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Abstract: This study introduces DAVE (Digital Assistant for Virtual Engineering), a Generative
Pre-trained Transformer (GPT)-powered digital assistant prototype, designed to enable real-time,
multimodal interactions within Building Information Modeling (BIM) environments for updating
and querying BIM models using text or voice commands. DAVE integrates directly with Autodesk
Revit through Python scripts, the Revit API, and the OpenAI API and utilizes Natural Language
Processing (NLP). This study presents (1) the development of a practical AI chatbot application that
leverages conversational AI and BIM for dynamic actions within BIM models (e.g., updates and
queries) at any stage of a construction project and (2) the demonstration of real-time, multimodal
BIM model management through voice or text, which aims to reduce the complexity and technical
barriers typically associated with BIM processes. The details of DAVE’s development and system
architecture are outlined in this paper. Additionally, the comprehensive process of prototype testing
and evaluation including the response time analysis and error analysis, which investigated the issues
encountered during system validation, are detailed. The prototype demonstrated 94% success in accu-
rately processing and executing single-function user queries. By enabling conversational interactions
with BIM models, DAVE represents a significant contribution to the current body of knowledge.

Keywords: Building Information Modeling; BIM; Artificial Intelligence; conversational AI; natural
language processing; Generative Pre-trained Transformer; GPT; virtual assistant

1. Introduction

Over the last two decades, the Architecture, Engineering, and Construction (AEC)
industry has undergone a substantial change, largely fueled by the integration of Building
Information Modeling (BIM) into its core practices. BIM, a digital representation of the
physical and operational attributes of constructed assets, has become an indispensable tool,
streamlining the creation, management, and utilization of building data [1]. This digital
shift has not only enhanced collaboration and efficiency but also opened new avenues for
innovation in project management and execution. Despite these advancements, significant
barriers to BIM adoption remain worldwide. Among those are the lack of knowledge and
training in BIM, software complexity and steep learning curves, and the complexity of BIM
models [2–4].

Simultaneously, the field of Artificial Intelligence (AI) has evolved, offering new
potential for overcoming these challenges. AI, with its diverse subfields such as Machine
Learning (ML) and various areas of application, such as Natural Language Processing
(NLP), Computer Vision (CV), and robotics, has been instrumental in revolutionizing
industries by automating operations, enhancing data analysis, and supporting decision-
making processes [5]. The introduction of AI in the AEC industry, particularly in the field
of construction engineering and management, can enhance decision making and increase
efficiency and bring digitalization and automation [6,7].

Buildings 2024, 14, 2499. https://doi.org/10.3390/buildings14082499 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14082499
https://doi.org/10.3390/buildings14082499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-1593-3589
https://orcid.org/0000-0002-6943-8567
https://doi.org/10.3390/buildings14082499
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14082499?type=check_update&version=1


Buildings 2024, 14, 2499 2 of 30

The emergence of digital assistants, powered by advancements in NLP, has marked
a significant milestone in the intersection of technology and human–computer interac-
tion. The progress in NLP has led to the development of intelligent systems capable of
understanding, interpreting, and generating human language in a way that is both mean-
ingful and contextually relevant [8,9]. By enabling natural language interfaces, digital
assistants can potentially simplify the interaction with BIM models and make them more
intuitive and accessible [10,11]. Large Language Models (LLMs), such as the OpenAI
Generative Pre-trained Transformer (GPT) series [12] and Google Gemini [13], represent
a cutting-edge subset of NLP technologies. These models are trained on vast datasets of
text from the Internet, enabling them to generate coherent, contextually relevant text based
on the input they receive [14]. LLMs can understand and produce natural language at
a level that is often indistinguishable from human output. This makes them incredibly
powerful tools for a wide range of applications, including but not limited to, conversa-
tional agents, content generation, and information extraction. Furthermore, the utility of
LLM extends well beyond their ability to generate and comprehend text. In the context
of the AEC industry and particularly in its integration with BIM, LLMs have introduced
novel opportunities for interaction within BIM models for various purposes, enabling even
those without extensive technical expertise to engage with BIM through natural language
interfaces. Current studies have focused on, for instance, information retrieval [10,15,16],
scheduling [17,18], automated compliance-checking [19,20], safety rule checking [21], and
interactive design [22,23].

This study introduces DAVE (Digital Assistant for Virtual Engineering), a prototype
of a virtual assistant designed at the convergence of BIM and AI technologies. DAVE
leverages the advancements in NLP to provide an intuitive interface between users and
BIM models while facilitating real-time updates, queries, and interactions through text
or voice commands. This dynamic interaction aims to transform the typical use of BIM
models and BIM workflows, making them more responsive and adaptable to users’ needs.
The architecture of the developed system combines Python scripting with a Dynamic-
Link Library (DLL) and a JavaScript Object Notation (JSON) file to create a responsive
system capable of bridging human input with complex BIM model adjustments. It also
addresses the practical needs of AEC professionals who often struggle with the complexity
of interacting with BIM models by making it a more user-friendly and efficient experience.

This study contributes to the ongoing digital transformation of the AEC industry
by demonstrating the feasibility of integrating conversational AI with BIM. The main
contributions of this research include (1) a practical tool for BIM users developed for daily
use by leveraging conversational AI for dynamic updates and queries within BIM models,
and (2) real-time BIM model management through voice or text to reduce the complexity
and technical barriers traditionally associated with BIM. This research contributes to the
efforts in making the future built environment more connected, intelligent, and user-centric.

The paper is structured as follows: Section 2 presents a review of the related literature
and comparison of DAVE with relevant studies, Section 3 outlines the research objectives
and scope, Section 4 describes the proposed prototype, including its architecture and
workflow, Section 5 details the testing and validation processes, Section 6 discusses the
results and implications, and finally, Section 7 concludes the paper with a summary of
findings and future research directions.

2. Literature Review

The integration of AI into BIM signifies a crucial evolution in the AEC industry. This
literature review covers the trajectory of AI applications within BIM, focusing on the
contributions of chatbots, NLP, and LLMs applications in enhancing BIM processes. First,
an overview of the general applications of AI in BIM (Section 2.1) is presented, followed by
a discussion on the specific roles of chatbots and NLP (Section 2.2), and the innovative uses
of LLMs (Section 2.3) in facilitating real-time interactions and management within BIM
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environments. Finally, the novelty and originality of DAVE are presented in the form of a
comparison with some of the highly relevant studies in the literature (Section 2.4).

2.1. AI Applications in BIM

The evolution of AI technologies has opened new avenues for enhancing BIM function-
alities. For instance, ML algorithms have been increasingly applied to BIM databases for
predictive analytics, facilitating more informed decision-making regarding project timelines,
cost estimations, and resource allocation [24]. CV, on the other hand, has been instrumental
in enhancing the interoperability between BIM models and real-time construction site data,
enabling more accurate monitoring and progress tracking [25].

Recent literature has highlighted several workflow improvements attributed to the
application of AI in BIM. A prominent example is the use of AI for automating clash
detection in BIM models, which has significantly reduced manual labor while increasing
the accuracy in identifying potential conflicts in project designs [26]. Furthermore, AI has
been leveraged to enhance building energy performance analysis by automating simulation
processes within BIM tools, thereby promoting the development of more sustainable and
energy-efficient building designs [27]. Another application includes the use of AI for
automatic material selection, aligning choices with the current progress of the project to
optimize resource allocation [28]. Additionally, AI’s role extends to schedule generation
and optimization, where it streamlines project timelines and improves efficiency [29].

Furthermore, the integration of the Internet of Things (IoT) with AI and BIM technolo-
gies has introduced a new dimension to real-time data collection and analysis in the AEC
industry. IoT devices, such as sensors and actuators embedded within buildings, facilitate
the continuous monitoring of structural health, environmental conditions, and energy con-
sumption [30]. These real-time data, when analyzed with AI algorithms, can significantly
improve the maintenance and operation phases of facility management, enabling predictive
maintenance strategies that pre-emptively address potential issues before they escalate [31].

The application of AI across all stages of the AEC industry—from design and con-
struction to facility management—illustrates the comprehensive impact of these technolo-
gies [32]. During the design phase, AI-driven generative design algorithms can explore
a vast array of design alternatives based on predefined criteria, optimizing for factors
such as material usage [22]. In the construction phase, AI has proven instrumental in
progress tracking and quality control [5]. Finally, in facility management, AI applications
extend to energy management, predictive maintenance models, and automatic as-built
classification [31]. Future research is set to focus on developing more robust AI algorithms
that can operate with limited data and ensuring the security of data within AI-enabled BIM
applications. Additionally, efforts are underway to enhance the interoperability of AI and
BIM across different software platforms, aiming to create a more integrated and seamless
workflow within the AEC industry [32].

2.2. Chatbots and NLP Applications in BIM

NLP technologies facilitate the understanding, interpretation, and generation of hu-
man language by computers, allowing for a more natural interaction between users and
BIM systems [33]. When integrated with BIM, NLP enables users to perform complex
queries, extract information, and even modify models using simple, conversational lan-
guage. This has dramatically reduced the learning curve associated with BIM software,
making it more accessible to a broader range of users [34] and aiming to make BIM more
user-oriented [35].

Chatbots, powered by NLP algorithms, offer a conversational interface through which
users can interact with BIM databases. These AI-driven assistants can interpret user
queries, retrieve relevant information from BIM models, and even execute commands
to update models based on user inputs. Recent developments have seen chatbots being
employed for various tasks within BIM, such as information retrieval [10,15,36–38] and
question and answer systems [39], construction contract summarization [40], compliance
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checking [19,41], and live instructor for safety training [42], showcasing the versatility and
potential of chatbots in streamlining BIM processes.

The integration of natural language and chatbots into BIM offers several notable
benefits. Firstly, it enhances the efficiency of data management within BIM by allowing
for quick and easy access to information through natural language queries. This reduces
the time spent navigating complex software interfaces and increases productivity [35,43].
Secondly, it democratizes access to BIM, enabling stakeholders with varying levels of
technical expertise, including those without formal training in BIM software, to effectively
interact with and utilize BIM data. This directly addresses a significant challenge in BIM
implementation: the steep learning curve associated with mastering BIM software [1,3,4].
Lastly, the use of chatbots for routine tasks and queries can free up human resources for the
more complex and creative aspects of project management and design [44].

Despite the promising advancements, the application of NLP and chatbots in BIM has
its challenges [45]. One significant limitation is the complexity of accurately interpreting the
vast variety of natural language inputs, especially when dealing with technical terminology
specific to the AEC industry. Ensuring chatbots can understand and respond to such inputs
accurately requires extensive training and continuous learning [33]. This also highlights the
importance of prompt engineering, a process of strategically crafting inputs to effectively
communicate with AI systems. Prompt engineering involves the deliberate structuring of
requests to maximize the AI’s understanding and response accuracy. It requires users to be
adept at formulating queries that are not only clear but also structured in a manner that
aligns with the AI’s processing capabilities [46]. Section 6.2.3 demonstrates how prompt
engineering is an essential part of the deployment of DAVE.

2.3. The Use of LLMs in BIM

LLMs like GPT and Gemini (formerly known as Bard) have been at the forefront of
AI research due to their ability to understand, generate, and interpret human language
with remarkable accuracy [14]. In the context of BIM, LLMs are being explored for their
potential to automate complex tasks, provide intelligent assistance to users, and facilitate
more intuitive interactions with BIM systems. By training these models on a diverse range
of construction-related datasets, researchers have begun to tap into their potential for
streamlining BIM workflows, enhancing project communication, and improving decision-
making processes [47].

The integration of LLMs into BIM is still in its early stages, but significant advance-
ments have already been noted such as generating innovative design alternatives, stream-
lining communication among stakeholders, and optimizing construction schedules [17,47].
The capacities of these models to aid in education and training are also being investi-
gated [48]. The integration of LLMs with BIM through tools like BIM2XML and GAIA
showcases the potential for dynamic collaboration in architectural design, reinforcing the
transformative impact of these technologies [23] while demonstrating significant improve-
ments in efficiency and quality of deliverables.

Innovative frameworks are central to harnessing the full potential of LLMs in BIM. The
proposed frameworks focus on interoperability, data consistency, and user-friendly inter-
faces, ensuring seamless integration of AI with BIM processes [23,47,49]. These initiatives
aim to replace conventional design practices with intelligent, data-driven methodologies,
highlighting the importance of leveraging past project data and advanced programming
for design automation and optimization [22]. The application of LLMs in BIM holds great
promise for transforming the AEC industry, and as these models continue to evolve and
become more sophisticated, their integration into BIM processes is expected to deepen,
offering even more innovative solutions to complex challenges.

2.4. Novelty and Originality of the Work

To summarize the key differences with existing studies and highlight the novelty
and originality of DAVE, Table 1 provides a comparison of DAVE with three other highly
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relevant studies in the literature [9–11] that also developed prototypes for BIM interaction
via human language (by using GPT models or Amazon Alexa). Firstly, DAVE is designed as
a comprehensive virtual assistant for BIM interaction and management. It is applicable to
all phases of a construction project and is tested with multidisciplinary BIM models. This is
in contrast to the other studies, which have more limited scopes where one study developed
a dynamic prompt-based virtual assistant for BIM information search specifically for a hos-
pital building [10], another was developed for the design phase of a simple BIM model [9],
and the third was used for developing room schedules as a proof of concept of an AI voice
assistant integrated with Dynamo [11]. Additionally, DAVE can perform 12 different actions
within BIM to manage and interact with the model and more can be added as needed,
whereas other studies are limited to information retrieval [10] and developing room sched-
ules [11] or focused solely on material selection and recommendations [9]. Furthermore,
DAVE stands out by supporting both voice and text commands for user input, enhancing
accessibility and user interaction. The use of voice commands in DAVE also makes it
suitable for use within Virtual Reality (VR) environments, as demonstrated in [50]. Finally,
DAVE utilizes both GPT-4 Turbo and GPT-3.5 Turbo for managing BIMs, while [9,10] used
the GPT-3.5 model and [11] used Amazon Alexa. Overall, DAVE represents a significant
contribution to the current body of knowledge by enabling BIM information retrieval, up-
dates, and querying through voice or text commands. DAVE’s multifunctional capabilities
and multimodal user interaction (i.e., text, voice, and 3D visualization) collectively position
it as a versatile and powerful tool among the existing tools.

Table 1. Comparison of DAVE to relevant studies in the literature.

DAVE Zheng and Fischer
(2023) [10]

Saka et al. (2024)
[9]

Elghaish et al. (2022)
[11]

Focus

A comprehensive
virtual assistant for
BIM interaction and

management

Dynamic prompt-based
virtual assistant

prototype for BIM
information search

A material selection
and optimization

prototype for BIMs

AI voice assistant
integrated with

Dynamo to interact
with BIMs

Scope

Prototype developed
with multidisciplinary
BIM models, applicable
to all phases of a project

Prototype developed
for a hospital building

Prototype validated in
the design phase of a

simple BIM model

A room schedule
created from a complex
BIM model as a proof

of concept

Method

Manage BIMs
(information retrieval

and update) by
running GPT Assistants

Retrieve information
from a BIM using
natural language

Combining BIM data
with GPT models to

select material for
construction projects

Retrieve information
from

BIM models by reading
CSV data from

Dynamo

User input type Voice or text commands Text commands Text commands Voice commands

Function
Information retrieval,
updating/modifying
and querying BIMs

Querying and
information search

from BIMs

Selecting the best
material for a specific
component in a BIM

Information retrieval
and interaction with

BIMs

Actions

Performs 12 different
actions in BIMs,

supports addition of
more actions as needed

Only information
retrieval from BIMs

Only material selection
or recommendations in

BIMs

Limited to developing
room schedules in

BIMs

LLM GPT-3.5 Turbo and
GPT-4 Turbo GPT-3.5 Turbo GPT-3.5 Turbo Amazon Alexa

3. Research Objectives and Scope

The primary goal of this study is to develop and evaluate a prototype of an AI
chatbot for dynamic updates and multimodal interactions within BIM environments. This
approach aims to enhance the efficiency and effectiveness of BIM workflows by leveraging
the capabilities of an LLM, namely GPT-4. It extends beyond the typical use of chatbots
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in the literature for BIM information retrieval to include real-time model updates and
interactions via text or speech.

The developed prototype integrates with a specific, yet widely adopted, BIM-authoring
software (i.e., Autodesk Revit), showcasing the practical application of AI, more specifically
NLP, in real-world BIM tasks. The prototype can perform 12 critical and commonly used
actions within the BIM environment. Each one of them is selected based on the daily tasks
performed by a typical Virtual Design and Construction department in a construction
company and the mainstream uses of Revit. They range from simple tasks like undoing the
last action to more complex tasks such as changing the family type of a selected element and
updating room names, numbers, and occupants. The prototype architecture can be adapted
to work with other BIM platforms and other LLMs with a few adjustments to the current
function implementation to adapt to the new syntax as well as input/output formats.

The novelty and originality of this study further lie in the prototype’s applicability to all
phases of a construction project from pre-design and design to construction and demolition.
Additionally, its capabilities have been demonstrated on a basic sample building model
as well as a multidisciplinary real-world office building model proving the prototype’s
versatility across different project requirements. The current limitations of the prototype
and some specific challenges, such as scalability and system efficiency, are discussed in
Section 6, and areas for future improvements and research are identified.

4. Proposed Prototype
4.1. System Architecture Overview

Figure 1 illustrates the architecture of the proposed AI-assisted BIM system, its compo-
nents, and their links. It is a blend of various technologies for smart, real-time interactions
within a well-known and commonly used BIM authoring tool, Autodesk Revit. The system
possesses a preliminary stage called Data Extraction, further explained in Section 4.1.1.
During this stage, metadata of the building elements are extracted from the Revit project file
(.rvt) and converted into a JSON model derivative. These JSON data are then transformed
into CSV format for efficient information retrieval. This conversion from JSON to CSV
helps prevent potential data loss that might occur during a direct conversion of the Revit
file into CSV. Additionally, the CSV format makes it simpler and faster to query specific
data points and facilitates smoother integration into AI systems because of the flat, tabular
structure it provides.
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The developed system consists of three main components as illustrated in Figure 1.
The core of the prototype is the Python component (Figure 1a), which is empowered by
the OpenAI Application Programming Interface (API) and enables smart user interactions,
including Text-to-Speech and Speech-to-Text features for voice responses. Users engage
with the system via a custom Graphical User Interface (GUI) that runs along with the Revit
application. More details are provided in Section 4.1.2. The JSON Bridge Component
(Figure 1b) is a key mechanism enabling real-time communication between the OpenAI
Assistant Class and Revit. Structured around the bridge.json file, it seamlessly integrates
Python and C# within BIM workflows, supporting essential actions with minimal resource
use. This component is expanded upon in Section 4.1.3. Finally, the File Watcher component
(Figure 1c) is crafted in C# and dynamically monitors changes in the bridge file, coordi-
nating with the Python AI component through the Revit API and custom DLL classes. Its
capabilities and structure are further detailed in Section 4.1.4. All the system components
and their roles are summarized in Table 2.

Table 2. System components and their roles.

Component Description Role in the System

Data Extraction Component
Extracts and preprocesses data from Revit files,
converting them into a structured format
(JSON/CSV) for easy access by the GPT Assistant.

Powers the GPT Assistant with
project-specific data retrieval capabilities
for customized interactions.

Python Component

Manages user interactions, processes natural
language commands, and communicates with the
OpenAI API. Provides a visual interface for users
to interact with DAVE, facilitating both text and
voice command input.

Facilitates natural language processing,
command execution, and speech
recognition features.

JSON Bridge Component
A JSON file that acts as an intermediary for
communication between the Python script and the
C# component.

Ensures real-time update and action
execution within Revit by transmitting
commands and receiving status updates.

C# Revit API Component
Monitors changes in the bridge.json file and
executes corresponding actions within
Autodesk Revit.

Triggers updates or modifications in the
Revit model based on instructions
decoded from the bridge.json file.

4.1.1. Data Extraction Component

As depicted in Figure 2, the data extraction component is a crucial aspect of the
project, designed to empower the AI assistant with information retrieval capabilities. This
component focuses on the preprocessing of data and its integration into the assistant
framework. The process is initiated with the extraction of data from the Revit files using the
Autodesk Platform Services (APS) API. These data that are stored initially in a cloud-based
bucket consist of model derivative and tree information and are downloaded as JSON files.
These files are then cleaned and manipulated into a singular CSV file, which is integrated
into the AI assistant. This approach ensures that each assistant is closely linked to a specific
project database, enabling customized interactions and responses.
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In the GUI, users select the appropriate assistant based on the name of the project
while the core instructions for the assistant remain consistent across different projects,
ensuring a standardized user experience. The current version of DAVE is configured for
two distinct projects: Demo1 and Demo2. Demo1 is the standard sample architectural
project in Revit 2023, while Demo2 represents a more complex scenario that features a
multidisciplinary model of a real-world office building in Canada including architecture,
structural, mechanical, and electrical projects.

The main part of data extraction is performed using a Python script that processes
JSON data from two files, tree.json and properties.json, generated by the APS API. The
tree.json file outlines the hierarchical structure of objects within a Revit model and contains
nested objects, each with its own objectid and potentially a name. The properties.json file
provides the detailed properties for specific objects referenced in tree.json. Each object has
various attributes categorized under different sections. The script navigates the hierarchical
tree structure, extracting pertinent object data and key pieces of information that are impor-
tant for analysis. These include objectid, name, Family Type, Family Name, and Category, and
attributes like Type Name and Assembly Name, construction details, and some Industry Foun-
dation Classes (IFC) parameters, such as IFC Globally Unique Identifier (GUID) (IfcGuid)
for unique identification. The script further refines the dataset, eliminating irrelevant or
empty properties and adjusting specific element attributes. Some superfluous or redundant
data that are blank, default, or irrelevant for the current analysis or application (e.g., fields
with values like ““, “0.000”, or null, comments and descriptions, URLs, and images) are
cleaned and filtered in this step. The data are organized with the IfcGuid as the main key.
This strategic choice compensates for the lack of Revit element IDs in the model derivative,
aiding the AI assistant in accurately retrieving element-specific data for functionalities
(such as selected_element_info or room_info). The processed data are then saved into a new
JSON file named extracted_data.json, preparing it for the subsequent conversion stage.

The conversion from JSON to CSV format is executed through a secondary Python
script, which flattens the nested JSON structures, primarily focusing on the properties key.
The script processes each entry, amalgamating key information like ifcGuid, Name, Family
Type, Family Name, and Category with the flattened properties. The resulting structured data
are then saved as a CSV file.

Finally, the CSV file, encapsulating the processed project data, is integrated into the AI
assistant during its creation using the OpenAI API or OpenAI Playground website. The
assistant is set up with the code interpreter tool enabled. This tool, in the assistant API
context, executes Python code by itself in a secure, sandboxed environment, allowing for
data processing [51]. It supports iterative code execution and enables problem-solving
through trial and improvement. This setup ensures that each assistant aligns with the
specific nuances of a given project while maintaining the ability to execute uniform instruc-
tions across various projects. Consequently, the assistant is equipped to adapt its responses
and functionalities based on the unique data and requirements of each project, significantly
enhancing precision and relevance.

4.1.2. Python Component

The Python component (Figure 1a) constitutes primary classes that control its core
functionalities and utility functions divided into eight files. The main classes include a GUI,
the OpenAI Assistant (custom class to handle API requests and responses), and speech
recognition and speaker handling. This project was written in Python 3.12. Each class plays
a pivotal role in the system’s operation, seamlessly integrating with the overall architecture
to provide a cohesive and efficient user experience. Figure 3 presents how the different
modules (i.e., Python files) and classes interact with each other within the DAVE system.
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a) ChatBotGUI Class (Figure 3a)

The GUI class, the spine of the DAVE system and its front-end, is a user interface
developed using customtkinter and tkinter Python modules. This class is responsible for the
visual representation of the prototype, presenting a user-friendly platform for interaction.
The class initiates the OpenAI Assistant class and handles the interactions between the
GUI and the API. The class also handles the integration of audio systems, enabling speech
recognition and text-to-speech functionalities by instantiating their respective classes. The
GUI (Figure 4) is designed to be intuitive, allowing users to interact with Revit through
both text and voice commands.
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b) OpenAI Assistant Class (Figure 3b)

Central to the Python component is the OpenAI Assistant class (located in the ope-
nai_assistant.py), the system back-end, which orchestrates the interaction between the user
and the AI model. This class leverages the GPT-4-1106-preview model (GPT-4 Turbo) by
OpenAI, and other features such as creating API threads, handling user messages, and
running GPT Assistants. The class is equipped to process and respond to user queries by
dynamically calling functions from the functions_bridge.py script, which acts as a conduit
for updating the bridge.json file. Each Python function interacts with a C# counterpart, as
shown in Table 3. To be able to call the right function, all of them are incorporated into
the GPT Assistant during its creation (Figure 5), and each function is set up using a JSON
schema as illustrated in Figure 6 for the change_transparency function. The class is adept at
handling complex queries, aggregating similar function calls for enhanced efficiency, and
managing the nuances of user interactions, whether through text or voice commands.

Table 3. Python to C# functions and methods mapping.

C# Method Name Description Triggered by (Python Function) Python Arguments

Transparency Applies transparency
elements or categories change_transparency transparency_value (int), mode

(str), items (list)

Isolation Isolates elements or categories isolate mode (str), items (list), reset (bool)

Hide Hides elements or categories hide mode (str), items (list),
hide_mode (str), reset (bool)

Color Applies color to elements or
categories set_color mode (str), items (list), color (str),

reset (bool)

Tag Tags elements in specified
categories tag category (list)

DeleteElement Deletes specified elements delete_element mode (str), items (list)

ElementData Reads/writes element data selected_element_info operation (str), key (str),
user_choice (str)

RoomData Reads/writes room data room_info
operation (str), key (str),
room_number (str), room_name
(str), occupant (str)

ViewCreation Creates various types of views create_view type (str), level (str), view_name
(str)

ViewDuplication Duplicates views duplicate_view dependent (bool), detailing (bool),
view_name (str)

RenameView Renames the current view rename_view new_name (str)

Undo Executes an undo action undo None (No arguments)

c) Speech Recognition and Speaker Classes (Figure 3c)

The speech recognition and speaker aspects of the prototype are handled by two dis-
tinct classes: the ListenManager and the SpeakerManager. The ListenManager class, using
libraries such as pvporcupine and speech_recognition, is designed to detect the activation
keyword “hey Dave”, record user speech, and transcribe it into text using OpenAI’s model
whisper-1. This class is a testament to the system’s accessibility, offering an alternative
mode of interaction for users. The SpeakerManager class, on the other hand, employs
OpenAI’s tts-1 model to convert text responses into speech, facilitating an engaging and
interactive user experience. The integration of these classes with the main GUI and the
OpenAI Assistant underscores the system’s commitment to providing a comprehensive
and user-friendly interface.
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d) Supporting Utilities (Figure 3d)

In addition to the main classes, the prototype incorporates several supporting utilities,
enhancing the functionality and user experience of the Python scripts. Among these,
the functions_general.py script offers a comprehensive suite of utility functions, such as
JSON data management and system alerts, facilitating efficient data handling and user
communication. The openai_client.py script plays an essential role in initializing the main
OpenAI class from its module, ensuring seamless integration with OpenAI’s services for
enhanced operational efficiency.
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Furthermore, the openai_functions.py script is equipped with specialized functions
tailored to interact with the OpenAI API. It includes capabilities for thread creation, test
user queries, and the generation of various messages. This script is particularly noteworthy
for its implementation of test user queries. To optimize the use of tokens—a crucial resource
since each interaction with the assistant consumes a number of tokens, for instance, around
3500 tokens to load the instructions—we employ a method known as “few-shot learning”
(i.e., to learn from a limited number of examples). This approach not only generates
standard responses in DAVE but also allows the prototype to pre-classify user queries
by making an additional API call to OpenAI utilizing the GPT-3.5-turbo-1106 model and
determine the appropriate response type (e.g., “welcome” message, “wait” message or
“unrelated input” message). This way, our model avoids unnecessary generation steps and
helps to optimize the token usage. Our model is trained on a few examples to recognize
various query types and can handle irrelevant, out-of-scope queries by quickly identifying
them and providing a standard response, while significantly conserving token usage as
well as maintaining high accuracy and relevance in responses. These components, from
message templates to context-aware algorithms, ensure that the assistant’s communication
is engaging, less robotic, and more in tune with the user’s needs.

4.1.3. JSON Bridge Component

The JSON Bridge Component, as illustrated in Figure 1b, serves as a crucial mech-
anism for real-time, bidirectional communication between the GPT Assistant and Revit
(through their encapsulating components: Python and File Watcher C#). This component
is structured within a JSON file, termed bridge.json, which offers key benefits: it ensures
readability and ease of editing, promotes efficient processing with minimal resource use,
and supports flexible and scalable configurations. Its cross-platform compatibility between
Python and C# enhances seamless integration, making it an ideal choice for facilitating
dynamic, real-time communication within BIM workflows.

The file is structured as a collection of keys representing different actions (e.g., “trans-
parency”, “isolation”, “hide”, and “color”), and the bridge.json schema is designed to
encompass all 12 functions presented previously in Table 3. Each key within the bridge is
associated with specific parameters detailing the action’s mode, execution state (run), and
potential target items or values.

4.1.4. File Watcher—C# Revit API Component

The C# component, as shown in Figure 1c, was developed in Visual Studio. It operates
on the .NET Framework 4.8 and consists of two principal classes: RevitFileWatcherApplication
and FileChangeEventHandler. This component employs libraries such as Autodesk.Revit.DB
and Autodesk.Revit.UI, essential for interfacing with Revit’s architecture and user interface.
Additionally, Newtonsoft.Json is integrated for efficient JSON processing.

At the outset, the RevitFileWatcherApplication initializes the FileSystemWatcher, a class
from the .NET Framework. The FileSystemWatcher class monitors the file system changes,
triggering events when a directory or a file within it is modified. This functionality is vital
for tracking real-time updates to the bridge.json file. Additionally, a debounce timer, set
to one second, is implemented to filter out minor, frequent file changes. This timer is key
in ensuring that the system processes only substantial changes, thus enhancing precision
and efficiency while reducing computational load. It is required for users to configure the
environment variable BRIDGE_JSON_PATH correctly for the system to accurately locate
and monitor the bridge file. The absence of this configuration prompts a message box
within Revit, guiding the user to set the necessary path.

The Revit’s API is a standout feature of this component, utilizing classes such as
Document, View, ElementId, and Transaction for BIM interaction and manipulation. Central
to this is the FileChangeEventHandler class, which decodes instructions from bridge.json. This
file acts as a dynamic command center, mapping each BIM-related method to a main key



Buildings 2024, 14, 2499 13 of 30

in the JSON structure, with the method’s arguments represented as sub-keys. These main
keys directly correspond to specific actions within the Revit application.

The sub-keys serve as the arguments for the methods in the FileChangeEventHandler.
For example, under the transparency key, one can specify the transparency mode, the
transparency_value, and the specific items affected. Each action in the bridge is executed by
setting the run sub-key to true. Functions of greater complexity, like selected_element_info
or room_info, involve additional JSON files for thorough data management. This enables
intricate and detailed manipulation of the BIM model (e.g., changing the family type of an
element or changing the room name or occupant).

Robust error-handling mechanisms are a critical component of the system’s archi-
tecture, designed to effectively manage and mitigate potential operational issues. Each
function within the C# component includes a try-catch block, ensuring the handling of
exceptions. Should an error occur during a command’s execution, the exception is captured,
and the details are logged into the corresponding error key within bridge.json. This allows
DAVE to either autonomously resolve the issue or inform the user about the error, depend-
ing on its nature and severity. This system ensures that users are promptly informed of any
issues, allowing for timely responses and interventions

4.2. System Workflow

Building upon the foundational architecture outlined in Section 4.1, this section delves
into the detailed workflow of the system, explaining the step-by-step interactions between
the user, the GPT-powered assistant, and Revit. A general flowchart (Figure 7) provides
an overarching view of the process, while subsequent System Sequence Diagrams (SSDs)
capture the specifics of four distinct system states.
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4.2.1. System Interaction Overview

The system’s basic interaction commences with user input and concludes with Revit
executing the requested actions or providing a response. The general flowchart (Figure 7)
offers a comprehensive view of this interaction, illustrating the pathways between system
components and the user.
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4.2.2. User Input and Initial Processing

Inputs to the system can be in two forms: voice or text. In voice mode, the system
listens for the activation phrase, “hey Dave”, as explained in Section 4.1.2. Upon detection,
auditory signals indicate the start and end of recording and the audio is then transcribed
into text. In text mode, users input their commands directly. Both input methods lead to
the creation of a thread where the input is processed by the OpenAI API using the custom
GPT-4 assistant. For example, a user might say or type “Hey Dave, change the transparency
of the walls to 100%”.

4.2.3. Command Interpretation and Function Invocation

The Python backend creates a thread that then receives the user’s message. The
system proceeds to create a run request. In a run, all the GPT Assistant’s capabilities and
instructions, including the functions it can invoke, are loaded to the thread. The complexity
of these capabilities directly correlates with token consumption, which may impact the
cost of the system if several runs are required to fulfill a request. The formulation of “good
quality” queries by the user as part of the prompt engineering objectives is discussed later
in the discussion section (Section 6).

The Python script intermittently polls the status of the thread, with in_progress and
requires_action being pivotal states. Informational queries are self-contained within the
OpenAI environment, retaining an in_progress status until they reach a completed or failed
state. Conversely, requests implicating Revit actions prompt a requires_action response,
detailing the functions and arguments deduced as necessary by the Assistant. The SSD
in Figure 8 details the process for unrelated or database inquiries and the one in Figure 9
details Revit-related actions.
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Continuing the previous scenario, after the user’s message is loaded into the thread
and the GPT Assistant runs on it, the OpenAI Assistant class (Section 4.1.2.b) has a method
that will catch the requires_action status and the following function to call (Figure 10).
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4.2.4. Synchronous Execution and Error Handling

Upon encountering a requires_action status, the Python script sequentially invokes
the specified functions, updating the bridge.json with the outcomes and monitoring for
errors. This serialized execution ensures methodical processing and error tracking. For the
scenario discussed, the appropriate part of bridge.json would be updated as illustrated in
Figure 11.
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{ 

"transparency": { 

"mode": "category", 

"transparency_value": 100, 

"run": true, 

"items": ["Walls"], 

"error": "" 

}, 

Figure 11. Example of bridge.json schema after a called function run.

4.2.5. Interaction with Autodesk Revit and Specialized Function Handling

The File Watcher reacts to changes in the bridge.json, executing corresponding actions
within Revit and updating the keys run to false and error to no error (or the caught error
during the execution). For the illustrative example, after the file watcher is triggered, it then
realizes the true value of the run key of transparency. This would invoke the Transparency
method and proceed to apply 100% transparency to the Walls category.

For the specialized functions selected_element_info and room_info, the system interacts
with a secondary JSON file to manage data intricacies. The decision to utilize a secondary
JSON file for write and read operations is rooted in the necessity to maintain a clean
and efficient communication pathway within the system. By segregating detailed data
handling from the primary operational flow, DAVE avoids overloading the bridge.json
file and minimizes the risk of communication errors or delays. This structural choice not
only enhances the system’s reliability but also optimizes performance by ensuring that
operations are executed with minimal latency and maximum accuracy.

These auxiliary files serve as an intermediary for managing subsequent user-driven
changes. For instance, if the user requires information about selected elements or rooms,
the write operation will populate the secondary JSON. Upon receiving the command to
perform the limited changes on the element (e.g., change family type) or room (e.g., change
room name, number, or occupant), the read operation will retrieve the changes written on
the secondary JSON. The corresponding SSDs (Figures 12 and 13) illustrate these operations,
showcasing the system’s approach to handling complex requests without overburdening
the bridge.json file.
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4.2.6. Completion and Response Formulation

When the error keys are no longer empty, and once all functions are executed and
their results compiled, the Python script submits the outcomes back through a new API
request, which then transitions the status of the run to in_progress. The GPT Assistant then
can either formulate a response, invoke additional functions, or consult the database for
argument values to refine the user’s request.

The system’s robust architecture ensures that, in the event of errors, the GPT Assistant
will attempt autonomous resolution. Should these efforts be insufficient, the GPT Assistant
communicates the error to the user, completing the feedback loop. Figure 14 presents the
system logs for the illustrative example (i.e., set wall transparency to 100%) including the
final answer generated by the GPT Assistant (a) and the result in Revit (b) (i.e., walls set to
100% transparency).

In the scenario where auditory feedback is desired, the system’s capabilities extend to
converting text responses into speech. Upon finalizing a response, should the user have
specified or pre-set a preference for audio output, the system submits the text to the OpenAI
API once more. This time the tts-1 model is invoked to generate the spoken version of the
GPT Assistant’s reply. The resultant audio is then played back to the user, ensuring an
interactive and accessible user experience.
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Figure 14. (a) System logs for the exemplified user request (set wall transparency to 100%) and
(b) result in Revit application with all walls set to 100% transparency.

5. Validation
5.1. Validation Methodology

To ensure the robustness and reliability of DAVE, we adopted a testing and valida-
tion methodology that is tailored to assess both the system’s functional accuracy and its
efficiency in handling complex queries. Our approach was structured into distinct phases,
each designed to evaluate the different capabilities of the AI Assistant.

The initial phase involved the development of an automated testing script, specifically
designed to validate the prototype’s capability to correctly invoke system functions in
response to user queries. A set of 200 unique queries was prepared, each intended to trigger
a single specific function within the system. Table 4 provides a list of example queries
categorized by the corresponding functions. This set of queries aimed to cover a broad
spectrum of the prototype’s potential use cases, ensuring a comprehensive assessment of
its functional accuracy.

To extend our testing to more complex scenarios, we generated an additional set of
200 queries by randomly combining pairs of the initial queries using a variety of linking
phrases (e.g., “and”, “as well as”, “,”, etc.). These compound queries were designed to
simulate more complex user requests, requiring the prototype to call multiple functions
sequentially within a single query. This step was critical for evaluating the system’s ability
to handle multi-functional requests, a capability touted by the OpenAI API [51] for its
efficiency and token economy.

Each query, simple or complex, was executed through the testing script, which
recorded the time it took for the prototype to process the query (delay) and the specific func-
tions (and their arguments) it invoked. The collection of these data was pivotal in assessing
the system’s performance, particularly in terms of response time and functional accuracy.

Following data collection, we conducted a thorough analysis of the prototype’s perfor-
mance, focusing on the accuracy of function invocation and the efficiency of response times.
We assessed accuracy by determining whether the prototype correctly identified and called
the appropriate function(s) for each query. Scores were assigned based on the number of
correct functions invoked and their relevance to the queries posed.

In addition to accuracy and efficiency, we closely analyzed errors in function invocation
to understand the underlying causes of inaccuracies. This error analysis provided critical
insights into how queries could be better structured to increase the system’s accuracy. We
examined patterns in the queries that led to incorrect function calls, using these findings to
refine our approach to query formulation. This aspect of our analysis was instrumental
in enhancing the system’s capability to interpret and respond to user requests accurately,
especially for complex queries requiring multiple functions.
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Table 4. List of example queries categorized by the corresponding functions.

Function Example Queries

Change
transparency

“Make all windows 30% transparent”
“Set transparency of doors to 80%”
“Apply 70% transparency to selection”
“Set element 1234’s transparency to 45%”
“Make category ‘Walls’ 25% transparent”

“Adjust transparency of selection to 100%”
“Set transparency of elements 5678 and 91,011 to 35%”
“Change transparency for all elements in ‘Furniture’
category to 60%”
“Make selected items fully opaque”
“Apply 15% transparency to all elements in
‘Lighting Fixtures’”

Isolate

“Isolate all doors in the current view”
“Isolate windows on the selected floor”
“Isolate walls with IDs [303, 404]”
“Isolate selected furniture in the room”
“Isolate floors in category ‘carpet’“

“Isolate HVAC components in the selection”
“Isolate lighting fixtures on level 2”
“Isolate structural elements in view”
“Isolate ceilings in the current floor”
“Isolate plumbing elements in the bathroom”

Hide

“Hide all doors in the current view”
“Hide windows on the selected floor”
“Hide walls with IDs [707, 808]”
“Hide selected furniture in the room”
“Hide floors in category ‘wood’“

“Hide HVAC components in the selection”
“Hide lighting fixtures on level 3”
“Hide structural elements in view”
“Hide ceilings in the current floor”
“Hide plumbing elements in the kitchen”

Set color

“Color all doors blue”
“Set color of windows to green”
“Color selected walls yellow”
“Set color of wood floors to brown”
“Change color of elements ID [1112, 1213]
to orange”

“Color selected furniture purple”
“Set all HVAC components to grey”
“Color lighting fixtures black”
“Set color of structural elements to white”
“Color ceilings in the lobby pink”

Tag

“Tag doors as ‘Fire-rated’”
“Tag windows as ‘Energy-efficient’”
“Tag walls with ‘Soundproof’”
“Tag wooden floors as ‘Oak’”
“Tag furniture in the lounge as ‘Leather’”

“Tag HVAC system as ‘New Installation’”
“Tag lighting in the hall as ‘LED’”
“Tag structural columns as ‘Load-bearing’”
“Tag ceilings with ‘Acoustic Panel’”
“Tag plumbing in restrooms as ‘Water-saving’”

Delete element

“Delete selected doors in the layout”
“Remove windows from the east wing”
“Delete wall segments with IDs [1516, 1617]”
“Remove selected chairs from the cafeteria”
“Delete carpeted floors in the lobby”

“Erase HVAC units in the server room”
“Remove chandeliers from the ballroom”
“Delete load-bearing columns in the atrium”
“Erase acoustic ceilings in the recording studio”
“Delete plumbing pipes in the basement”

Selected element
info

“Get info on selected doors for maintenance”
“Show details of energy-efficient windows”
“Retrieve info of soundproof walls”
“Display data for oak wood floors”
“Get info of leather furniture in the executive suite”

“Show details of the new HVAC installation”
“Retrieve info of LED lighting in the corridor”
“Display data for load-bearing columns”
“Get info of acoustic ceilings in the auditorium”
“Show details of water-saving plumbing”

Room info

“Update room info for office spaces”
“Set room number for conference room ID [2122]”
“Change room name for cafeteria ID [2223]”
“Update occupant for office ID [2324]”
“Set room data for executive suites”

“Update room details for storage areas”
“Change room number for all rooms on level 4”
“Set room names for meeting rooms”
“Update occupant names for private cabins”
“Set room data for all restrooms on ground floor”

Create view

“Create a 3D view named ‘Landscape Design’”
“Generate a floor plan for the third floor”
“Create a ceiling plan for the main hall”
“Generate a structural plan for the foundation”
“Create a 3D view for the interior design”

“Generate a floor plan for the fourth floor”
“Create a ceiling plan for the conference room”
“Generate a structural plan for the new wing”
“Create a 3D view for the entrance lobby”
“Generate a floor plan for the rooftop terrace”
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Table 4. Cont.

Function Example Queries

Duplicate view

“Duplicate the current 3D view as a dependent”
“Create a detailed duplicate of the ‘Main
Lobby’ view”
“Duplicate the ‘Level 1 Floor Plan’
without detailing”
“Create a dependent copy of the ‘Roof Plan’”
“Duplicate ‘Basement Plan’ with
detailing included”

“Make a dependent duplicate of ‘Ground Floor Plan’”
“Duplicate ‘East Wing Elevation’ view with all details”
“Create a simple duplicate of ‘West Section’”
“Duplicate ‘Landscape Plan’ as a dependent view”
“Make a detailed duplicate of ‘Electrical Plan Level 2’”

Rename

“Rename the ‘3D Building Model’ view to
‘Updated 3D Model’”
“Change the name of ‘Level 2 Floor Plan’ to
‘Second Floor Plan’”
“Rename ‘Roof Details’ view to ‘Updated Roof
Plan’”
“Change ‘Basement Layout’ view name to ‘New
Basement Plan’”
“Rename ‘Electrical Layout Ground Floor’ to
‘Ground Floor Electrical Plan’”

“Change ‘Landscape Design’ view name to ‘Revised
Landscape Layout’”
“Change ‘Plumbing Details Section A’ to ‘Section A
Plumbing Updates’”
“Rename ‘HVAC Overview’ to ‘Updated HVAC Plan’”
“Change ‘Interior Design Plan’ view name to ‘Interior
Decor Plan’”
“Rename ‘Main Entrance Elevation’ to ‘Front Elevation
Updated’”

Undo

“Undo the last operation in Revit”
“Revert the most recent change made”
“Undo the last color change applied”
“Roll back the last hide operation”
“Undo the previous transparency setting”

“Revert the last tag applied to a category”
“Undo the deletion of the last selected element”
“Roll back the last update in room data”
“Undo the creation of the last view”
“Revert the last duplication of a view”

We also conducted manual tests to verify the results in the Revit environment to ensure
real-time accuracy and execution. This manual testing phase was essential for confirming
the system’s practical applicability in architectural and engineering contexts, where the
precision of function invocation is crucial.

5.2. Validation Results
5.2.1. Automated Functionality Testing Results

The automated functionality testing phase subjected the prototype to 200 singular
function queries (Type 1) and an additional 200 compound queries that combined pairs of
initial queries (Type 2) using Demo2 CSV files. These were aimed at evaluating the system’s
capability to handle (1) single-function calls and (2) multiple-function calls within a single
query as an effort to handle the maximum of user requests with a single run, aiming for
token consumption efficiency.

The confusion matrices for Query Types 1 and 2 (Figure 15) reveal that while the
system shows high accuracy in executing single-function queries (Figure 15a), there is a
decline in the accuracy when processing compound queries (Figure 15b). This drop in
performance is characterized by a higher frequency of failing to call a second required
function in a single query.

Figure 16 presents a chart that shows the success and failure of functions called by
Query Type and demonstrates the contrast in the success rates between the two query
types. For Type 1, the success rate stood at 94% as the system leveraged the robustness of
the GPT-4 model in accurately processing and executing clear, single-action commands.
However, when handling Type 2 queries, the success rate dipped to 49.5%. This significant
variance accentuates the system’s current limitations when processing queries that demand
a sequence of actions, even though the AI model is capable of such a feature [51]. The
visualization of these results highlights areas where the system can be refined to better
accommodate complex, multi-step operations without compromising the high success rate.
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or not.

5.2.2. Error Analysis

In addition to the challenges in understanding and executing compound instruc-
tions, mislabeling of functions occurred frequently with similar instances, such as se-
lected_element_info versus room_info. This indicates that the user’s function instructions
could benefit from further clarification during the GPT Assistant creation.

When dealing with single-function queries that resulted in a failure status, we noted
that the GPT Assistant often attempted to request additional information from the user
after not finding the suitable argument values directly from the dataset. This approach led
to such interactions being marked as failures, as our testing protocol only looked at the
initial response by the GPT Assistant.

Furthermore, we identified minor inaccuracies within the argument values themselves.
These included errors such as the improper capitalization of view names, discrepancies in
the expected number of categories for open-ended requests (e.g., requests for “all devices
in the project” or “all HVAC-related categories”), and the inclusion of unnecessary (or
optional) parameters.

Interestingly, when it was necessary, the GPT Assistant demonstrated a proactive
approach by searching within CSV files for argument values, such as floor names and
categories. This capability was particularly evident in Query Type 1 interactions, where
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the GPT Assistant utilized the extracted information with notable accuracy. This behavior
underscores the prototype’s potential to effectively navigate and utilize dataset content
when provided with clear and precise instructions.

During manual testing within Revit, common issues arose when actions were not
supported by the current view, such as attempting to hide elements in a schedule view. In
such instances, errors were communicated back to the GPT Assistant, which then informed
the user of the specific issue. These problems were resolved by guiding the user to switch to
an appropriate view or state within Revit where the function could be successfully executed.
This process ensures that the user is aware of and can rectify any limitations in command
execution, thereby maintaining the system’s usability and effectiveness.

DAVE’s interaction with Revit presents operational limitations when actions prompt
dialog boxes requiring manual intervention. For instance, deleting structural elements that
affect room definitions triggers Revit warnings, halting automated processes until manually
addressed by the user. This limitation underscores the necessity for a more intelligent
system capable of predicting such scenarios or providing users with preemptive guidance
to avoid workflow disruptions.

Finally, our exploration extended to operational issues related to system architecture
and external dependencies, such as API accessibility, rate limit exceedances, and data
synchronization errors. These additional challenges emphasize the complexity of creat-
ing a seamless and robust AI-powered BIM tool. Table 5 summarizes a range of errors
encountered during our validation process, outlining their causes and proposing solutions
to mitigate these issues.

Table 5. Error analysis: observations and causes of errors and proposed solutions.

Error Type Observations Cause Proposed Solution

Function mislabeling Occurred in complex
queries

Ambiguity in user queries
leading to incorrect function
mapping

Enhance NLP capabilities to improve
intent recognition and query
classification. Implement detailed
prompt engineering guidelines for users.

Delay in response
Noted in operations
requiring external data
consultation

Lengthy data retrieval
processes from CSV files and
processing time by GPT-4

Optimize data retrieval algorithms and
consider local caching of frequently
accessed data to reduce response times

Incorrect argument
values

Several instances during
testing

Errors in parsing or
interpreting user inputs,
leading to mismatched or
incorrect command
parameters

Refine data parsing algorithms and
implement additional validation checks
to ensure accuracy of interpreted
arguments. Improve the instruction
clarity of functions during the GPT
Assistant creation

Revit view
compatibility issues

Frequent in specific
operations and
conditions

Attempting to execute an
action in Revit that is not
supported by the current view
or context

Enhance DAVE’s ability to recognize the
context and limitations of the current
Revit view. Implement a feature that
informs the user of the incompatibility
and suggests switching to an appropriate
view where the action is feasible

Linked model
functionality limitation

Encountered during
operations involving
linked models (Demo2)

DAVE’s current architecture
primarily operates on the
main Revit model and may
not directly interact with
elements in the linked Revit
models

Develop and integrate a module or
extend the system’s capabilities to
recognize and manipulate elements
within linked Revit models, ensuring
comprehensive model management
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Table 5. Cont.

Error Type Observations Cause Proposed Solution

Revit dialog box
intervention

Occurs during
operations leading to
Revit warnings or errors
requiring manual
intervention

Certain actions (e.g., deleting
a wall that defines a room)
trigger Revit dialog boxes that
DAVE cannot automatically
close or resolve, necessitating
manual user intervention

Develop a mechanism for DAVE to
recognize potential actions that could
trigger dialog boxes and either provide a
preemptive warning to the user or
incorporate strategies for automated
handling of common dialog scenarios.
Further, explore the integration of ML
techniques to predict and mitigate
actions leading to disruptive dialogs

API accessibility issues
Occasional, depends on
OpenAI server
availability

Temporary unavailability or
slowdowns of OpenAI’s
servers can impact DAVE’s
response times and
functionality

Implement retry mechanisms and
provide user feedback on server status.
Consider local processes for limited
offline functionality.

API rate limit
exceedance

Temporary, dependent
on user account limits

Exceeding OpenAI API call
limits under the initial
account setup that leads to
reduced functionality

Expand account limits to accommodate
higher usage. Monitor API usage closely
and adjust plan or optimize queries to
manage costs and maintain continuous
service

Data synchronization
errors

Could occur after
external model updates

Changes made directly in
Revit that are not captured in
real-time by DAVE can lead to
outdated information in the
system’s database (CSV file)

Revise the data retrieval process to utilize
a more dynamic and efficient method or
implement a live data synchronization
mechanism

5.2.3. Response Time Analysis

Our system’s response times were generally rapid, with an average of 16.25 s for Type
1 and 14.63 s for Type 2 queries. However, the standard deviation was notably high for both
types (25.46 and 29.74 s for Type 1 and 2 queries, respectively), attributed to instances where
the system consulted an external CSV file which caused delays. Consultations typically
lasted 1 to 2 min, but some cases exceeded this, with one instance taking nearly 5 min. This
variability in response times underscores the need for optimized data retrieval processes in
future versions of the prototype.

Our analysis of response times across different functions unveiled considerable vari-
ability in delays. The chart that shows the average delay by function and call order
(Figure 17) illustrates that those functions necessitating database consultations, such as
create_view and hide, incurred longer average delays. This pattern underscores a direct
correlation between the complexity of data retrieval—for instance, verifying floor names
for create_view or handling a vast array of queries for hide when faced with open-ended
requests—and the subsequent processing time required.

Additionally, a notable increase in average delay was observed for cases where no spe-
cific function was called (described as “None” cases in Figure 17), as well as for operations
like delete_element. This could be attributed to the GPT Assistant’s misinterpretation of user
requests, leading to extensive efforts to autonomously resolve ambiguities, often culmi-
nating in unsuccessful outcomes. These findings highlight the impact of function-specific
demands and the GPT Assistant’s interpretative challenges on response times, suggesting
areas for further optimization to enhance efficiency and user experience.

On the other hand, manual testing within the Revit environment confirmed that when
the system correctly interpreted functions and their arguments, the implementation of
changes was virtually instantaneous. This rapid response is attributed to the prototype’s
efficient handling of JSON files and the efficacy of the Revit API.
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In addition to the factors previously discussed, the utilization of voice mode intro-
duced an additional variable to the system’s response times. During testing, we observed
that voice mode—either through receiving commands by voice or providing replies using
voice—added an average delay of 3–5 s to the overall response time. It is important to note
that this delay can vary significantly depending on external factors, including the user’s
computer capacity, Internet connection speed, and the current load on OpenAI’s servers.
The system was tested on high-end computers (equipped with at least an Intel i7 processor,
a minimum of 32 GB RAM, SSD storage, and powerful GPUs) to minimize potential bottle-
necks related to hardware performance. Despite these high specifications, the variability in
response times highlights the complexity of delivering a real-time AI-powered BIM tool
and underscores the need for continued optimization.

6. Discussion on Findings
6.1. Contributions

The development and implementation of DAVE represents a significant advancement
in the integration of Conversational AI within the AEC industry, particularly for BIM model
manipulation. The main contribution of this study is a system that leverages the power
of AI, particularly NLP, to facilitate real-time updates and multimodal interactions (text,
voice, and 3D visualization) with BIM models. The use of voice commands and NLP allows
users to interact with BIM models in a way that reduces cognitive load and streamlines
the modification process. This makes DAVE a useful tool for architects, engineers, and
other construction professionals and suitable for use in dynamic environments [35], such as
VR [50]. This section delves into the strengths and implications of our system, highlighting
its contributions to advancing conversational AI in AEC, enhancing BIM workflows, and
promoting accessibility and inclusivity.

6.1.1. Advancement of Conversational AI in AEC

DAVE represents a novel advancement in the application of conversational AI in
the AEC industry. Unlike existing research, which primarily focuses on leveraging AI
for information retrieval from BIM models, DAVE extends this capability to include dy-
namic updates, queries, and real-time model interactions through NLP (with text or voice
commands). This positions DAVE as a solution that facilitates a more interactive and
engaging user experience. For example, DAVE enables on-the-fly adjustments to model
elements using simple voice commands, transforming traditional workflow approaches in
architectural and engineering tasks. This also demonstrates the potential for conversational
AI to transition from a supplementary tool to a central component in project management
and execution.
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6.1.2. Customization and Automation in the BIM Environment

The integration of AI with BIM through DAVE introduces a high level of customization
and automation in the BIM environment and sets a new benchmark for software adaptabil-
ity and user-directed automation in the AEC industry. Leveraging NLP, DAVE provides a
dynamic and user-friendly interface that adapts to the specific needs and preferences of its
users. This adaptability not only enhances the user experience but also streamlines BIM
tasks through automation, reducing the need for manual inputs and enabling more efficient
project workflows. The real-time interaction capability ensures that updates and queries
can be processed in a timely manner, further enhancing the system’s utility in fast-paced
project environments. Central to DAVE’s strengths is its accuracy, particularly highlighted
in executing single commands. The validation results demonstrate a remarkable success
rate for simple queries, underscoring the system’s ability to understand and process user
inputs with precision. This accuracy not only improves the user experience by providing
reliable and timely responses but also has the potential to contribute to the overall effec-
tiveness of BIM project management. This is a new paradigm in BIM model interaction,
where users will no longer be constrained by the complexities of software interfaces or the
intricacies of manual model updates.

6.1.3. Enhancement of the BIM Workflows

DAVE complements and extends the current state of research by its potential to help
overcome some of the most common barriers to BIM adoption, such as BIM software
complexity and the steep learning curves, as well as the complexity of BIM models [2–4].
By minimizing manual data entry and automating routine tasks, DAVE can help maintain
the integrity of BIM models and reduce the likelihood of mistakes. The system also
facilitates remote collaboration by allowing team members to communicate updates and
changes to the BIM model in real time, irrespective of their physical location. This capability
is particularly valuable in the context of increasing remote work trends, enabling more
efficient and cohesive project management. The system’s support for voice commands
further enables hands-free operation. This allows users to remain engaged with their
tasks while interacting with the BIM model, such as during design review meetings or
client presentations, thus significantly reducing the time and effort required for model
manipulation.

6.1.4. Accessibility and Inclusivity

DAVE’s application of voice commands and natural language interaction to perform
actions within BIMs represents a significant contribution to the field. While voice command
technology itself is not new, DAVE is one of the systems that pioneer its use for direct
command execution in BIM environments, significantly enhancing accessibility and inclu-
sivity. This innovation democratizes BIM technology, providing a unique, user-friendly
interface for a broader range of AEC professionals and stakeholders and effectively filling a
crucial gap in current BIM practices. By allowing users to interact with the software in a
more intuitive and natural manner, the system lowers the barrier to entry for individuals
who may not have extensive training in BIM, which is another common challenge in BIM
implementation [2–4]. Furthermore, by leveraging the LLM’s vast knowledge base, DAVE
can also serve as an on-demand tutor, guiding users through the functionalities of Revit,
and eventually, other BIM-authoring software. This inclusivity extends the benefits of BIM
technologies to a broader audience, promoting a more diverse and collaborative industry
landscape. The provision of instant, AI-driven support for software-related inquiries can
significantly flatten the learning curve, making BIM technologies more accessible and less
intimidating to new users.

6.2. Challenges and Limitations

Despite DAVE’s innovative approach and benefits, it confronts several challenges that
include ensuring scalability amidst complex model management, maintaining data integrity
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and security, and guaranteeing privacy. Furthermore, achieving seamless interoperability
with diverse BIM tools and optimizing system efficiency—particularly the speed and
efficacy of information retrieval processes—are critical areas that require ongoing attention.

Additionally, DAVE’s current implementation does not fully exploit the LLM’s capacity
for proactive design optimization and autonomous decision-making. This represents a
missed opportunity to leverage AI not merely as a tool for executing user commands but
as an active participant in the design process, capable of suggesting optimizations and
innovative solutions.

Finally, the system’s reliance on high-quality user queries and the economic implica-
tions of employing advanced AI models like GPT-4 necessitates a delicate balance to ensure
the solution’s long-term viability. These challenges are further explored in the next sections.

6.2.1. Scalability, Data Integrity, Privacy, and Security

The scalability of the current version of our system is challenged by its architecture,
which requires mapping each Revit action to a unique Python function. As BIM models
become more complex, the volume of potential user actions would necessitate a substantial
increase in the Python function library. This expansion demands ongoing development
to keep pace with Revit updates and enhance functionality. Exploring more dynamic
architectures, such as incorporating ML to automate the generation and refinement of
Python functions based on user interactions, could significantly alleviate manual expansion
efforts. This would also improve the system’s flexibility in accommodating new Revit
functionalities and user needs.

Given the reliance on OpenAI’s API for DAVE’s operation, our system inherits Ope-
nAI’s policies on privacy and security. OpenAI commits to high standards of data privacy
and security, including the encryption of data in transit and at rest and adherence to leading
industry practices. However, concerns may arise within the AEC industry regarding the
sharing of sensitive project data with external APIs. To mitigate these risks, we propose
enhancing the system’s data-handling protocols by implementing additional layers of
encryption for data at rest and in transit, particularly for CSV files created during the data
conversion process. Furthermore, adopting a more secure method of interacting with the
APS API, such as utilizing OAuth tokens [52] with limited permissions, can reduce the
exposure of sensitive data. Regular security audits and adherence to Autodesk’s recom-
mended practices for API use will further ensure that the developed system remains robust
against potential vulnerabilities.

6.2.2. Interoperability Challenges

DAVE’s current compatibility is exclusively with Revit, and although Revit is one of
the most commonly used BIM authoring tools, this can be considered a limitation in the
context of the AEC industry’s diverse ecosystem of BIM tools. A specific aspect of this
challenge within the Revit environment is Revit’s linking functionality, which is crucial for
managing large projects with multiple files or collaborating across disciplines but currently
poses limitations for DAVE. The system struggles to accurately apply certain functions to
linked Revit models, often defaulting to actions on the main file rather than appropriately
interacting with the linked files. Addressing these limitations is essential for DAVE to
realize its full potential as a transformative tool in the AEC industry, fostering a more
inclusive and adaptable approach to BIM model manipulation and management. Future
development efforts will focus on enhancing DAVE’s ability to recognize and interact
with Revit links. We will also work on expanding its compatibility to other BIM software
to ensure that DAVE can serve as a versatile and comprehensive tool for BIM model
management across the industry’s diverse technological landscape.

6.2.3. Query Quality and Prompt Engineering

Query quality emerges as a pivotal factor that significantly impacts DAVE’s perfor-
mance. The effectiveness of the system in interpreting and executing user commands
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hinges on the clarity, specificity, and comprehensiveness of the queries posed. This reliance
underscores the importance of prompt engineering [46]. In our case, to obtain accurate
and relevant responses in complex applications like BIM, it is essential that our model
understands the user’s intent and provides appropriate outputs. Since DAVE relies on NLP
to interpret and execute commands within a BIM environment, the clarity and precision of
user input or prompts directly impact the accuracy of the output.

DAVE is designed to handle both simple and complex queries. Prompt engineering
enables the system to break down complex commands into small sub-tasks so that each
component is correctly understood and executed. Since DAVE utilizes the GPT-4 model
and operates on a token-based system, prompt engineering helps optimize the number
of tokens used per query. Well-structured prompts can convey the necessary information
concisely, minimizing the use of tokens. DAVE offers pre-defined templates for common
BIM tasks, such as “changing transparency” or “selecting elements info”, which provide a
starting point for users to formulate their queries effectively.

A ‘good quality’ query, therefore, is one that is explicit in its intent, detailed in its re-
quirements, and structured in a way that directly aligns with the AI model’s understanding.
For example, instead of a vague command like “Change the color of the walls”, a good
quality query would specify the desired action in detail: “Hey DAVE, set the color of all
walls on the second floor to red”. In this example, the user specifies the action (set color),
the target elements (all walls), the location (second floor), and the value (red). This way
DAVE processes the prompt by understanding the context of “second floor” and “all walls”,
and identifies relevant elements in the BIM model correctly. It also helps in the execution of
complex queries as the system translates the prompt into a series of actions within the BIM
environment. As a result, it changes the color or other settings for the specified elements.
This specificity helps the AI to accurately parse the user’s intent and execute the command
without the need for further clarification or guesswork.

The impact of query quality on DAVE’s performance became particularly evident
during validation. Our tests revealed that queries that were vague, overly complex with-
out clear direction, or misaligned with the system’s expected input format often led to
misinterpretations, incomplete actions, or the need for multiple iterations to achieve the
intended outcome. This underscores the critical role of prompt engineering in enhanc-
ing user interaction with DAVE, necessitating additional guidance for users to formulate
effective queries.

To mitigate these challenges and improve system usability, future iterations of DAVE
could incorporate more advanced natural language understanding capabilities or offer
interactive tutorials and feedback mechanisms to assist users in crafting high-quality
queries. Educating users on the principles of prompt engineering and providing ex-
amples of effective queries could significantly enhance the overall user experience and
system performance.

6.2.4. System Efficiency and Economic Considerations

The efficiency of DAVE, particularly in complex or large-scale BIM projects, can be
challenged by delays in information retrieval, which may extend up to 5 min as observed
once during the validation. Such delays, primarily arising from the processing time required
by GPT-4 to analyze and respond to queries, may disrupt project workflows. For a seamless
integration of DAVE into daily operations, these delays are planned to be addressed
through the optimization of the system’s architecture, such as enhancing data processing
and retrieval methods or integrating more responsive AI models. Additionally, in [10],
the researchers proposed an optimized dynamic framework for efficient data structuring
and querying. Adopting such methodologies could enhance DAVE’s ability to rapidly
access information.

The operational costs associated with employing GPT-4, OpenAI’s advanced language
model, may present another challenge. The current general instructions and function
details represent usage of around 3700 tokens per request (Figure 18), while the answer it
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produces can generate as low as 97 tokens. For the current system’s capabilities and current
price, this represents a cost of approximately U$ 0.05 per request.
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While GPT-4’s capabilities enable DAVE to understand and execute complex com-
mands with remarkable accuracy, the cost implications of leveraging such a sophisticated
AI tool can be substantial. This is particularly relevant when considering the volume of
queries processed daily in a typical AEC project. To ensure DAVE remains an economically
viable solution, it is essential to strategize the management of query formulation and system
usage. This could involve optimizing queries to reduce unnecessary token consumption
and exploring cost-effective alternatives or enhancements to GPT-4.

7. Conclusions

In this study, we have explored the transformative potential of BIM with AI, focusing
on the development of DAVE, a digital assistant that is designed to work with text or voice
commands and aimed to enhance BIM model interaction and management within the AEC
industry. By enabling intuitive, conversational interactions with BIMs, DAVE represents a
significant contribution to the current body of knowledge and a leap toward making these
technologies more accessible and efficient for professionals across the AEC industry.

By harnessing the capabilities of GPT-powered conversational AI, DAVE offers an
intuitive and efficient means for users to engage with complex BIM environments in
multiple modes (text or voice). This way, it aims to simplify the BIM interface for a wider
audience and also exemplify the practical application of cutting-edge AI technologies
in enhancing the operational efficiency and decision-making processes in construction
projects. Our exploration into DAVE’s development, functionality, and potential challenges
is essential for future innovations in the AEC industry, encouraging a paradigm shift
towards more accessible, intelligent, and user-centric model management solutions.

Future work includes extending DAVE’s compatibility with other BIM software since
the prototype architecture can be adapted to work with other BIM platforms and other
LLMs with minor adjustments. Other future work includes refining query-processing capa-
bilities and mitigating economic considerations associated with employing sophisticated
AI models like GPT-4. Furthermore, exploring the potential for developing a built-in assis-
tant directly within the Revit environment, thereby eliminating the need for external data
conversion, API calls, and manual database updates, represents a promising direction. This
integration could further streamline interactions and increase the system’s responsiveness
and accuracy.

Moreover, engaging with the AEC community for comprehensive user testing and
feedback is crucial. This collaborative effort will help tailor DAVE to meet the practical
needs of professionals, ensuring its relevance and applicability in real-world settings.
Another direction for future research involves extending DAVE’s capabilities to include
proactive design suggestions and optimizations. Leveraging the full potential of the
LLM could transform DAVE from a reactive assistant into an intelligent design partner,
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capable of offering recommendations based on best practices, efficiency considerations, and
sustainability criteria. This would not only streamline the design process but also foster a
collaborative environment where AI contributes creatively to project development.
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