suggesting incomplete saturation.

Partially saturated specimens may exhibit distinct damage mechanisms and failure
modes during freeze–thaw processes compared to fully saturated ones [55–57]. The pres-
ence of air voids can influence ice formation and expansion, potentially impacting the
structural integrity to varying degrees. Additionally, partially saturated specimens may
experience reduced freeze–thaw damage due to lower expansion pressure within the air
voids. Thus, subjecting all specimens to multiple FTCs before the main experiments is
crucial to eliminate air voids and achieve full saturation. This step ensures the accuracy
and reproducibility of the experimental outcomes.

3.2. Water Absorption

Figure 9 illustrates the variation in water absorption rates of the specimens over
different sealing times. In this freeze–thaw cycle experiment, six specimens were taken at
various stages, sliced, and subjected to water absorption tests. Each set of water absorption
curves, labeled 1–3, represents slices obtained from the same specimen.

The graph shows a bilinear relationship between water absorption and the square root
of time. The transition from the first stage occurs within the range of 133 s1/2 to 160 s1/2,
corresponding to approximately 5–7 h, which aligns closely with the ASTM standard of
6 h for the end of the first stage of water absorption. This consistency indicates the high
accuracy and reliability of the experimental water absorption data. The bilinear absorption
characteristic aids in understanding the moisture migration behavior in concrete materials
under different sealing conditions [58,59]. Specifically, the first stage of water absorption
is predominantly governed by capillary action, during which the absorption rate is high
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as water quickly infiltrates the capillary and gel pores of the specimen. Over time, as the
process enters the second stage, the absorption rate significantly decreases. This reduction
occurs as the capillary action diminishes once the larger pores become saturated. At this
point, absorption is primarily driven by the expulsion of air from the pores, with water
gradually filling the finer pore structures. This transition reflects a change from rapid
capillary-driven absorption to a more gradual process where water permeates the denser
network of smaller pores and voids.
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Figure 9. Effect of different sealing times on specimen water absorption: (a) OF15; (b) OF15CF15;
(c) OF15CF30; (d) OF30; (e) OF30CF15; (f) OF45. Note: “OF” denotes open FTCs; “CF” denotes
closed FTCs.

Figure 10 illustrates the duration of the first stage of water absorption for samples
at different sealing stages. The figure shows that this duration varies among different
slices at various stages. Comparing the water absorption curves of different sample groups
(OF15CF60, OF30CF45, and OF45CF30) at the same freeze–thaw cycle stage (FTC45), it is
observed that the inflection point between the first and second stages of water absorption
appears earliest for the OF15CF60 group, at 5.3 h. This is followed by the OF30CF45 group
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at 5.8 h, and the OF45CF30 group with the longest duration of 6.8 h. As the number of FTCs
in an open water environment increases, the inflection points for the transition between the
first and second stages of water absorption are progressively delayed.

The first stage of water absorption is primarily dominated by capillary and gel pore
absorption. Therefore, the delay in the inflection point between the first and second stages
reflects changes in the pore structure. This delay indicates that with the progression
of FTCs, the volume or number of capillary and gel pores may increase [60–62]. This
observation aligns with changes in the pore structure induced by FTCs. As the number
of FTCs increases, significant changes occur in the pore structure of the samples. These
changes may include the expansion of capillary and gel pores and the formation of new
pores. During the freezing phase, the water inside the pores expands due to the formation
of ice, exerting pressure on the pore walls and leading to their widening. This expansion
is often accompanied by the development of new microcracks, which further disrupt the
existing pore structure. As the thawing phase occurs, the ice melts and the water contracts,
leading to additional stress on the pore walls and potentially causing the formation of
new cracks. Such structural alterations are likely due to the formation and development
of microcracks caused by the expansion and contraction of water during FTCs. These
microcracks increase the total porosity within the material, thereby extending the duration
of the first stage of water absorption.
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3.3. Ultrasonic Pulse Velocity

Figure 11 illustrates the trend in ultrasonic velocity loss in concrete specimens during
FTCs. After sealing treatment, the ultrasonic velocity of groups OF15CF60, OF30CF45,
and OF45CF30 initially decreases and then stabilizes. This observation aligns with the
findings of Sicat et al. [24], where the total internal water content of the samples remained
constant throughout the cycles. In their study, after several FTCs, the maximum strain of
the samples reached a stable value, and the residual strain also stabilized.

Water content significantly affects the transmission time of ultrasonic waves [4]. The
ultrasonic velocity of the same sample varies under different saturation levels or mois-
ture contents [63]. When ultrasonic waves pass through specimens that have been fully
dried after freeze–thaw damage, their velocity significantly decreases. This is because the
cracks and pores formed during the FTCs contain almost no water after the specimens are
completely dried, causing the propagation speed of sound waves in the air-filled cracks
to slow down. Conversely, in specimens subjected to FTCs in a sealed water environment



Buildings 2024, 14, 2451 11 of 22

(OF15CF60, OF30CF45, and OF45CF30), the ultrasonic velocity slightly increases after
being unsealed and re-immersed in water. During the FTCs, the pore stress generated by
freezing exceeds the tensile strength of the concrete material, leading to the development
of existing internal defects and the formation of new cracks [64–66]. When the specimens
are fully dried, the cracks contain almost no water. The drying process causes the water
within the pores and cracks to evaporate, leaving behind air-filled voids. However, after
re-immersion in water, the previously unfilled pores and cracks are replenished. The
propagation medium in the cracks changes from air to water, resulting in an increase in
ultrasonic velocity. Consequently, the re-filling of cracks with water leads to an increase in
the measured ultrasonic velocity, which reflects the enhanced efficiency of wave propaga-
tion through the water-saturated pores. These experimental results support the theory of
ultrasonic wave propagation, which states that sound waves travel faster in water-filled
cracks and pores due to the higher propagation speed in the water medium.
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3.4. Compressive Strength

Figure 12 displays the compressive strength of concrete specimens from different
groups at the conclusion of FTCs. The figure reveals a close correlation between the
compressive strength of concrete specimens post-FTCs and the sealing time. Groups
OF15CF60, OF30CF45, and OF45CF30 underwent sealing treatments at varying freeze–thaw
stages, while group OF75 remained under open water supply conditions. After 75 FTCs,
the average residual compressive strengths of the OF15CF60, OF30CF45, OF45CF30, OF75,
and NS specimen groups were 32.3 MPa, 29.6 MPa, 26.1 MPa, 20.6 MPa, and 29.5 MPa,
respectively. The residual compressive strength of the OF15CF60 group was 36.22% higher
than that of the OF75 group.

With an increase in the number of FTCs under open conditions, the compressive
strength of the specimens gradually declines. This research outcome underscores that
implementing water restriction measures earlier results in less severe frost damage to
concrete structures and higher levels of protection for concrete materials. Specifically,
early sealing effectively reduces moisture intrusion during FTCs, thereby decelerating the
expansion of internal pores and cracks and mitigating the adverse impact of frost damage
on concrete strength [67,68]. By controlling moisture entry at an early stage, the expansion
of internal pores and cracks is slowed down. This delay in pore and crack expansion has
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a direct positive impact on the durability and structural integrity of concrete. When the
internal pore structure remains more stable, the material’s resistance to freeze–thaw cycles
is enhanced, leading to a significant reduction in frost damage. Moreover, these findings
underscore the critical role of sealing treatments in enhancing concrete durability. Early
sealing not only alleviates pore pressure due to moisture migration but also inhibits ice
formation and expansion, thus reducing microstructural damage induced by FTCs.
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4. Prediction Model for Concrete Freeze–Thaw Deterioration
4.1. Theoretical Basis

To provide a clearer and more rational explanation of the differences in concrete freeze–
thaw damage under conditions of open and closed boundaries—specifically that the degree
of concrete freeze–thaw damage is greater when boundaries are open compared to when
they are closed—this paper conducts a theoretical analysis at this juncture.

Firstly, the freezing pressure of concrete can be assumed to be composed of Ph, Pl,
and Pc, which are related to pore size distribution and the lowest freezing temperature.
The quantitative models for Ph, Pl, and Pc are illustrated in Figure 13. The initial water
absorption is primarily dominated by capillary and gel pores. Therefore, the delay in
the inflection between the first and second stages reflects changes in pore structure. This
delay suggests that the volume or quantity of capillary and gel pores may increase as FTCs
progress. This observation aligns with changes in pore structure induced by FTCs. With
an increasing number of FTCs, significant alterations occur in the pore structure of the
samples. These changes may include the expansion of capillary and gel pores as well as the
formation of new pores. Such structural changes are likely attributed to the formation and
development of microcracks due to the expansion and contraction of water during FTCs.
These microcracks increase the overall porosity within the material, thereby prolonging the
duration of water absorption in the first stage.
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The magnitude of hydraulic pressure is closely related to the flow and transport of
moisture. Concrete undergoes damage and can develop cracks after experiencing FTCs
because the pore pressure generated by freezing exceeds the tensile strength of the concrete
material, leading to the development of existing internal defects and the formation of
new cracks. When the specimen is completely dry, the cracks contain almost no water.
However, upon re-immersion in water, previously unfilled pores and cracks are replenished.
Additionally, the formation of cracks during freezing provides more pore space for unfrozen
water to flow, thereby reducing hydraulic pressure. Ultimately, due to the flow of moisture
transport, the hydraulic pressure in the pores of cracked concrete tends towards zero,
differing from the hydraulic pressure before and after frost heave cracking, as illustrated
in Figure 14. Simultaneously, the crystallization pressure and cryo-suction pressure after
cracking can be considered as additives to the hydraulic pressure, collectively influencing
its magnitude.

Based on the above findings, it is evident that the differences in concrete freeze–thaw
damage under open and closed boundary conditions can be explored through variations
in hydraulic pressure and moisture transport. The specific distinctions between open and
closed boundaries are illustrated in Figure 15. It is observed that open and closed boundary
conditions correspond to whether there is additional moisture replenishment during the
FTCs. When there is no additional moisture replenishment, the hydraulic pressure in the
internal pores of concrete tends towards zero, with some cracks remaining unfilled with
water, known as empty cracks. However, during FTCs in an open boundary condition,
external moisture can continuously flow into the concrete, leading to the retention of addi-
tional ice crystals within cracks and thereby increasing the hydraulic pressure. This results
in differences in concrete freeze–thaw damage compared to closed boundary conditions.
Effective boundary sealing significantly reduces moisture ingress during FTCs, thereby
mitigating the expansion of internal pores and cracks and reducing the adverse effects of
frost on concrete. Furthermore, sealing not only alleviates pore pressure caused by moisture
migration but also inhibits ice formation and expansion, thereby reducing microstructural
damage induced by FTCs. The results indicate that implementing water control measures
can reduce severe frost damage to concrete structures and enhance the protection level of
concrete materials.
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4.2. Degradation of Ultrasonic Velocity

Figure 11 illustrates an approximate linear decline in relative ultrasonic velocity with
an increase in the number of FTCs. Notably, significant changes in the decay rates of the
sealed OF15CF60, OF30CF45, and OF45CF30 groups before and after the sealing treatment
are evident, highlighting the considerable impact of sealing timing on the ultrasonic velocity
decay rate. The formula (Equation (6)) derived from the regression analysis effectively fits
the measured results of ultrasonic velocity, as depicted by the fitted curve in Figure 16.
In this formula, k0 represents relative ultrasonic velocity, with N0 set at 15 to indicate the
initial state of damage accumulation after 15 FTCs, and N1 represents the number of FTCs
completed at the time of sealing treatment.
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Figure 16. Prediction model of ultrasonic pulse velocity for frost-damaged concrete: (a) OF15CF60;
(b) OF30CF45; (c) OF45CF30; (d) OF75.

According to the regression formula, the damage accumulation rates for the OF15CF60,
OF30CF45, and OF45CF30 groups after sealing were reduced by 27.98%, 10.66%, and
10.28%, respectively, compared to the OF75 group. This outcome underscores the signifi-
cant impact of early sealing treatment in decelerating freeze–thaw damage accumulation.
Sealing treatment restricts internal water exchange within specimens, thus inhibiting stress
concentration resulting from moisture migration during FTCs, and consequently reduc-
ing the rate of expansion of internal microcracks in the material. The notable reduction
in damage accumulation rates in sealed specimens indicates that the sealing treatment
effectively postpones the physical damage induced by FTCs. The strong agreement be-
tween Equation (6) and the experimental results further validates the efficacy of the sealing
treatment in delaying concrete freeze–thaw damage.

d(vd/v0)
dN = −k0 (0 ≤ N < N0 + 10)

d(vd/v0)
dN = −k0(1 − e

N0
N1 (N1

N0
+ 2)× 0.111) (N > N0 + 10)

(6)

4.3. Correlation between Compressive Strength and Ultrasonic Pulse Velocity

Figure 17 presents a scatter plot of relative strength against the square of relative ultra-
sonic velocity, fitted with a linear model. The fitting outcomes reveal a highly linear correla-
tion between these variables, as expressed by the correlation formula in Equation (7). Here,
fc represents the initial compressive strength, fc,d denotes the residual compressive strength,
v0 indicates the initial ultrasonic velocity, and vd represents the damaged ultrasonic velocity.
The coefficient of determination R2 = 0.99 indicates an exceptionally strong correlation
between ultrasonic velocity decay and concrete compressive strength degradation.

fc,d

fc
= 0.65(

vd
v0

)
2
+ 0.37 (7)
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Upon comparing the ultrasonic velocity and compressive strength data of various
specimens pre and post FTCs, a significant decline in concrete compressive strength is
observed with decreasing ultrasonic velocity. This observation suggests that ultrasonic
velocity can serve as a vital indicator for assessing internal damage in concrete. The high
R2 value further affirms the reliability and predictability of the linear relationship between
ultrasonic velocity and compressive strength. Additionally, the study findings reveal
that with an escalation in FTCs, ultrasonic velocity declines linearly, accompanied by a
gradual reduction in compressive strength. A distinct correlation is evident between the
residual compressive strength of different specimens post FTCs and the degree of ultrasonic
velocity decay.
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Figure 17. Fitting of relative strength and relative ultrasonic pulse velocity squared for frost-
damaged concrete.

We define the damage variables D1 and D2 as shown in Equations (8) and (9), re-
spectively. We also plot the corresponding scatter diagrams and fit the relationship be-
tween these variables as a linear function. By combining the data from the OF15CF60,
OF30CF45, OF45CF30, and OF75 specimens, the resulting correlation formula is expressed
in Equation (10). The fitting results, illustrated in Figure 18, yield a coefficient of determina-
tion R2 = 0.99, indicating a strong correlation between the two damage variables. This result
demonstrates that the constructed damage variables D1 and D2 effectively characterize the
actual damage accumulation in concrete during FTCs.

Analyzing the data of the OF15CF60, OF30CF45, OF45CF30, and OF75 specimens
at different freeze–thaw stages reveals a high consistency in their performance on the
fitted function. This indicates that the constructed damage model has a significant level
of applicability. Whether the specimens underwent early sealing treatment (OF15CF60,
OF30CF45), late sealing treatment (OF45CF30), or remained under open water supply
conditions (OF75), their damage variables are well described by the fitting formula. In
practical engineering, monitoring changes in damage variables D1 and D2 enables a more
accurate assessment of damage accumulation in concrete structures under freeze–thaw
conditions. This provides a scientific basis for structural maintenance and repair.

D1 = 1 − (
vd
v0

)
2

(8)
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D2 = 1 −
fc,d

fc
(9)

D2 = 1 −
fc,d

fc
(10)
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Figure 18. Relationship between compressive strength and ultrasonic velocity.

Further calculations are conducted to determine the average values for the damage
variables D1 and D2, and corresponding bar charts are generated, as depicted in Figure 19.
The fitting results reveal that the degradation of compressive strength and the attenuation
of ultrasonic velocity both depict variations in damage accumulation among different ex-
perimental groups, and these patterns remain consistent. This implies that the experimental
group OF15CF60, which restricted moisture exchange earlier compared to the later-sealed
experimental groups OF30CF45 and OF45CF30, as well as the continuous open condition
group OF75, achieved more effective damage control.
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Upon computing and comparing the average values of damage variables D1 and
D2 for each group of specimens, it was evident that group OF15CF60 exhibited superior
performance in controlling freeze–thaw damage, signifying the significant efficacy of early
sealing treatment. Groups OF30CF45 and OF45CF30 followed suit, while the OF75 group
under continuous open conditions performed the least effectively. This further confirms the
pivotal role of sealing treatment in mitigating concrete freeze–thaw damage. Furthermore,
within the two damage variables D1 and D2, the values of D2 are generally smaller than
D1 (Figure 18), and D2 exhibits less dispersion, indicating higher stability and consistency
compared to D1 and making it a better indicator for evaluating and predicting concrete
freeze–thaw damage.

The bar chart in Figure 19 illustrates the distribution of damage variables among
different experimental groups. The early-sealed group OF15CF60 exhibits significantly
lower average values for both D1 and D2, with smaller fluctuations, indicating lower
damage accumulation during FTCs. Conversely, groups OF30CF45 and OF45CF30 display
higher average values for damage variables and larger fluctuations, suggesting the reduced
effectiveness of damage control with the delayed sealing treatment. The OF75 group shows
the highest average values for damage variables, with the greatest dispersion, indicating
the most severe damage during FTCs under continuous open conditions.

4.4. Damage Prediction Model

In this experiment, the concrete specimens underwent two stages: the first stage
involved ample water supply, while the second stage involved reduced water supply.
Figure 18 illustrates that the two primary indicators of concrete freeze–thaw damage,
compressive strength, and ultrasonic velocity are closely related, demonstrating a strong
linear correlation between fc,d/fc and (vd/v0)2 (Equation (7)). Based on this correlation,
the formula for the degradation of the compressive strength of freeze-damaged concrete
after the sealing treatment can be further derived, as expressed in Equation (11). The
experimental results indicate that the damage accumulation process for the three groups of
concrete specimens can be divided into two stages: (1) the initial 10 FTCs before the sealing
treatment and immediately after the sealing treatment (0 ~ N0 + 10) and (2) the FTCs after
the sealing treatment (N0 + 10 ~).

Prior to the sealing treatment, the concrete specimens continued to absorb water, with
the capillary pores and gel pores reaching saturation. The formation of ice and subsequent
expansion inside the specimens led to a continuous increase in pore stress, accelerating
damage accumulation. However, after the sealing treatment, the water supply inside the
specimens significantly decreased, and the water in the pores gradually transitioned to
air, reducing the pore stress during ice formation and effectively slowing down the rate of
freeze–thaw damage accumulation. Further analysis reveals that during the initial 10 FTCs
after sealing treatment (0 ~ N0 + 10), the degradation rate of the compressive strength and
ultrasonic velocity of the specimens significantly decreased. During this period, the internal
structure of the specimens stabilized gradually, and the accumulation of damage to the
compressive strength and ultrasonic velocity became more gradual. In the subsequent FTCs
(N0 + 10 ~), although damage continued to accumulate, the rate of damage accumulation
in the specimens subjected to early sealing treatment was significantly lower than those
without sealing treatment. This indicates that specimens subjected to the early sealing
treatment exhibit better damage control, further confirming the critical role of the sealing
treatment in controlling concrete freeze–thaw damage.

d( fc,d/ fc)
dN = 1.3 × (k0

2(N − N0)− k0) (0 ≤ N < N0 + 10)
d( fc,d/ fc)

dN = 1.3 ×
{

k0
2(N − N0)(1 − e

N0
N1 (N1

N0
+ 2)× 0.111)− k0(1 − e

N0
N1 (N1

N0
+ 2)× 0.111)

}
(N > N0 + 10)

(11)
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5. Conclusions

This study investigated the influence of limited water availability on concrete frost
damage using freeze–thaw experiments conducted under open and sealed moisture con-
ditions. We conducted comprehensive tests on the physical and mechanical properties of
concrete and developed a predictive model for concrete freeze–thaw deterioration using
experimental data. The following conclusions can be drawn:

(1) Continuous water replenishment in concrete expands existing internal cracks and
initiates new ones. Although complete damage prevention is unattainable, limiting
water can partially reduce the rate of damage. Water limitation measures can extend
the service life of concrete structures and reduce the frequency of repairs.

(2) The pore structure characteristics are influenced by the water supply. In open con-
ditions, unrestricted water ingress increases the capillary pore volume and extends
the initial water absorption stage. Conversely, in closed conditions, pore structure
disruption is minimal.

(3) Ultrasonic velocity and compressive strength tests confirm that limiting water ab-
sorption effectively mitigates freeze–thaw damage, thereby protecting concrete from
severe frost damage.

(4) A predictive model for concrete freeze–thaw deterioration, developed using regression
analysis and relative dynamic modulus theory, forecasts ultrasonic pulse velocity and
compressive strength during hydration based on the number of FTCs experienced
under open and closed conditions.
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