
Citation: Si, J.; Zhu, L.; Ma, W.; Meng,

B.; Dong, H.; Ning, H.; Zhao, G. Study

on Vibration and Noise of Railway

Steel–Concrete Composite Box Girder

Bridge Considering Vehicle–Bridge

Coupling Effect. Buildings 2024, 14,

2509. https://doi.org/10.3390/

buildings14082509

Academic Editor: Fabrizio Gara

Received: 24 July 2024

Revised: 8 August 2024

Accepted: 10 August 2024

Published: 14 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Study on Vibration and Noise of Railway Steel–Concrete
Composite Box Girder Bridge Considering Vehicle–Bridge
Coupling Effect
Jinyan Si 1, Li Zhu 2,* , Weitao Ma 2, Bowen Meng 2, Huifeng Dong 2, Hongyang Ning 2 and Guanyuan Zhao 2

1 Beijing Municipel Engineering Institute, Beijing 100037, China
2 School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
* Correspondence: zhuli@bjtu.edu.cn

Abstract: A steel–concrete composite beam bridge fully exploits the mechanical advantages of the
concrete structure and steel structure, and has the advantages of a fast construction speed and large
stiffness. It is of certain research value to explore the application of this bridge type in the field of
railway bridges. However, with the rapid development of domestic high-speed railway construction,
the problem of vibration and noise radiation of high-speed railway bridges caused by train loads
is becoming more and more serious. A steel–concrete composite beam bridge combines the tensile
characteristics of steel and the compressive characteristics of concrete perfectly. At the same time,
it also has the characteristics of a steel bridge and concrete bridge in terms of vibration and noise
radiation. This feature makes the study of the vibration and noise of the bridge type more complicated.
Therefore, in this paper, the characteristics of vibration and noise radiation of a high-speed railway
steel–concrete composite box girder bridge are studied in detail from two aspects: the theoretical
basis and a numerical simulation. The main results obtained are as follows: Relying on the idea of
vehicle–rail–bridge coupling dynamics, a structural dynamics analysis model of a steel–concrete
combined girder bridge for a high-speed railroad was established, and numerical program simulation
of the vibration of the vehicle–rail–bridge coupling system was carried out based on the parametric
design language of ANSYS 18.0 and the language of MATLAB R2021a, and the structural vibration
results were analyzed in both the time domain and frequency domain. By using different time-step
loading for the vehicle–rail–bridge coupling vibration analysis, the computational efficiency can be
effectively improved under the condition of guaranteeing the accuracy of the result analysis within
100 Hz. Based on the power flow equilibrium equation, a statistical energy method of calculating
the high-frequency noise radiation is theoretically derived. Based on the theoretical basis of the
statistical energy method, the high-frequency noise in the structure is numerically simulated in the
VAONE 2021 software, and the average contribution of the concrete roof plate to the three acoustic
field points constructed in this paper is as high as 50%, which is of great significance in the study of
noise reduction in steel–concrete composite girders.

Keywords: vehicle–track–bridge coupling dynamics; steel–concrete composite beam; statistical
energy method

1. Introduction

Since the 1990s, there has been significant progress in both the practical application and
theoretical understanding of composite beams [1]. Composite beams have been extensively
utilized in foreign railway bridge construction during this period [2–6]. Since the year
2000, there has been significant progress in the construction of domestic railway systems,
leading to the use of steel–concrete composite beams in numerous railway bridges inside
the country [7–9]. Railway bridges experience a greater magnitude and more frequent
external load compared to highway bridges. The issue of vibration and noise emission
from bridges under these loads holds significant research importance.
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Trains operating at high velocities on bridges can induce bridge vibration, and the po-
tent dynamic impacts can readily result in structural harm or even bridge collapse. In 1849,
Willis [10] and Stokes [11] derived an approximate and analytical solution to the equations
governing bridge vibrations. They achieved this by disregarding the mass of the bridge
and simplifying the locomotive as a moving load. Krylov [12] and Timoshenko [13,14]
conducted analytical studies on the vibration issue of bridges. They took into account
the bridge bulk and simplified the train loads as either moving concentrated forces or
simple harmonic forces, respectively. Inglis [15] formulated differential equations that
describe the vertical vibration of a vehicular bridge system and derived an approximate
solution. In his analysis, he took into account the masses of both the bridge and the vehicle,
and also considered the vehicle load as a periodic inertia force that moves. Owing to the
constraints of computing technology, numerous simplifications of the theoretical parts
of the model resulted in a substantial discrepancy between the analytical findings and
practical outcomes.

In the 1960s, computer technology developed rapidly. Matsuura [16] considered the
secondary spring suspension of locomotives and established a more refined locomotive
model. For a total of ten degrees of freedom, this model took into account the heaving
vibrations of the four wheel pairs as well as the nodding and heaving vibrations of the
car body and bogie. Chu et al. [17,18] expanded the problem to three dimensions and
developed a vehicle model with 11 degrees of freedom. A spatial motion model of the
vehicle–bridge system was built using this specific vehicle model. Bhatti [19] introduced
a vehicle model that covers 21 degrees of freedom, where track irregularity serves as the
source of excitation. Wang [20] enhanced the previous concept and developed a vehicle
model with 23 degrees of freedom.

Xu et al. [21] examined the spatial response characteristics and vibration wave prop-
agation mechanisms of a rotating bridge structure under the load of an existing railway
train. It was discovered that when the existing railway train was placed on a rotating
bridge, the main girder showed a noticeable resonance. König Paul [22,23] proposed a
new semi-analytical method for analyzing the dynamic response of railroad bridges under
the action of high-speed trains and a dynamic interaction model for the coupled system
of railroad bridges, foundations, foundation soils, ballast, track, and high-speed trains,
demonstrating the effects of soil–structure interactions, track subsystems, and geometrical
defects caused by track irregularities on the dynamic response of example bridges.

Using the “microphone array” method, Moritoh [24] assessed the distribution of struc-
tural noise on a concrete bridge on the Shinkansen while moving at a speed of 240 km/h.
They also estimated the noise contribution from the far end of the bridge based on the
noise data collected underneath the bridge in the field. Wang [25] investigated the effect
of different roadbed slabs at a speed of 65 km/h, finding that replacing the rigid roadbed
plate with an elastic roadbed slab reduced the noise by 6 dB under A-weighting. Ngai [26]
conducted an experiment to examine the specific characteristics of vibration noise radiation
in a concrete bridge. The results showed that the vibration and noise energies were primar-
ily concentrated within the frequency range of 20 to 157 Hz when the train was moving at
a speed of 140 km/h. Possion [27] performed noise field tests on an underslung steel truss
bridge and observed a 6 dB decrease in noise when using A-weighting. It was discovered
that while using A-weighting, the noise produced by the train passing over the steel bridge
was 10~14 dB louder than the noise produced by the roadbed portion.

Zhang et al. [28,29] conducted an analysis and comparison of the acoustic vibration
characteristics and optimal noise reduction mechanism of an overall thickened top plate
and a locally thickened top plate on the track of box girder bridges. They discovered that
the thickened top plate can effectively decrease the structural noise of the bridges in the
high-frequency range. The mechanism was then systematically investigated by using the
train–track–bridge spatial coupling dynamics model and the box girder bridge acoustic
boundary element model, and it was found that the roof slab was the main noise source
of the concrete box girder bridge. Li Xiaozhen and Zhang Xun et al. [30,31] conducted
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field vibration and noise radiation law tests on a single- and double-lane simply supported
concrete box girder bridge, in which the track type was CRTS III plate ballastless track, there
was a high-speed railroad train, and the model was CRH1. The test assessed the acoustic
vibration characteristics of the bottom plate in the span of the box girder and found that the
concrete bridge produced low-frequency noise. The local stiffness of the box girder plates
affected the emission of structural vibration noise. Li Qi et al. [32] conducted an experiment
to evaluate the vibration and noise radiation characteristics of a simply supported concrete
U-shaped girder bridge. They discovered that when a train traveled over the bridge at a
speed of 50–70 km/h, the vibration energy of the bottom plate and web plate of bridge was
primarily concentrated in the low-frequency range. When comparing the simply supported
box girder bridge to the U-shaped girder, it was observed that the sound pressure level at
the bottom measurement point of the U-shaped girder was higher in the frequency range
below 200 Hz. Liu et al. [33] assessed the vibration and structural noise of a steel–concrete
combination (SCC) box girder in SCC construction using a well-established approach,
effectively addressing the gap in knowledge. They also considered the effect of ground
reflection in SEA modeling for the first time, using the sound line tracking method.

Liu Quanmin, et al. [34,35] conducted on-site vibration and noise tests on a steel–
concrete composite girder bridge with two lines and three spans of continuation and found
that the structural vibration noise radiation energy of the steel–concrete composite girder
bridge was mainly concentrated at 20~1000 Hz. Du et al. [36] compared the radiated noise
of bridges under different train loading conditions by establishing a noise prediction model
consisting of a container–train–track–bridge dynamics model, a finite element model, and
a boundary element model, revealing the noise radiation mechanism.

In the above numerical simulation of the combined girder bridge, if the computational
efficiency of the model can be further improved, it is very beneficial to the study of vehicle–
rail–bridge vibration and noise. In this paper, based on the existing vehicle–rail–bridge
coupling dynamics research theory, ANSYS 18.0 and MATLAB R2021a are used to study
the vibration of the coupled system in the program using a different time-step loading
method for the coupled system dynamics calculation. Using the vested vehicle–rail–bridge
coupling model, numerical simulation of high-frequency noise in the structure was carried
out in VAONE 2021 software, and the noise contributions of different plates to the three
field points were obtained, in which the contribution of sound radiation from the top plate
was larger than that from the steel structure part.

2. Train–Track–Bridge Coupled Vibration Simulation Model
2.1. Vehicle Dynamics Model

A train model containing multiple vehicles is established, with 8 vehicle groupings;
the motion between each vehicle is independent of each other vehicle, and each vehicle
contains 10 degrees of freedom. The vertical model of a single vehicle of the high-speed
railroad train analyzed in this paper is shown in Figure 1.

The vehicle parameters in Figure 1 are shown in Table 1.

Table 1. Vehicle parameters in Figure 1.

Signs Meaning

k1, k2 The spring stiffness in the z-direction for the primary and secondary suspension systems.
c1, c2 The damping coefficient in the z-direction for the one-system and two-system suspension systems.
d1, d2 Half of the longitudinal spacing of the one-system and two-system suspensions in the longitudinal direction.

zw, zt, zc The vertical motion of the wheelset, the vertical motion of the bogie, and the vertical motion of the car body.
φc, φt The nodding head vibrations of the car body and the bogie.
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Figure 1. Vertical vehicle model.

The vertical static equilibrium position of the vehicle is taken as the initial position to
eliminate the effect of gravity. The motion equation of the vehicle is as follows:

MV
..
ZV + KVZV + CV

.
ZV = FV (1)

where MV represents the mass matrix of the single-section vehicle; KV represents the
stiffness matrix of the single-section vehicle; ZV represents the vertical displacement column
matrix of the single-section vehicle; and FV represents the vertical wheel–rail force column
matrix of the single-section vehicle. The damping matrix CV has a similar form to the
stiffness matrix KV. As a result, it is only necessary to replace the stiffness coefficient k in
KV with the damping coefficient c.

This study focuses on a certain type of rolling stock train. Some of the parameters of
the vehicle are shown in Table 2.

Table 2. Vehicle parameters.

Vehicle Parameter Sign Unit (of Measure) Value

Distance between front
and rear axles 2d2 m 17.5

Distance between bogies 2d1 m 2.5

Rolling circle radius of
the wheelset Rw m 0.46

Wheelset mass mw kg 2000

Bogie mass mt kg 3200

Body mass mc kg 31,600

Vertical damping of
primary suspension c1 N·s/m 25,000

Vertical stiffness of
primary suspension k1 N/m 1,200,000

Vertical damping of
secondary suspension c2 N·s/m 120,000

Vertical stiffness of
secondary suspension k2 N/m 115,000
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2.2. Track Dynamics Modeling

This paper examines the dynamic characteristics of a specific type of high-speed
railroad slab ballastless track; its structure and mechanical vertical model is illustrated
in Figure 2. Rails are coupled to the bridge beneath them by fastener forces. kr is the
vertical stiffness of the fastener and cr is the vertical damping of the fastener. A two-node
Euler beam unit is used to make the rail model when only the vertical vibration of the rail
structure is being considered. Each node has only a vertical bending degree of freedom φ
and a vertical degree of freedom Z. Some of the parameters of the track dynamics structure
used are shown in Table 3.
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Table 3. Selected parameters of the track dynamics structure.

Track Component Parameter Unit Value

Rail

Density kg/m3 7860
Cross-sectional area m2 7.745 × 10−3

Cross-section
moment of inertia m4 0.3217 × 10−4

Elastic modulus MPa 2.059 × 105

Element length m 0.65

Fastener
Vertical stiffness kN/m 17.5
Vertical damping kN·s/m 2.5

Rail slab
Concrete strength grade / C60

Width m 2.5
Thickness m 0.2

Self-compacting
concrete

Concrete strength grade / C40
Width m 2.7

Thickness m 0.09

Base slab
Concrete strength grade / C40

Width m 3.1
Thickness m 0.2

2.3. Bridge Finite Element Model

This paper focuses on studying a steel–concrete composite beam without ballast,
specifically designed for high-speed railway bridges with a span of 48 m and a speed of
350 km/h. The cross-section of the bridge adopts a single-box single-chamber combination
cross-section, which consists of a concrete deck slab and a grooved steel box. The steel girder
features a single-box, single-compartment channelized cross-section that is encompassed
by the bottom plate, the top plate of the upper flange, and the web plate. Longitudinal
strengthening ribs are installed on both the bottom plate and the web plate of the bridge.
The bridge has a height of 4.005 m and a span of 48.6 m. The concrete deck plate section
consists of a top plate with a width of 12.6 m. The concrete at the flange of the top plate has
a thickness of 0.22 m, while the concrete at the peg connection is 0.55 m thick. The concrete
at the middle of the span has a thickness of 0.3 m. The slotted steel box girder portion has
an upper flange with a width of 1 m and a thickness of 0.032 m. The web plate has a height
of 3.45 m and a thickness of 0.016 m. The entire bridge is constructed using Q370qE steel



Buildings 2024, 14, 2509 6 of 21

for the steel components and C55 concrete for the concrete components, as illustrated in
Figure 3. Parameters of materials used in bridges are shown in Table 4.
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Table 4. Parameters of materials used in bridge.

Material Parameter Unit Value

Concrete
Density kg/m3 2650

Poisson’s ratio / 0.2
Elastic modulus MPa 3.55 × 104

Steel
Density kg/m3 7850

Poisson’s ratio / 0.3
Elastic modulus MPa 2.07 × 105

2.4. Track Irregularity

Track irregularity is the relative difference between the track contact surface and the
theoretical track surface, which is the source of excitation for the vibration mechanics of the
large system in this section. According to the track irregularities along different directions,
track irregularities can be categorized into alignment, height, rail gauge, and horizontal
irregularities. The irregularities in the y-direction of the left and right rails are defined as
rail gauge irregularity and alignment irregularity, and the irregularities in the z-direction
of the left and right rails are defined as height irregularity and horizontal irregularity. The
Ballastless Track Irregularity Spectrum of the China High-Speed Railway represents the
track irregularity spectrum, segmented and fitted using the following formula:

S( f ) =
A
f k (2)

where f is the spatial frequency, S(f ) is the power spectral density, and A and K are the
fitting coefficients, which are segmented and taken according to Table 5.

In this paper, a detailed analytical study is carried out only for the vertical model, and
spatial samples of the height irregularity of the left and right rails are given as shown in
Figure 4.
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Table 5. Table of ballastless track irregularity of high-speed railway in China.

Irregularity
Type

The First
Section The Second Section The Third

Section The Fourth Section

f A k f A k f A k f A k

Rail gauge
irregularity 0.109 5.4 ×

10−2 0.83 0.2938 5.1 ×
10−3 1.90 0.5 1.9 ×

10−4 4.59 / / /

Horizontal
irregularity 0.0258 3.6 ×

10−3 1.73 0.1163 4.4 ×
10−2 1.05 0.5 4.6 ×

10−3 2.09 / / /

Alignment
irregularity 0.045 4.0 ×

10−3 1.87 0.1234 1.1 ×
10−2 1.54 0.5 7.6 ×

10−4 2.82 / / /

Height
irregularity 0.0187 1.1 ×

10−5 3.39 0.0474 3.6 ×
10−3 1.93 0.1533 2.0 ×

10−2 1.36 0.5 4.0 ×
10−4 3.45
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2.5. Establishment and Solution of Vehicle–Track–Bridge System Equations

Based on the bridge, vehicle, and track dynamics models developed in this section, and
the wheel–rail interaction simulated by the Hertz nonlinear contact model, the dynamics
equations of the entire coupled system in this section can be obtained as shown in the
following equation: 

MB
..
ZB + KBZB + CB

.
ZB = FB

MV
..
ZV + KVZV + CV

.
ZV = FV

MR
..
ZR + KRZR + CR

.
ZR = FR

(3)

where C, K, and M represent the system damping, stiffness, and mass matrices, respectively.
Z is the generalized displacement vector of the system, and the subscripts B, V, and R
represent the bridge system, the vehicle system, and the rail system, respectively. F is the
external load vector of the system.

For the vehicle system, the external load vector is the vertical wheel–rail force. For
the rail system, the external load vector is the vertical wheel–rail force and the support
force provided by the bridge through the fasteners, and for the bridge system, the external
load vector is the vertical force exerted on the bridge by the rail through the fasteners. For
finite element structures such as bridges and track plates, the complete transient response
analysis is solved by the Newmark integration method that comes with ANSYS. The
vehicle–rail system employs the MATLAB-programmed Newmark integration method to
solve the problem.
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3. Analysis of Vehicle–Track–Bridge Coupled Vibration Model Simulation Results

The program described in this document can replicate the dynamic behavior of vehicle–
track–bridge systems during the passage of a train over a bridge, specifically focusing on
various parameters such as the vertical forces acting on the wheel and rail, the vertical
deflection of the bridge structure, acceleration, and the internal forces within the bridge
structure. The program sets up the train vehicle model and the rail model in MATLAB and
invokes the Apdl program to create the finite element model of rail plates, self-compacting
concrete layers, and other rail structures, such as the bridge finite element model and
the rail plate structure model. The contact action point between the rail and the finite
element model is determined by the geometric position of rail fasteners. The displacement
and interaction force of the contact point are considered as the key parameters. These
parameters are transferred within the time step to enable the joint simulation and analysis
of the upper vehicle–track system and the lower finite element system. The dynamic
model of the train–rail–bridge is illustrated in Figure 5. Figure 6 illustrates the structure for
calculating the program.
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3.1. Analysis Methods Considering Different Time Stepping Loading

In the process of structural transient dynamic analysis, choosing the proper time
integration stepping determines the running time of the model and the accuracy of the
correctness and convergence effect of the solved problem. For general problems, decreasing
the integration time stepping leads to increased accuracy in calculation results but requires
a higher computer hardware configuration and greater power consumption. Conversely,
increasing the integration time stepping will inevitably compromise the accuracy of higher-
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order response simulation. Hence, based on the specific attributes of the problem addressed
in this paper, the time stepping for transient analysis is determined by taking into account
two factors: (1) the correlation between the time stepping and the highest frequency of the
structure response; (2) the correlation between the integration time stepping, grid size, and
traveling speed.

Different time stepping loading multiplicity has a significant effect on the compu-
tational efficiency. If equal time stepping is used to calculate the model in this paper, it
is expected that the single model calculation time could be up to 8 days, whereas if the
50-fold different time stepping calculation method proposed in this paper is used, the
calculation time can be reduced to 4 h. Define the different time stepping loading multiplier
as the ratio of the analysis time step of the rail system to the transient analysis time step
of the bridge in the finite element software. It can be concluded from the time step in
Figure 7 that the smaller the loading multiplier of different time steps, the more accurate the
simulation results of the high-frequency band response and the more accurately they reflect
the full-band information of the data. The spectrogram analysis reveals that variation
in the time stepping loading multiplier has minimal impact on the presentation of the
results within a 100 Hz range. Based on this, this paper can realize the method of using
the different time stepping method to analyze the results of the dynamics within 100 Hz
under the condition of satisfying the accuracy of the resultant data within 100 Hz, which
effectively saves computational resources.
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Figure 7. Results chart for different time stepping loading. (a) Time history of acceleration at
midspan of beam. (b) Time history of vehicle acceleration. Note: Multiplier in the diagram represents
multiplier for every different time stepping loading.

3.2. Analysis of Time-Domain Results

The vertical wheel–rail relationship utilized is based on the nonlinear Hertz theory.
However, by comparing the time history curve of the vertical displacement of the wheel
pair with the curve of the irregularity value of its position, the following law may still be
derived: Within the time frame of 0 to 3.5 s, the wheel set has not yet reached the bridge.
At this level, the general principle holds true, stating that the displacement of the wheel
set is equal to the combined value of the irregularity amplitude, bridge displacement,
and rail displacement. Currently, the patterns and magnitudes of the two situations in
Figure 8 are approximately equal. The irregularity excitation is the causal factor, while the
vertical displacement of the wheel set is the consequent outcome. The abrupt variation in
the magnitude of irregularity at a certain moment should be evident in the chronological
record of the vertical displacement of the wheel set. After a duration of 3.5 s, the vertical
displacement of the wheel pair exceeds the amplitude of the irregularity at this location,
reaching a magnitude of 3.5 mm, as a result of the bridge displacement. This observation is
consistent with the fundamental principle.
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By analyzing the vertical displacement and vertical acceleration curves of the vehicle
body, it is evident that the vertical displacement time history curve of the vehicle body
remains relatively stable, ensuring a comfortable passenger experience. Additionally, based
on Figure 9, it is difficult to precisely determine the exact time when the train crosses the
bridge. However, it is apparent that the bridge structure does not have a significant impact
on the dynamic performance parameters of the vehicle. The vertical acceleration of the
vehicle body fluctuates between −0.2 and 0.2 m/s2, which is far less than the 1.3 m/s2

specified in the standard, demonstrating the accuracy of the simulation.
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vehicle body. (b) Time history of vertical acceleration of the vehicle body.

Figure 10a illustrates a dense curve representing the time history of the wheel–rail
force. This curve specifically shows the contact force between a single wheel on the
wheel set and the rail, rather than the overall contact force between the entire wheel set
and the rail. The curve typically exhibits fluctuations around 56 kN, which is directly
correlated to the static wheel weight of the wheel. The range of fluctuation, which spans
from −50 to 50 kN, indicates the medium- and high-frequency characteristics of the axle
coupling issue examined in this study. The rail vibrates with high frequency and clear
periodic characteristics due to the direct influence of this high-frequency excitation force.
In Figure 10b, the rail node can experience a peak acceleration of up to 500 m/s2.
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Figure 10. Time history of vertical acceleration of the rail. (a) Vertical wheel–rail force. (b) Vertical
acceleration of the rail.

The time history curve of the bridge indicates that the vibration amplitude of the
bridge deck flange is considerably higher than that at the midspan. This difference can
be attributed to the thickness of the plate and the distance from the excitation site. The
model train load is a load that only acts in one direction, and the flange of the bridge
deck is positioned closer to the loading point. The bottom plate of the steel structure
exhibits a higher vibration intensity compared to the web, offering a valuable indication for
investigating methods to reduce vibration and noise in this particular type of bridge. The
displacement curves of the different components of the concrete structure nearly coincide,
but it is still evident that the vertical displacement of the upper component exceeds that
of the lower component, indicating damping and vibration isolation properties of the
concrete structure. Time history of the dynamic response of the bridge structure are shown
in Figure 11.
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4. Prediction Model for High-Speed Railway Composite Steel–Concrete Beams with
High Noise
4.1. Structural Acoustic Radiation Theory Based on Statistical Energy Analysis Method

Conventional analysis techniques, such as finite element modeling, are employed
to examine the dynamic characteristics of bridge structures. The outcomes of dynamic
simulations solely encompass low-frequency data, whereas the dynamic behavior of the
structure in the middle- and high-frequency ranges is absent. The boundary element
method, akin to the theory of finite element analysis, presents challenges in solving high-
frequency, high-modal-density problems. Statistical energy analysis (SEA) is highly efficient
in resolving dynamic problems with high frequency and high modal density.
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In the context of a complex system involving the dynamics of vehicles, tracks, and
bridges, the SEA model is employed. This model incorporates a plate analysis model to
study the structure of the bridge. The external excitation force acting on the bridge deck,
which carries information about the frequency range being analyzed, is utilized as the input
energy for the system and subsequently resolved. The equation governing the balance of
power flow in the established system is as follows:

ω



η1 +
N
∑

i ̸=1
η1i −η12 . . . −η1N

−η21 η2 +
N
∑

i ̸=2
η2i . . . −η2N

...
...

. . . M

−ηN1 · · · · · · ηN +
N
∑

i ̸=N
ηNi





E1
...

Ek
Ek+1

...
EN


=



P1
...

Pk
0
...
0


(4)

where ω represents the natural frequency, ηi the internal loss factor of subsystem i, ηij and
ηji the coupling loss factors between subsystems, and Ei and Ej the energies of subsystems
i and j, respectively.

The bridge deck subsystem is the first in the kth order and is the energy input to the
bridge deck subsystem from the under-track excitation force. The remaining subsystems
are the steel structure part of the composite beam and the bridge deck subsystem, which is
not directly affected by the train load. The corresponding input energy is zero. By solving
this set of equations, the average energy stored in each subsystem can be solved, and the
average square vibration velocity of the subsystem can be obtained.

Plate noise contribution: The sound pressure generated by each individual plate of
the bridge structure at the site can be analyzed by comparing the noise contribution of
the plate to the overall noise produced by the entire structure. The noise generated by the
steel box composite beam structure is generally attributed to three types of plates: the top
plate, bottom plate, and abdomen plate. The contribution of plates such as diaphragms
and stiffeners is quite insignificant. The noise generated by a certain plate at a specific
frequency at a specific place in an acoustic field can be mathematically represented by the
following formula:

ηi =
P2

1,i

P2
i
=

100.1Lp1,i

100.1Lpi
(5)

where ηi represents the structural noise contribution of a panel at frequency i, Lp1,i and
p1,i denote the sound pressure level and sound pressure generated by a panel at the
measurement point at frequency i, respectively, and Lpi and pi represent the total sound
pressure level and total sound pressure generated by all panels at the measurement point
at frequency i.

The modal density is an indicator of the capacity of the system to store energy. This
work focuses on analyzing the problem of noise radiation from bridges. In this context, the
majority of structures may be simplified as plate structures. Mathematical methods can be
used to determine the modal density of these simplified substructures. The expression for
the modal density of a vibrating plate is as follows:

n( f ) =
S
√

12
2cBt

(6)

where cB represents the bending wave velocity, S represents the area of the plate, and t the
thickness of the plate.

The internal loss factor ηi is defined as the ratio of the energy lost per unit time to the
average stored energy during the vibration cycle of a subsystem. It is generally accepted
that for any subsystem the damping of the system is usually determined by no more than
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three damping mechanisms. The internal loss factor of a structural subsystem can be
expressed as

ηi = ηis + ηir + ηib (7)

where ηib represents the damping of the boundary connection of the structural subsystem.
ηis is the damping caused by friction within the structural subsystem, and ηir is the damping
of the vibration sound radiation of the structural subsystem.

In this paper, the internal loss factor of the concrete structure is taken as 1.5%, and the
internal loss factor of the steel structure is taken as 0.1%.

The coupling loss factor ηij is defined as the transmission loss of energy at the connec-
tion between two coupled subsystems i and j. The coupling loss factor used in this paper is
calculated as follows:

η12 =
lCg

πωA1
τ12 (8)

where the wave propagation coefficient from structure 1 to structure 2 is denoted by τ12.
The length of the line connection is represented by l. Cg represents the group velocity, A1
represents the surface area of substructure 1, and ω represents the center frequency of the
frequency band.

The technical route of the statistical energy method is shown in Figure 12.
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4.2. Determination of External Excitation Forces for Bridge Deck Systems

To determine the properties of the force that the rail applies to the bridge, we retrieved
the time history data of the force exerted by each individual rail fastener. We then conducted
fast Fourier transformation and octave data processing. The results are displayed in
Figure 13 below. The time history of the fastener force demonstrates that it can reach a
maximum value of 40 kN, exhibiting a distinct periodic pattern. The spectrum diagram
indicates that the fastener force reaches a maximum value of 5.5 kN at a frequency of 10 Hz.
Additionally, the octave diagram reveals that the fastener force continues to exhibit data
distribution beyond 1000 Hz, highlighting the medium- and high-frequency features of
the force.
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At the same time, combining the frequency bands analyzed in this section, the spectral
data of 100~1000 Hz is extracted for the solution of the excitation force outside the bridge
deck. The original fastener force data are filtered at 100 Hz, and a Fourier inverse transfor-
mation is performed to obtain the filtered time history curve of the under-track force, as
shown in Figure 14. It can be seen that the excitation force applied by the steel rail to the
bridge has a clear periodic pattern.
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Figure 14. Time-domain diagram of fastener force after high-pass filtering.

The bridge deck in the model has a longitudinal length of 4 m, and the fasteners are
spaced longitudinally at intervals of 0.65 m. Given that the fasteners are evenly distributed
on the center line of the track, there are a total of 12 fasteners on one bridge deck. The force
exerted by the train load on the rail is transmitted to the bridge through the square root of
the sum of the squares of the forces of each supporting spring. Refer to the formula for the
precise calculation procedure:

Fb =

√√√√ M

∑
n=1

| fn|2 (9)

where Fb represents the external force acting on the bridge deck system, M denotes the
number of fasteners on the bridge deck, and fn represents the force acting on the bridge
deck system due to the spring force of the nth fastener.

The forces of the fasteners and the external excitation force spectrum of the bridge
deck within the scope of the statistical energy model analysis are shown in Table 6.
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Table 6. Data table for external excitation force of bridge deck.

Frequency
(Hz)

Excitation Force
(N)

Frequency
(Hz)

Excitation Force
(N)

100 1385 400 415
125 1212 500 381
160 1039 630 346
200 866 800 381
250 692 1000 277
315 623

4.3. Simulation Results of Medium- and High-Frequency Noise

The steel–concrete composite beam mentioned previously served as the subject of
study for the development of a statistical energy analysis model. The model has a total
length of 48 m. Typically, the concrete top plate has a thickness of 0.35 mm, whereas
each steel plate has a thickness of 2 mm. The model comprises a grand total of 98 plate
subsystems, consisting of 24 bridge deck plate subsystems, 24 abdominal plate subsystems,
24 bottom plate subsystems, and 26 diaphragm plate subsystems. The steel plate subsystem
has an internal loss factor of 0.1%, whereas the concrete plate has an internal loss factor
of 1.5%. Figure 15 displays the quantity of bending modes for each subsystem. When the
frequency of analysis exceeds 100 Hz, the subsystem exhibits more than one mode, thereby
satisfying the criteria of statistical energy analysis. Hence, the frequency range employed
for analyzing medium- and high-frequency noise radiation is 100–1000 Hz.
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In order to consider the radiation noise capacity of the bridge structure, three semi-
infinite fluid subsystems are established in the model to receive the sound pressure radiated
by each subsystem of the bridge. The locations of the semi-infinite fluid subsystems in
relation to the steel box composite beam segments are indicated by the field points A, B,
and C in Figure 16. Detailed locations of field points A, B, C are shown in Figure 17. The
semi-infinite fluid can exhibit the sound pressure radiation of the interconnected plates. By
modifying the kind and quantity of the linked plates, one can determine the sound radiation
values of various plates at the designated location and resolve the sound contribution of
each individual plate.

The radiation efficiency, or radiation ratio, is the quotient of the sound power radiated
by a structure to the sound power radiated by a huge rigid piston with equivalent surface
area and root mean square velocity. As shown in Figure 18, for a plate structure with
finite dimensions, the radiation efficiency approaches 1 when the frequency exceeds the
critical frequency. Below 500 Hz, the concrete roof has a much higher radiation efficiency
compared to the steel plate. Beyond a frequency of 500 Hz, the steel structure has a higher
radiation efficiency compared to the concrete roof, and this efficiency is somewhat above
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1. The A and B field points are situated in close proximity to the top and bottom plates
of the bridge, respectively, and are closer to the sound source compared to the C field
point. As a result, the radiation sound pressure level is considerably higher than the sound
pressure level at the C field point. The sound pressure level experiences a sudden increase
at frequencies of 100 Hz and 1000 Hz, which corresponds to the frequency-dependent
variation in the external force that excites the bridge. This force mainly distributes energy
in the low-frequency range. At point A, the highest value of 88 dB is seen at a frequency of
100 Hz. All three data points within each frequency range have values exceeding 65 dB. At
the upper limit of the frequency range being examined, specifically at 1000 Hz, there is an
abrupt transition, suggesting that the anticipated noise level at this particular moment is
not accurate.
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The vibration velocity data for each plate of the bridge was extracted, as depicted in
Figure 19. The concrete plate has a significantly lower average vibration velocity compared
to the steel construction. The concrete plate exhibits a total vibration level of 127 dB, while
the steel plates demonstrate a comparable vibration level due to their identical thickness,
similar size, and direct loading without any additional load. The mean overall vibration
level is approximately 138 dB.

Figure 20 illustrates the respective impact of various components of the bridge struc-
ture on the emission of noise at three specific acoustic locations, namely, points A, B, and C.
Point A is situated at the highest point of the bridge structure. The findings indicate that
the floor plate has minimal impact on this particular spot across the whole frequency range.
The concrete roof plate significantly contributes to the noise at this location, with a noise
level of up to 92 dB. Point B is situated near the base of the bridge structure. The floor plate
contributes more to this point compared to point A. At lower frequencies, the concrete roof
is primarily responsible for the noise emitted at this location. However, around 250 Hz
the steel structure becomes more efficient at radiating noise and its contribution surpasses
that of the concrete component. In general, the concrete structure has the greatest impact
on this aspect, whereas the contribution of the steel structure is comparable. The concrete
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roof has a greater impact on the noise at the C site in the lower frequency range. However,
at 500 Hz, the noise contribution from the concrete slab reduces due to reduced radiation
efficiency. At this point, the steel web, stiff floor, and diaphragm plate become more signifi-
cant contributors to the noise at the C site. By examining the histogram of the total sound
pressure level contribution, it is evident that the concrete slab carries the train load directly,
resulting in its significant contribution to the overall sound pressure level at the C site. The
primary contributors to the noise at the C field point of the bridge are the bottom plate and
the abdominal plate made of steel. Therefore, it is imperative to conduct comprehensive
study on the vibration and noise reduction capabilities of these two plates.
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Figure 19. The concrete plate has a significantly lower average vibration velocity com-
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Figure 18. Simulation results of point noise radiation in medium- and high-frequency fields. (a) Ra-
diation efficiency of each subsystem of bridge. (b) Radiation spectrum curve of medium- and
high-frequency field point noise.
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bution surpasses that of the concrete component. In general, the concrete structure has the 
greatest impact on this aspect, whereas the contribution of the steel structure is compara-
ble. The concrete roof has a greater impact on the noise at the C site in the lower frequency 
range. However, at 500 Hz, the noise contribution from the concrete slab reduces due to 
reduced radiation efficiency. At this point, the steel web, stiff floor, and diaphragm plate 
become more significant contributors to the noise at the C site. By examining the histo-
gram of the total sound pressure level contribution, it is evident that the concrete slab 
carries the train load directly, resulting in its significant contribution to the overall sound 
pressure level at the C site. The primary contributors to the noise at the C field point of 
the bridge are the bottom plate and the abdominal plate made of steel. Therefore, it is 
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Figure 19. Vibration simulation results of medium- and high-frequency plates. (a) Vibration velocity
of medium- and high-frequency bridge plate. (b) The total vibration level of medium- and high-
frequency bridge plate. Notes: TP, AP, DP, and BP represent top plate, abdominal plate, diaphragm
plate, and base plate, respectively.
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Figure 20. Results of the contribution of the high-frequency bridge plate in three field points A, B, 
and C. (a) The contribution spectrum of high-frequency bridge plate in field point A. (b) The contri-
bution spectrum of high-frequency bridge plate in field point B. (c) The contribution spectrum of 
high-frequency bridge plate in field point C. (d) Bar chart of the total sound pressure level contrib-
uted by the panels at the three points. Notes: TP, AP, DP, BP, and OSPL represent top plate, ab-
dominal plate, diaphragm plate, base plate, and overall sound pressure level, respectively. 

Regarding the contribution of the bridge base plate, bridge top plate, and bridge ab-
dominal plate to the mid–high-frequency noise radiation at the A, B, and C field points, 
the calculation results are shown in Figure 21. According to the data, the base plate has 
the most contribution to the B field point compared to the other two acoustic field points, 
accounting for 24% of the noise. The abdominal plate also contributes a similar proportion 
of noise to all three field points, with an average contribution rate of 17%. Among all three 
locations, the concrete deck plate has the highest contribution rate, with rates of 61%, 56%, 
and 36% for sites A, B, and C, respectively. There is an urgent need to study the vibration 
and noise reduction in concrete bridge decks. 

Figure 20. Results of the contribution of the high-frequency bridge plate in three field points A,
B, and C. (a) The contribution spectrum of high-frequency bridge plate in field point A. (b) The
contribution spectrum of high-frequency bridge plate in field point B. (c) The contribution spectrum of
high-frequency bridge plate in field point C. (d) Bar chart of the total sound pressure level contributed
by the panels at the three points. Notes: TP, AP, DP, BP, and OSPL represent top plate, abdominal
plate, diaphragm plate, base plate, and overall sound pressure level, respectively.

Regarding the contribution of the bridge base plate, bridge top plate, and bridge
abdominal plate to the mid–high-frequency noise radiation at the A, B, and C field points,
the calculation results are shown in Figure 21. According to the data, the base plate has
the most contribution to the B field point compared to the other two acoustic field points,
accounting for 24% of the noise. The abdominal plate also contributes a similar proportion
of noise to all three field points, with an average contribution rate of 17%. Among all three
locations, the concrete deck plate has the highest contribution rate, with rates of 61%, 56%,
and 36% for sites A, B, and C, respectively. There is an urgent need to study the vibration
and noise reduction in concrete bridge decks.

The following sites were established in the software to obtain the total sound pressure
level distribution of the medium- and high-frequency noise radiation at the point: The
structural spatial radiation noise is symmetrically distributed along the center line of the
bridge when subjected to a unidirectional traffic load. The sound pressure level of the
structure noise is lower on the outside of the bottom plate and abdominal plate compared to
above the top plate. The radiation noise of the bridge structure demonstrates the properties
of cylindrical propagation in the far region, with a lower rate of attenuation in the far field
compared to the near field. Overall sound pressure level at medium- and high- frequency
field points is shown in Figure 22.



Buildings 2024, 14, 2509 19 of 21Buildings 2024, 14, x FOR PEER REVIEW 20 of 22 
 

Base 
plate

Top 
plate

Abdominal 
plate

0

10

20

30

40

50

60

70

C
on

tri
bu

tio
n 

(%
)

Types of bridge plates

 

Field points C

 
Field points A

 Field points B

 
Figure 21. Noise contribution of the plate at the medium–high-frequency field point. 

The following sites were established in the software to obtain the total sound pres-
sure level distribution of the medium- and high-frequency noise radiation at the point: 
The structural spatial radiation noise is symmetrically distributed along the center line of 
the bridge when subjected to a unidirectional traffic load. The sound pressure level of the 
structure noise is lower on the outside of the bottom plate and abdominal plate compared 
to above the top plate. The radiation noise of the bridge structure demonstrates the prop-
erties of cylindrical propagation in the far region, with a lower rate of attenuation in the 
far field compared to the near field. Overall sound pressure level at medium- and high- 
frequency field points is shown in Figure 22. 

85dB

86dB

86dB

85dB

88dB

88dB

88dB

87dB

90dB

90dB

91dB

89dB

92dB

95dB

93dB

91dB

90dB

90dB

90dB

89dB

85dB

86dB

86dB

85dB

94dB

98dB

95dB

93dB
 

Figure 22. Overall sound pressure level at medium- and high-frequency field points. 

5. Conclusions 
This paper examines the vibration and noise radiation characteristics of high-speed 

railway steel–concrete composite box girder bridges. The investigation is conducted in 
detail, considering both the theoretical background and numerical simulation. The scien-
tific findings and legislation can be summarized as follows: 
(1) By employing a time stepping ratio of 50, it is possible to conduct a coupled analysis 

of vehicle–track–bridge vibrations. This approach effectively enhances calculation ef-
ficiency and reduces the size of result files, while maintaining the results’ accuracy 
within a range of 100 Hz. 

(2) The results of the simulation indicate that the concrete roof bears the direct load from 
the train and is the primary source of noise radiation at each acoustic field point, 
particularly for medium- and high-frequency noise. The concrete roof in this study 
contributes significantly, with an average contribution of 50%, to the three acoustic 
field points. Comparing the noise radiation efficiency of concrete and steel structures 

Figure 21. Noise contribution of the plate at the medium–high-frequency field point.

Buildings 2024, 14, x FOR PEER REVIEW 20 of 22 
 

Base 
plate

Top 
plate

Abdominal 
plate

0

10

20

30

40

50

60

70

C
on

tri
bu

tio
n 

(%
)

Types of bridge plates

 

Field points C

 
Field points A

 Field points B

 
Figure 21. Noise contribution of the plate at the medium–high-frequency field point. 

The following sites were established in the software to obtain the total sound pres-
sure level distribution of the medium- and high-frequency noise radiation at the point: 
The structural spatial radiation noise is symmetrically distributed along the center line of 
the bridge when subjected to a unidirectional traffic load. The sound pressure level of the 
structure noise is lower on the outside of the bottom plate and abdominal plate compared 
to above the top plate. The radiation noise of the bridge structure demonstrates the prop-
erties of cylindrical propagation in the far region, with a lower rate of attenuation in the 
far field compared to the near field. Overall sound pressure level at medium- and high- 
frequency field points is shown in Figure 22. 

85dB

86dB

86dB

85dB

88dB

88dB

88dB

87dB

90dB

90dB

91dB

89dB

92dB

95dB

93dB

91dB

90dB

90dB

90dB

89dB

85dB

86dB

86dB

85dB

94dB

98dB

95dB

93dB
 

Figure 22. Overall sound pressure level at medium- and high-frequency field points. 

5. Conclusions 
This paper examines the vibration and noise radiation characteristics of high-speed 

railway steel–concrete composite box girder bridges. The investigation is conducted in 
detail, considering both the theoretical background and numerical simulation. The scien-
tific findings and legislation can be summarized as follows: 
(1) By employing a time stepping ratio of 50, it is possible to conduct a coupled analysis 

of vehicle–track–bridge vibrations. This approach effectively enhances calculation ef-
ficiency and reduces the size of result files, while maintaining the results’ accuracy 
within a range of 100 Hz. 

(2) The results of the simulation indicate that the concrete roof bears the direct load from 
the train and is the primary source of noise radiation at each acoustic field point, 
particularly for medium- and high-frequency noise. The concrete roof in this study 
contributes significantly, with an average contribution of 50%, to the three acoustic 
field points. Comparing the noise radiation efficiency of concrete and steel structures 

Figure 22. Overall sound pressure level at medium- and high-frequency field points.

5. Conclusions

This paper examines the vibration and noise radiation characteristics of high-speed
railway steel–concrete composite box girder bridges. The investigation is conducted in
detail, considering both the theoretical background and numerical simulation. The scientific
findings and legislation can be summarized as follows:

(1) By employing a time stepping ratio of 50, it is possible to conduct a coupled analysis
of vehicle–track–bridge vibrations. This approach effectively enhances calculation
efficiency and reduces the size of result files, while maintaining the results’ accuracy
within a range of 100 Hz.

(2) The results of the simulation indicate that the concrete roof bears the direct load from
the train and is the primary source of noise radiation at each acoustic field point,
particularly for medium- and high-frequency noise. The concrete roof in this study
contributes significantly, with an average contribution of 50%, to the three acoustic
field points. Comparing the noise radiation efficiency of concrete and steel structures
reveals that in the medium-frequency range the concrete slab has a higher sound
radiation efficiency than the steel structure slab. However, in the high-frequency
range the steel structure has a higher sound radiation efficiency than the concrete slab.

In addition to the above conclusions, the following issues require further research
in the future: The vibration response of the real bridge needs to be measured for further
validation of the self-programmed vehicle–rail–bridge program in this paper. The vehicle–
rail–bridge coupling model established in this paper does not take into account the influence
of wheel–rail creep–slip force on the results; there is also a need to expand the degrees
of freedom of the rail unit used and to consider the lateral vibration of each part of the
vehicle as a degree of freedom. As the number of degrees of freedom increases, it may
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become challenging to find a suitable multiplier for different time-step loading to improve
computational efficiency.
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