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Abstract: With the rapid development of the photovoltaic industry, flexible photovoltaic supports are
increasingly widely used. Parameters such as the deflection, span, and cross-sectional dimensions
of cables are important factors affecting their mechanical and economic performance. Therefore, in
order to reduce steel consumption and cost and improve application value, it is crucial to design and
optimize their initial morphology. In this paper, the mechanical behavior of a single-cable structure
is introduced, and the simplified analytical formulations for internal force and displacement are
deduced based on the geometric nonlinear characteristics and small strain assumption of the flexible
photovoltaic supports. On this basis, the analytical expressions for the cable force and displacement of
a convex prestressed double-layer cable truss flexible photovoltaic support structure under a uniform
load are derived, and the correctness of the analytical formulations is verified by comparing the
values with the finite element analysis results. In order to reduce the construction costs of the flexible
photovoltaic support, a mathematical model for optimizing the initial structure’s morphology is
established according to the analytical formulations. The initial morphology of the double-layer cable
truss flexible photovoltaic support is optimized, and the optimization results of different deflection
deformation limits and whether the lower load-bearing cable is allowed to relax are compared. The
results indicate that the errors of the displacement formulation and cable force formulation, when
compared with the finite element results, are less than 3% and 4%, respectively, which verifies the
accuracy of the analytical formulations. By analyzing the cable force and displacement of the structure
under static action, it is suggested that the deflection limit of the double-layer cable truss structure
should be 1/100 of the single span. The lower load-bearing cables of the double-layer cable truss
flexible photovoltaic support are highly susceptible to relaxation under wind suction loads, and,
by comparing the optimization results, it is suggested that slack should be allowed in the lower
load-bearing cables for a better economic effect. When choosing the most economical structure
morphology, it is recommended that the total height of the mid-span struts should be 1/20~1/15 of
the single span. The analytical formulation and the mathematical model for the optimization of the
initial morphology proposed in this paper can provide certain theoretical references and bases for
the design of practical engineering projects and play an important role in promoting its application
and promotion.

Keywords: photovoltaic support; cable-suspended structure; analytical formulation; mathematical
model; morphological optimization

1. Introduction

Photovoltaic power generation has become an important source for the promotion
of low-carbon energy transition, with the rapid development of the global photovoltaic
industry. However, land plains with an excellent geology have been rapidly depleted.
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In order to ensure the sustainable development of this industry, the use of low-quality
land such as mountain steep slopes, sewage treatment plants, ponds, beaches, and the
land in the Gobi Desert has become inevitable. The traditional rigid photovoltaic supports
shown in Figure 1a are not suitable for a land type, with poor geological conditions brought
by the high flatness requirements of the site, the low utilization rate of the site’s space,
the uneven foundations, the large amount of steel required, and poor economic returns.
In recent years, a flexible photovoltaic support, which uses prestressed cables to fix and
support the photovoltaic module and which transmits the upper load to the foundation
through a substructure on both sides of the cable, has gradually received extensive attention
in the engineering field. An example of this is shown in Figure 1b. Compared to the
traditional fixed photovoltaic support, the flexible photovoltaic support shows unparalleled
superiority in large sites such as steep slopes in mountainous areas, barren slopes in the
Gobi Desert, and ponds; this is due to the ability of this structure to attain a flexible layout
over large areas, as well as requiring a low level of steel consumption and having good
site adaptability. In addition, the characteristics of the secondary utilization of the space
below the structure are in line with the efficient energy utilization strategies represented
by fishery–photovoltaic complementarity and agriculture–photovoltaic complementarity,
conducive to the application of flexible photovoltaic supports.
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The flexible photovoltaic support structure consists of two parts: the flexible cable
system and the lower support system. The flexible cable system is composed of a load-
bearing cable, a stability cable, a wind-resistant cable, a ground anchor towing structure,
a strut-connecting load-bearing cable with a stability cable, a photovoltaic module, and a
module clamp. The lower support system is composed of a foundation, a steel column,
a crossbeam, column bracing, and a diagonal-bracing or stay cable. Depending on the
structure of their prestressed cables, flexible photovoltaic supports can be categorized into
the single-layer suspension cable type and the double-layer cable truss type. The cable
truss flexible photovoltaic support (CTFPS) is mainly composed of load-bearing cables,
stability cables, and struts, with a higher overall stiffness which significantly reduces the
deformation of the structure under the wind load compared to single-layer suspension
cable structures.

The research on photovoltaic supports mainly focuses on two aspects: one is static per-
formance and the other is wind vibration response analysis. In terms of static performance
research, Jiang et al. [1] derived the law of cable force increment and cable displacement
due to a change in suspension in an equilibrium state under a uniform load based on the
energy principle. Ding et al. [2] conducted a detailed study on the failure mode and bearing
capacity of the new cable-supported photovoltaic system; they proposed a design method
based on a limit state. The results showed that the structure has a strong bearing capacity;
cable failure and triangular bracket failure are the two main modes of primary structure
failure, and the sectional area of the cable is the most critical factor in terms of affecting the
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bearing capacity. Desai et al. [3] proposed a stiffness matrix of a three-node parabolic cable
element to analyze the geometric nonlinearity of cable-supported structures; this stiffness
matrix can effectively describe the deformation characteristics of cable-supported structures.
Bartholet et al. [4] developed a cable-supported photovoltaic structure that tracks sunlight
and demonstrated its construction feasibility. Li et al. [5] conducted a fluctuating-wind
dynamic time–history analysis and an equivalent static analysis on structures based on
different design parameters in order to study the force and deformation of single-layer
cable-suspended flexible photovoltaic support structures. The analysis results showed that
the initial prestress of cables could significantly increase the structural stiffness and change
the structural dynamic characteristics of the structures, and the span was the main factor
affecting the structural deformation and gust factor. Zhang et al. [6] calculated the cable
force and displacement of the flexible photovoltaic supports under wind pressure and
wind suction load and analyzed the influence of the initial tension and vector height of the
cable on the cable force and displacement. The results showed that the load-bearing cables
would relax under wind suction load, and the load was mainly born by the stability cables;
meanwhile, the load was born jointly by the stability cables and the load-bearing cables
under wind pressure load. However, the influence of the initial tension of the load-bearing
cables on the displacement of the cable truss was more obvious, and the vector height of
the stability cables could effectively reduce the displacement under wind suction load. Du
et al. [7] proposed three new flexible photovoltaic supports, studied the methods of load
and deformation limit of the three flexible photovoltaic supports, and analyzed the vertical
deflection, cable force, and sectional stress. The results indicated that the deflection limit
values of the main and secondary cable of photovoltaic supports with flexible suspension
cable structures were L/150 and L/50, respectively. Yuan et al. [8] used ABAQUS16.0 to
conduct an analysis of static performance, dynamic characteristics, dynamic response, and
gust factor of the double-layer cable-suspended flexible photovoltaic supports structure,
and investigated the influence of the span, the spacing of transverse connecting system,
and deflection limit on structural performance. The results showed that the wind vibra-
tion response of the structure increased with the increase in the span and the mid-span
deflection; the upper cable force increased with the increase in the transverse connection
distance; the increase in the upper cable prestress could reduce the dynamic response of
the structure; meanwhile, the increase in the lower cable prestress lead to the increase in
the wind vibration response of the structure. He et al. [9] established a finite element model
of a double-layer cable truss photovoltaic support, and a conducted modal analysis and a
static characteristics study on the inverted arch model; they concluded that the torsional
stiffness and bearing capacity of this structure were significantly improved compared
with a single-layer flexible photovoltaic support. Furthermore, the influences of support
arrangement spacing, photovoltaic module inclination angle, initial tension, and cable
diameter on the structural characteristics were further studied. Shen et al. [10] designed
a fixed and adjustable photovoltaic support based on the actual photovoltaic substation
project, proposed an innovative optimization design by comparing the advantages and
disadvantages with existing supports, and analyzed the mechanical behavior of the sup-
port to test the rationality. Kilikevicius et al. [11] studied the dynamic load of photovoltaic
modules on both the theoretical and experimental aspects, and designed a dynamic load
test bench to apply cyclic dynamic load excitation to photovoltaic modules. The tests used
excitation of no more than 7 mm amplitude and frequencies ranging from 0 to 40 Hz, and
frequency-sweep power generation is used to simulate different weather conditions. The
experimental and theoretical responses of photovoltaic modules under different weather
conditions show that the evaluation method can be successfully applied to the design and
mechanical response analysis of photovoltaic modules. Bao et al. [12] obtained the dynamic
characteristics of the tracking photovoltaic support system under different inclination
angles through field modal tests, and found that three torsional modes in the frequency
range of 2.9–5.0 Hz, accompanied by a small damping rate ranging from 1.07 to 2.99%; they
proposed a finite element analysis method for the tracking photovoltaic support system,
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which obtained four torsional modes in a frequency range of 2.8–7.0 Hz. Tang et al. [13]
conducted simulation calculations for different forms of flexible photovoltaic support to
compare the mechanical characteristics of three horizontal load-bearing components, and
studied the influence of changes in the inclination angle θ between horizontal load-bearing
components and the ground on structural mechanical behavior.

In terms of wind vibration response analysis, Chen et al. [14] provided a comprehen-
sive review of the latest research on the aerodynamic characteristics and wind responses
of flexible photovoltaic systems. They used physical and numerical simulation tools to
compare the effects of parameters such as spacing ratio, wind attack angle, tilt, and position,
and recorded the dynamic responses including buffeting-, flutter-, and vortex-induced
vibration. Xu et al. [15] conducted aeroelastic wind tunnel tests and rigid model wind
tunnel tests on a flexible photovoltaic system; the characteristics of wind vibration were
studied, and the influence of several factors on displacement response and aerodynamic
damping were analyzed. Liu et al. [16] investigated the wind vibration response and
critical wind speed of a 33 m span flexible support structure based on the wind tunnel
test of an elastic model, and examined the effect of three stability cables on improving the
critical wind speed of the flexible support structure. Li et al. [17] conducted wind tests on
cable-supported photovoltaic structures, studied the wind load response of photovoltaic
arrays with different lengths and widths, and proposed wind load reduction factors for
different array areas considering the wind shielding effect of upstream modules. Moreover,
the gust load factor of photovoltaic arrays was obtained through numerical simulation
and equivalent static analysis of wind-induced vibration. Abiola-Ogedengbe et al. [18]
and Jubayer et al. [19] investigated the wind pressure distribution of a single photovoltaic
module through wind tunnel tests and numerical simulations, respectively. They found
that wind direction angle and photovoltaic module inclination angle are the main factors
affecting surface wind load and determined the wind direction angle of a photovoltaic
module subjected to the maximum lift and the maximum overturning moment. Davenport
et al. [20] took the lead in introducing the a theory of random vibration, established the
theoretical framework for structure vibration response analysis, and simplified a complex
dynamic analysis into a static analysis by using the concept of gust load factor (GLF), thus
pioneering the theoretical study of equivalent static wind load. Tamura et al. [21] and
Kim et al. [22] investigated the vibration characteristics of single-layer flexible photovoltaic
systems through wind tunnel tests; the results indicated that the structural displacement
response of wind-induced vibration was closely related to the cable sag-to-span ratio, wind
speed, and wind direction angle. In addition, the research demonstrated that fluctuating
displacement is proportional to the square of the mean wind speed; this holds for all wind
direction angles in boundary layer flow. Tan et al. [23] established a model of a row of
three-span single-layer prestressed cables photovoltaic support, investigated the wind
vibration response of the cable support by performing time–history analysis on the support
subjected to fluctuating wind loads, and compared them with the displacements under
static loads. The results indicated that the single-layer suspension cable support has larger
vertical displacement and cable force under fluctuating wind load.

Scholars at home and abroad have also performed extensive research on the design op-
timization of photovoltaic supports and cable truss structures. Finotto et al. [24] proposed
a “Hybrid Fuzzy Genetic System Algorithm” and compared the results of this optimization
with those of a genetic algorithm. The results showed that the hybrid genetic optimization
system greatly reduces iterations of the genetic algorithm and showed an advantage in
minimizing the structural self-weight. Ma et al. [25] investigated the minimum mass de-
sign problem of a cable truss structure subjected to concentrated vertical loads in a given
span by considering both loading and unloading conditions, proposed a new topology
and configuration of the cable truss, and parameterized it with several variables. They
optimized the topology and structure of the cable truss by using constrained nonlinear
optimization of structural parameters and added the roof and nodes mass as penalty terms
to the total mass. The efficiency and accuracy of the method were verified by numerical
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examples. Barbon et al. [26] proposed a method to estimate the optimal distribution of
photovoltaic modules on a fixed inclination angle using the open-source QGIS, which
took the variations in the local cloud cover distribution into account, and the optimization
process was conducted by calculating the shadows between the photovoltaic modules
using a filling algorithm. In the research, different support configurations and inclination
angles were considered to adapt to the irregular shape of the land, and wind loads, snow
loads, structural weights, photovoltaic module weights, and their combinations were cal-
culated. Li et al. [27] proposed a topology optimization method for a prestressed cable
truss structure that considers geometric nonlinearities and large deformation kinemat-
ics theory, which fully considered the geometric nonlinearities caused by external loads
and prestresses. In order to consider the effect of prestress on the overall stiffness of the
structure, the prestress was rebalanced, the objective function of the prestress corrected
flexibility was constructed, the cable truss structure was equated to a specific two-phase
material structure, and the material interpolation was realized by the baseline discrete
material optimization class method. The sensitivity analysis of the accompanying objective
function was carried out and the optimization problem was solved by a gradient-based
algorithm. Lou et al. [28] developed a MATLAB code to simulate fluctuating wind load
time history and performed structural modeling to evaluate safety performance under
extreme wind conditions, exploring critical wind speeds associated with different spans
and prestress within the system. The results showed that the mid-span displacements and
axial forces of wind-resistant cables were greater under wind pressure conditions than
under wind suction conditions; the wind-induced vibration coefficients suggested ranged
from 1.5 to 2.52; the introduction of support beams in the mid-span was the most effective
measure to mitigate wind-induced vibration responses; the installation of stability cables
at the midspan significantly reduced the wind-induced vibration responses under wind
suction loads. Wang et al. [29] described the design calculation method and process of the
fixed photovoltaic supports by using SAP2000v18. Li et al. [30] proposed an equivalent
equilibrium force model, EEFM, for cable truss structures, where the cable truss structure
was divided into upper and lower cables with equivalent nodal forces, and the geometrical
reasonableness could be easily assessed from the equivalent nodal force relationship; the
self-stressing mode with reasonable geometry was obtained based on the geometrical topol-
ogy of the two cables and the equilibrium equations. For geometrically irrational structures,
the nodal coordinates of one cable were corrected according to the nodal coordinates of
the other cable. The accuracy and effectiveness of the method were verified by several
examples, and the method could be used in shape design, geometry correction, and force
finding. Barbon et al. [31] proposed an optimization method that considered the most
important design variables for uniaxial photovoltaic supports including irregular land
shape, size, and configuration of the support, spacing, and duty cycle, and developed
equations for determining the optimal spacing and duty cycle. They also proposed a filling
algorithm that took irregular terrain and possible configurations of the installed system into
account. The results showed that the proposed method optimized photovoltaic plants with
uniaxial solar supports and provided reliable results in reasonable computation time. Chen
et al. [32] derived analytical formulations for the deformation and cable forces of cable
truss pedestrian bridge under full-span live load and half-span live load, and verified their
reliability and accuracy by comparing with finite element analysis. Through parametric
studies, the cable truss bridge was found to have several novel structural features different
from those of traditional suspension bridges, and the bearing range of the cable truss bridge
was discussed through material usage analysis. In summary, existing studies are mainly
based on the influence of structural parameter changes on the structural performance in the
design and optimization of cable trusses, with little attention to the economic performance
of the structure and lack of discussion on the economy, and most of the parametric analyses
are based on the comparison of finite element analysis, which is lack of the support of
corresponding theoretical formulations.
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The flexible photovoltaic support structure has no stiffness and an indeterminate
shape before prestressing, and it must be provided with a certain shape by prestressing for
withstanding the external loads. Under the given boundary conditions, the distribution
and magnitude of prestressing are interrelated with the initial morphology of structure.
Therefore, the initial geometric position and initial prestresses of the load-bearing cable and
stability cable are crucial for the design of the flexible photovoltaic support structure. For
the flexible photovoltaic support structure, the evaluation criteria of structural performance
should be established according to its working characteristics, and its “shape” and “state”
under prestress and load should be analyzed and compared, so as to obtain the optimal
initial state under the premise of economy and functional requirements. Finally, the results
of the morphological optimization of the flexible photovoltaic support structure are verified
to ensure the accuracy and satisfaction of parameter optimization.

In summary, the research on flexible photovoltaic support structures is still in infancy
and mainly focuses on the above two aspects, and there are still substantial problems to
be researched. One of them is to optimize the initial morphology under the premise of
economy and requirements as much as possible for the reduction in steel consumption and
cost. In the initial state, the rise-to-span ratio of stability cable and the sag-to-span ratio
of the load-bearing cable are significant geometric parameters affecting the performance
of convex prestressed cable truss structures. For flexible photovoltaic supports, previous
studies are mainly based on the dynamic analysis of existing morphology, including
wind vibration response analysis, wind load analysis and wind tunnel tests, etc., but
little attention has been paid to the initial structural design and optimization of flexible
photovoltaic supports, which is not only related to the static mechanical behavior and
cost, but also related to the dynamic response of the structure. Therefore, the initial
structure design and optimization is the basis of dynamic response analysis, and it is
necessary to study some key problems in the initial structure design of flexible photovoltaic
supports. Although domestic and foreign scholars have conducted in-depth studies on
the morphology and performance of cable trusses based on the single-cable theory, these
studies are mostly based on classical theories, whose expressions are very cumbersome and
difficult to directly apply to the conceptual design of the structure at the initial stage, and
relevant specifications such as China’s “Cable structure Technical Regulations” (JGJ257-
2012) [33] have not given clear provisions on the tension sag-to-span ratio of flexible
photovoltaic supports. In order to resolve this problem, this paper analyzes the morphology
and performance of convex prestressed CTFPS structures under uniform load along the
span direction based on the single-cable theory, refines concise analytical formulations,
provides suggested values of the flexural deformation limit, the deflection-to-span ratio,
and the sag-to-span ratio; this provides a design basis for the conceptual design of flexible
photovoltaic support structure, and a mathematical optimization model was established
based on the analytical formulations, which can be used to optimize the initial morphology
in the structural design stage. The analytical formulation and the mathematical model
for the optimization of the initial morphology proposed in this paper can provide certain
theoretical references and bases for the design of practical engineering projects and play an
important role in promoting its application and promotion.

2. The Relationship between the Force and the Geometric Morphology of the
Single-Cable Structure
2.1. Basic Assumption

The basic component of a cable-suspended structure is a single cable, and the following
assumptions are introduced when the mechanical behavior of a single cable is deduced
according to the relationship between the morphology and the force:

(1) The cable is ideally flexible, and can only be tensioned, not compressed or bent.
(2) The material properties of cables conform to Hooke’s law without considering plastic

deformation.
(3) The strain of cables under the upper load is small.
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2.2. Deformation Coordination Equation

Figure 2 is a schematic diagram of the deformation microelement of the cable structure.
The length of the cable is dx in the horizontal direction and dz in the vertical direction, and
when the microelement AB is deformed from the initial position I to position II, its strain is
as follows:

ε(x) =

√
(dx + du)2 + (dz + dw)2 −

√
dx2 + dz2

√
dx2 + dz2

(1)
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The strain of a single cable under the upper load is small; Taylor’s formula is used to
expand the square root in the above equation, and the first term of the trace is retained.
By neglecting (du/dx)2 since u is a higher-order infinitesimal compared to x, the above
equation can be simplified to Equation (2):

ε(x) =
du
dx + dz

dx
dw
dx + 1

2

(
dw
dx

)2

1 +
(

dz
dx

)2 (2)

In terms of the prestressed cable structure, since its prestress P is much larger than
the cable dead weight G, the cable can be regarded as a straight line in the initial state,
and the sag of any point on it is 0, i.e., z(x) = 0. The above equation can be simplified to
Equation (3):

ε(x) =
du
dx

+
1
2

(
dw
dx

)2
(3)

The cable is mainly subjected to vertical loads, so it is assumed that the horizontal
component of cable force at any point on the cable is H. Under the upper load, the bending
moment of the equivalent simply supported beam at any point along the span direction is
M(x). Then, there is the following equilibrium condition at any point on the cable:

H[z(x) + w(x)] = M(x) (4)

where z(x) is the initial morphology function of a cable, w(x) is the displacement function
of a cable under the upper load.

For the prestressed cable structure, if the initial morphology of a cable is assumed
to be a straight line, and the deformation of structure in its final morphology is noted as
wN(x), then the horizontal tension of cable is the nominal horizontal tension, and HN is
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used to represent the nominal horizontal tension of cable, as shown in Figure 3a. Then,
Equation (4) can be converted into Equation (5):

HNwN(x) = M(x) (5)
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If the axial stiffness of a cable is infinite, the elastic deformation of a cable can be
neglected, i.e., w(x) = 0, as shown in Figure 3b. Therefore, the horizontal tension of cable is
the rigid horizontal tension, and the rigid horizontal tension of cable is expressed in terms
of Hf; Equation (4) can be transformed into Equation (6):

H f z(x) = M(x) (6)

From Equation (6), it is clear that, if the initial condition and upper load of cable are
known, the rigid horizontal tension Hf can be directly calculated from the equilibrium
condition. According to the small strain assumption, the following equation holds for any
point of a cable:

ε(x) =
H

√
1 +

(
dz
dx

)2

EA
(7)

By substituting Equation (7) into Equation (2) and Equation (3), respectively, the
following two equations can be obtained:

H
EA

[
1 +

(
dz
dx

)2
] 3

2

=
du
dx

+
dz
dx

dw
dx

+
1
2

(
dw
dx

)2
(8)

HN
EA

=
du
dx

+
1
2

(
dwN
dx

)2
(9)

A structural morphology parameter ξ [34] is introduced as shown in Equation (10);
the deformation coordination equations of single-cable structure can be obtained by
integrating the above two equations along the horizontal axis x-direction, as shown
in Equations (11) and (12), which can be used to solve the forces and displacements of
cable structures.

ξ =
1
l

l∫
0

[
1 +

(
dz
dx

)2
]3

2
dx (10)

Hlξ
EA

=

l∫
0

[
dz
dx

dw
dx

+
1
2

(
dw
dx

)2
]

dx (11)
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HN l
EA

=
1
2

l∫
0

(
dwN
dx

)2
dx (12)

2.3. Analytical Formulations of Displacement and Cable Force

From Equation (4):

z(x) + w(x) =
M(x)

H
(13)

The cable morphology function is directly proportional to the bending moment of its
equivalent simply supported beam. When z(x) ̸= 0, w(x) = αz(x), then it can be assumed ac-
cording to the deformation characteristics of the cable structure; here, α is the displacement
coefficient. Therefore, the following two formulations can be obtained:

z(x) =
M(x)

H(1 + α)
(14)

w(x) =
αM(x)

H(1 + α)
(15)

Substituting Equations (14) and (15) into the deformation coordination Equation (11),
and substituting Equation (5) into Equation (12), the relationship between the cable force
and its upper load can be obtained:

Hlξ
EA

=
2α + α2

2H2(1 + α)2

l∫
0

[
dM(x)

dx

]2
dx (16)

HN l
EA

=
1

2H2
N

l∫
0

[
dM(x)

dx

]2
dx (17)

From Equation (17), it is clear that the nominal horizontal tension HN can be obtained;
in other words, when the upper load is known, the horizontal tension of cable caused by
the upper load can be solved directly by the following equation:

HN = 3

√√√√√EA
2l

l∫
0

[
dM(x)

dx

]2
dx (18)

Substituting Equation (6) into Equation (14):

H(1 + α) = H f (19)

Substituting Equations (19) and (17) into Equation (16), the following equation can
be obtained:

(α + 1)
(

α2 + 2α
)
=

H3
f ξ

H3
N

(20)

Converting the above equation from an equation about α to an equation about (α + 1),
α can be solved as:

α =

3

√
1 +

ξH3
f

H3
N
− 1

1 − 1

3 3

√√√√(1+
ξH3

f
H3

N

)2

(21)
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According to Equations (5) and (6), the following equation is valid for any point on
the cable structure:

H f

HN
=

wN(x)
z(x)

(22)

Substituting Equation (22) into Equation (21):

α =

3

√
1 + ξw3

N(x)
z3(x) − 1

1 − 1

3 3

√(
1+

ξw3
N (x)

z3(x)

)2

(23)

If the displacement coefficient α << 1, in other words, if the deformation of the structure
under the upper load is very small compared to the initial sag, w(x)/z(x) << 1, then
Equation (21) can be simplified as:

α =
1
2

ξH3
f

H3
N

(24)

According to the result of displacement coefficient α, analytical equations of H and
w(x) can be obtained as follows:

H =
H f

1 + α
(25)

w(x) = αz(x) (26)

From the above analysis results, it can be seen that the solution of the cable force
and displacement can be converted into the solution of the displacement coefficient α,
which can be further decomposed into the solution of the two types of cable forces HN,
Hf, and structural morphology parameter ξ. When the span and load conditions of the
structure are known, the initial morphology function z(x) can be obtained; then, Hf can be
directly obtained from the equilibrium condition, i.e., Equation (6); finally, ξ and HN can
be obtained from Equations (10) and (18). z(x) and Hf reflect the initial morphology of the
cable structure, and HN reflects cross-sectional properties of the cable structure. The three
factors cover the main information of the cable structure, providing a simple conceptual
design method for the determination and optimization of the initial morphology of the
cable structure.

3. Analytical Formulation of Double-Layer Cable Flexible Photovoltaic Supports
3.1. Structural Morphology and Load Assumption

The following three states of cable structures are defined in flexible photovoltaic supports:

(1) Zero state: In this state, the cable only bears the initial prestress, without considering
the effect of elastic elongation of the cable-on-cable force. It is assumed that cable
force in this state is P.

(2) Initial equilibrium state: The initial state refers to the self-equilibrium state of structure
under prestress and dead weight. Assuming that the change in the cable length of the
initial state from the zero state is ∆s, and the cable force in this state is H0, through
Hooke’s law, it can be deduced that H0 = P +

(
∆s
l

)
EA.

(3) The load equilibrium state, i.e., the final state, refers to the equilibrium state of
structure under the external loads, assuming that the cable force in this state is H.

The morphology of the cable depends on the external loads, so the morphology of a
single cable can be determined by the equilibrium condition. As shown in Figure 4, the
equilibrium curves of the initial state of the cable vary under different upper loads. If
the upper load is uniformly distributed along the span, then the cable morphology is a
parabola. If the upper load is uniformly distributed along the length of cable, then the
cable morphology is a catenary. Compared to the parabola, the use of a catenary to imitate
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the cable structure has higher accuracy, but this approach is also more computationally
cumbersome. In the case of the sag-to-span ratio f /l ≤ 1/10, the difference in cable force
and deformation is negligible, and the flexible photovoltaic support structure meets the
above requirement, so the cable can be calculated by using a parabola. A parabola is used
in the derivation of the cable length equation, and the cable length is calculated using
Equation (27), where Lc is the length of the cable and f 0 is the parabolic vector height.

s = Lc +
8 f 2

0
3Lc

(27)
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In fact, each photovoltaic module transmits the upper load to the cable in the form of
concentrated forces through four fixture bolts. It is found that, if the number of compart-
ments of the photovoltaic modules in cable length direction is greater than 3, the error of
the single cable deflection and cable force is less than 5%, which is calculated according
to the uniform distribution loads along the span compared with being a result calculated
according to the concentrated loads. Therefore, it can be assumed that the upper load of
the flexible photovoltaic support is uniformly distributed along the span, and the supports
at both ends of the cable are equal in height and no support displacement occurs.

3.2. Analytical Formulation of Displacement

Under the structural dead weight and prestress, the initial morphology of the cable
truss is shown in Figure 5. The elastic modulus of the stability cable and the load-bearing
cable are E1 and E2, respectively, and the sectional areas of the cable are A1 and A2,
respectively. The structure is divided into the upper and lower parts for stress analysis.

For the upper stability cable, the dead weight of the stability cable and photovoltaic
module is the load q0,1, which is uniformly distributed along the span; the concentrated
load on the stability cable is equivalent to the load qc, which is uniformly distributed along
the x-axis direction; the initial morphology of the stability cable is z1(x); the initial tension
is H1,0; the mid-span deflection of cable in the initial state is z1(l/2) = f 1. For the lower
load-bearing cable, the dead weight of the load-bearing cable and struts is the load q0,2
uniformly distributed along the span, and the concentrated load on the load-bearing cable is
equivalent to the load qc uniformly distributed along the x-axis, and the initial morphology
of load-bearing cable is z2(x), the initial tension is H2,0, and the mid-span deflection of cable
in the initial state is z2(l/2) = f 2.
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The following equations are for the stability cable and the load-bearing cable, respectively:

H1,0
d2z1

dx2 + qc − q0,1 = 0 (28)

H2,0
d2z2

dx2 + qc + q0,2 = 0 (29)

According to Equations (28) and (29), it can be obtained that:

H1,0
d2z1

dx2 − H2,0
d2z2

dx2 − q0,1 − q0,2 = 0 (30)

Similar to the single-cable structure, the initial state parameters of the prestressed
cable truss structure are recalculated according to Hooke’s law, the parabolic cable length
equation, and the equilibrium condition under prestressing. Assuming that the struts
between the stability cables and the load-bearing cables are absolutely rigid, i.e., the
deflection changes of the upper and lower cables are equal, H1,0, H2,0, f 1, and f 2 in the new
initial state are obtained by solving the nonlinear equations.

Under the load q uniformly distributed along the span direction, the balance diagram
of the cable truss is shown in Figure 6. The structure departs from the dotted line position
to the solid line position, assuming that the vertical displacement of the structure under
the upper load is w(x), and the mid-span displacement of w(x) is denoted as w0. The cable
force of the upper stability cable changes from H1,0 to H1, and the concentrated load on the
stability cable is equivalent to the load q′c, uniformly distributed along the x-axis, and the
mid-span deflection of the stability cable in load equilibrium state is f 1-w0. The cable force
of the lower load-bearing cable changes from H2,0 to H2, and the mid-span deflection of the
load-bearing cable in load equilibrium state is f 2 + w0.
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According to the single-cable theory, the equilibrium equation and deformation coor-
dination equation of stability cable and load-bearing cable in this state are, respectively:

H1

(
d2z1

dx2 − d2w
dx2

)
+ q′c − q0,1 − q = 0 (31)

H2

(
d2z2

dx2 +
d2w
dx2

)
+ q′c + q0,2 = 0 (32)

(H1 − H1,0)l
E1 A1

=

l∫
0

[
1
2

(
dw
dx

)2
− dz1

dx
dw
dx

]
dx (33)

(H2 − H2,0)l
E2 A2

=

l∫
0

[
1
2

(
dw
dx

)2
+

dz2

dx
dw
dx

]
dx (34)

The balance equation of the whole cable truss can be obtained from Equations (31) and (32):

H1

(
d2z1

dx2 − d2w
dx2

)
− H2

(
d2z2

dx2 +
d2w
dx2

)
− q0,1 − q0,2 − q = 0 (35)

By combining the equilibrium Equations (30) and (35) of the initial equilibrium state
and load equilibrium state, the second derivative of the vertical displacement w(x) of the
structure under load q can be obtained as follows:

d2w
dx2 =

(
H1

H1,0
− H2

H2,0

)
qc +

(
1 − H1

H1,0

)
q0,1 +

(
1 − H2

H2,0

)
q0,2 + q

H2 − H1
(36)

The horizontal component H1,0, H1, H2,0, and H2 of the cable forces of the stability
cable and the load-bearing cable in the initial and final states are independent of the
horizontal coordinate x; the loads q, q0,1, q0,2, and qc are uniformly distributed along the
span direction and they are independent of the horizontal coordinate x; it can be assumed
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that the displacement function w(x) is in the parabola form based on the upper loads and
the initial geometric conditions. Assuming that the mid-span deflection of the stability
cable and the mid-span deflection of the load-bearing cable in the initial state of the cable
truss structure are f 1 and f 2, respectively, the initial geometric conditions of the stability
cable and the load-bearing cable are as follows:

z1(x) =
4 f1

l2 x(l − x) (37)

z2(x) =
4 f2

l2 x(l − x) (38)

Substituting the above two equations into Equation (30):

8
l2 ( f2H2,0 − f1H1,0)− q0,1 − q0,2 = 0 (39)

According to Equations (36)–(38), the displacement function of cable truss under
uniform load q can be set as:

w(x) =
∣∣∣∣4w0

l2 x(l − x)
∣∣∣∣ (40)

By substituting Equations (37), (38) and (39) into Equations (33) and (34), respectively,
the following equations can be obtained:

(H1 − H1,0)l
E1 A1

=
8w2

0
3l

− 16 f1w0

3l
(41)

(H2 − H2,0)l
E2 A2

=
8w2

0
3l

+
16 f2w0

3l
(42)

By substituting Equations (39), (40), (41) and (42) into Equation (35), respectively, the
following equation can be obtained:

8
3l2 (E1 A1 + E2 A2)w3

0 +
8
l2 (E2 A2 f2 − E1 A1 f1)w2

0

+
[
(H1,0 + H2,0) +

16
3l2

(
E1 A1 f 2

1 + E2 A2 f 2
2
)]

w0 = ql2

8
(43)

It is very complicated to solve the unary cubic equation in Equation (43) with respect
to w0. Since the structural deformation is a small amount compared to the span l, the
quadratic and cubic terms of w0 in the above equation can be neglected and simplified by
denoting (E2A2f 2 − E1A1f 1) as β, (E1A1f 1

2 + E2A2f 2
2) as γ, and (H1,0 + H2,0) as H0:

w0 =
3ql4

128γ + 24H0l2 (44)

Calculations with higher accuracy can be obtained if only the cubic term of w0 is ignored:

w0 =

√
l4H0

2 + 256
9 γ2 + 32

3 H0l2γ + 4ql4β

16β
− l2H0

16β
− γ

3β
(45)

3.3. Analytical Formulation of Cable Force

By substituting w0 into the deformation coordination equation, i.e., Equations (41) and (42),
the cable forces H1 and H2 of stability cable and load-bearing cable under uniform load q
are obtained. In addition, H1 and H2 can also be calculated by means of unstressed length.
Taking the horizontal component H2 of the load-bearing cable force in the load equilibrium
state as an example, we will demonstrate here.

In the initial state, assuming that the cable force (prestress) of the load-bearing cable is
P2, the coefficient of thermal expansion of cable is α, and the mid-span deflection of the load-
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bearing cable in initial state is known to be f 2,0 as shown in Figure 7, then the unstressed
length of the load-bearing cable can be obtained by the parabolic length equation. The
unstressed length is as follows:

P2 = αE2 A2∆T

s0 = l +
8 f 2

2,0
3l − P2l

E2 A2
= l +

8 f 2
2,0

3l − αl∆T
(46)

where P2 is the prestress applied in the form of temperature, and ∆T is the temperature change.
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In the load equilibrium state, the mid-span deflection of the load-bearing cable is
f 2,0 + w0, which is denoted as f 2. At this condition, the morphology of the load-bearing
cable is a parabola, and the horizontal component of the cable force at any position is equal,
denoted as H2. The cable force at any position of the load-bearing cable in the final state
can be calculated from the morphology function z(x) of the final state and the horizontal
component H2 of the cable force. By integrating the elastic elongation of the cable caused
by the cable force in the span direction, the following equations can be obtained:

z(x) =
4 f2

l2 x(l − x)

∆s =
l∫

0

H2

E2 A2 cos2 θ
dx

(47)

where θ is the angle between the tangent line at any point within the load-bearing cable
and the x-axis in the positive direction.

Therefore, Equation (48) can be established according to the variation of load-bearing
cable length relative to unstressed cable length in the load equilibrium state as follows:

s = l + 8 f 2
2

3l
s − s0 = ∆s

(48)

According to the above equation, the horizontal component H2 of the cable force in
the final state of the load-bearing cable can be sorted out:

H2 =
E2 A2

[
8l2
(

f 2
2 − f 2

2,0

)
+ 3αl4∆T

]
3l4 + 16 f 2

2 (4l2 − 6l + 3)
(49)
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In the same way, the horizontal component H1 of the cable force in the final state of
the stability cable can be sorted out:

H1 =
E1 A1

[
8l2
(

f 2
1 − f 2

1,0

)
+ 3αl4∆T

]
3l4 + 16 f 2

1 (4l2 − 6l + 3)
(50)

4. The Finite Element Verification of Analytical Formulation
4.1. Finite Element Model

Figure 8 shows the cable truss flexible photovoltaic support structure with a span of
63 m; the diameters of stability cable and load-bearing cable are 19.3 mm and 28.6 mm,
respectively; the sectional areas are A1 = 0.000244 m2 and A2 = 0.000532 m2; the elastic
modulus is E = 1.95 × 1011 N/m2; the density is 7850 kg/m3; the coefficient of thermal
expansion is α = 1.2 × 10−5/◦C; the gravitational acceleration is 9.806 N/kg. The mass of
the photovoltaic module is distributed to each load-bearing cable about 13 kg/m according
to the structural span, and a rigid brace is arranged every meter between the stability cable
and the load-bearing cable.
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Figure 8. Visualization of 63 m span cable truss flexible photovoltaic support structure.

The stability cable arches upward in the initial state of the cable truss structure, and
the mid-span vector height is f 1 = 1.26 m; the mid-span sag of the load-bearing cable is
f2 = 2.52 m. Taking the mid-span sag of the load-bearing cable as the verification index,
the structural dead weight is converted into an equivalent line load q0 = 333.5 N/m on the
load-bearing cable. According to the actual working conditions, the vertical downward
variable load q1 = 800 N/m and vertical upward variable load q2 = 500 N/m are applied to
each upper stability cable, respectively. Under each variable load, the temperature increases
by 30 ◦C and decreases by 30 ◦C, respectively. The six load cases are shown in Table 1.

Table 1. Load cases.

Case Number Load Combination

1 Downward load q1
2 Downward load q1 and temperature effect (−30 ◦C)
3 Downward load q1 and temperature effect (+30 ◦C)
4 Upward load q2
5 Upward load q2 and temperature effect (−30 ◦C)
6 Upward load q2 and temperature effect (+30 ◦C)

In the structural finite element calculation model, Link180 is used for cable and
Beam188 is used for rigid brace. All other elements except cable and brace are killed, and
fixed constraints are set at both ends of the cable. First, the horizontal component of the
cable force of the stability cable is set in the analytical formulation, H1,0, and then the
prestress distribution of the stability cable and the load-bearing cable can be calculated
from the initial position function of cable. The prestress should ensure that no slack occurs
in both layers of cables under variable loads q1 and q2.
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4.2. Comparison of Finite Element Calculation Results

The nonlinear analysis of 63 m span cable truss structure is conducted, and the results
are compared with theoretical calculation results to verify the accuracy of the analytical
formulations. The displacement and cable force equation obtained in the previous chapter
are verified by taking the deformation of the mid-span and the horizontal component of
the cable force in the load equilibrium state as the verification indexes.

4.2.1. Displacement

The results of finite element calculation and analytical formulation calculation are
listed in Table 2.

Table 2. Comparison of displacement in mid-span between analytical and finite element results.

Structural
Response

Case
Number Analytical Result

Finite
Element
Result

Percentage
Difference

Mid-span
Displacement

w0/m

1
A −0.4934

−0.4508
9.45%

B −0.4570 1.36%
C −0.4504 −0.09%

2
A −0.4448

−0.4092
8.72%

B −0.4130 0.93%
C −0.4070 −0.53%

3
A −0.5404

−0.4949
9.19%

B −0.4990 0.83%
C −0.4918 −0.62%

4
A 0.3084

0.3218
−4.17%

B 0.3270 1.63%
C 0.3239 0.64%

5
A 0.3302

0.3395
−2.75%

B 0.3460 1.92%
C 0.3434 1.13%

6
A 0.2886

0.3024
−4.56%

B 0.3104 2.67%
C 0.3067 1.42%

Note: A, B, and C are the three accuracy solutions for analytical formulations, considering only the linear term,
considering the linear and quadratic terms, and considering all terms, respectively.

As can be seen from Table 2 and Figure 9, with the improvement of the theoretical
accuracy of the analytical solution, the gap between the structural mid-span deformation
calculated by the analytical formulation and the finite element results gradually decreases.
Compared with only considering the linear term, if the linear term and the quadratic term
are considered at the same time in the analytical formulation, then the accuracy of the
analytical solution can be greatly improved, so that the gap between them is controlled
within 3%. If all the terms are considered, then the error is less than 2%. In addition, cases
1, 2, and 3 are more sensitive to the accuracy of analytical solutions, and cases 4, 5, and 6
are less sensitive.
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4.2.2. Cable Force

The horizontal components H2 and H1 of the load-bearing and stability cable forces in
the load equilibrium state are calculated by substituting the three kinds of structural
mid-span displacements w0 with different analytical accuracies, seen in Table 2, into
Equations (49) and (50), respectively. The finite element results and the three accuracy
results for analytical formulations are listed in Table 3.

Table 3. Comparison of cable force between analytical and finite element results.

Structural
Response

Case
Number Analytical Result Finite Element

Result
Percentage
Difference

H1/kN

1
A 259.7

265.7
−2.24%

B 263.2 −0.93%
C 263.9 −0.69%

2
A 298.5

304.0
−1.80%

B 301.8 −0.74%
C 302.4 −0.54%

3
A 221.3

226.8
−2.41%

B 225.1 −0.77%
C 225.7 −0.47%

4
A 373.4

379.8
−1.66%

B 377.0 −0.73%
C 376.4 −0.89%

5
A 411.4

417.4
−1.44%

B 414.5 −0.71%
C 414.0 −0.83%

6
A 335.9

341.8
−1.73%

B 340.0 −0.52%
C 339.3 −0.73%

H2/kN

1
A 398.1

393.5
1.17%

B 384.2 −2.37%
C 381.7 −3.00%

2
A 415.3

414.3
0.24%

B 403.3 −2.65%
C 401.1 −3.19%

3
A 380.7

374.4
1.68%

B 364.6 −2.61%
C 361.8 −3.35%
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Table 3. Cont.

Structural
Response

Case
Number Analytical Result Finite Element

Result
Percentage
Difference

H2/kN

4
A 126.0

125.6
0.30%

B 120.5 −4.03%
C 121.4 −3.29%

5
A 156.1

157.6
−0.99%

B 151.5 −3.89%
C 152.3 −3.40%

6
A 95.3

94.1
1.32%

B 88.9 −5.52%
C 90.0 −4.35%

Note: A, B, and C in the table are the same as above.

It can be seen from Table 3 and Figure 10 that the cable force equation has excellent
accuracy. The stability cable force H1 is closer to the finite element result when the quadratic
and cubic terms are considered, and the load-bearing cable force H2 is closer to the finite
element result when only the linear term is considered. The stability cable force error can
be controlled within 1%, and the load-bearing cable force error can be controlled within
4%. When the initial and the final morphology of the cable truss structure is known, the
horizontal component of the cable force in the final state can be calculated directly according
to the prestress P in the initial state.
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5. Mathematical Model of Optimization of the Initial Morphology
5.1. Optimization Objective

In the design of the flexible photovoltaic support, the stability, bearing capacity, and
wind-resistant performance can be improved by optimizing the initial morphology of the
support structure, so as to improve the power generation efficiency and service life of the
photovoltaic module. According to the analytical formulation, it can be seen that there
are numerous design variables for the optimization of the structure’s morphology of the
flexible photovoltaic support, including the structure shape, cable section, prestress level,
etc. Therefore, it is still difficult to establish a comprehensive and overall optimization
objective function. According to the fully stressed design method, under the premise that
the deformation of the structure meets the deflection limit, the structural performance of
the cable should be maximized, i.e., the cross-sectional dimensions of the cable should
be reduced as much as possible to achieve the lightest weight. From the perspective of
engineering economy, the cable force not only directly determines the cable specifications,
but also indirectly affects the specifications selection of steel components connected with
the cable. In order to simplify the structural optimization design process, the morphological
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optimization problem of the flexible photovoltaic support structure was simplified to a
function problem with the single objective of reducing the cable force, some structural
design parameters other than the optimization variables were set as known, and the optimal
solution was obtained through the nonlinear programming method.

5.2. Optimization Variable

The CTFPS structure has three independent optimization variables, which are the
vector height f 1 of the stability cable in the initial state, the sag f 2 of the load-bearing cable
in the initial state, and the cable force H1,0 in the initial state. Based on the above opti-
mization objective, f 1 is set as a known quantity, f 2 and H1,0 are taken as the optimization
variables; the relationship between the optimization variables and optimization objectives
is established through constraint conditions, so as to obtain the minimum solution of the
sum of the upper and lower tension forces of the CTFPS structure under the condition that
the stability cable vector height is known, i.e., to achieve the final optimization objective.

5.3. Constraint Condition

There are three constraints for the optimization of the initial morphology of the CTFPS
structure:

(1) The maximum deformation of the structure meets the deflection control requirements.
(2) In the serviceability limit state, the lower cables of cable truss structure are allowed to

relax, while the upper cables are not allowed to relax.
(3) In the ultimate limit state, the cables meet the strength limit requirements.

5.4. Load Case

As shown in Table 4, the standard value of permanent action is G; the standard value
of snow load is Qsk; the standard value of wind pressure load is Q+

wk; the standard value of
wind suction load is Q−

wk; the heating effect is Q+
tk; the cooling effect is Q−

tk. SC-1 and SC-2
are the standard combined cases of the most unfavorable load in the serviceability limit
state, and DC-1 and DC-2 are the basic combined cases of the most unfavorable load in the
ultimate limit state.

Table 4. Control load cases.

Load Case Load Combination Control Index

SC-1 1.0G + 1.0P + 1.0Q+
wk + 0.7Qsk Down-warping deformation

SC-2 1.0G + 1.0P + 1.0Q−
wk + 0.6Q+

tk Up-warping deformation
DC-1 1.3G + 1.3P + 1.5Q+

wk + 1.05Qsk Cable stress (load-bearing cable)
DC-2 1.0G + 1.3P + 1.5Q−

wk + 0.9Q−
tk Cable stress (stability cable)

5.5. The Mathematical Model of Structural Optimization

Assume that the sectional areas of the stability cable and the bearing cable are A(1)
1

and A(1)
2 , respectively, where A(1)

1 is the total sectional area of the two stability cables. The

equivalent line load of the dead weight of the cable is q(1)c , and the equivalent line load
on the load-bearing cable converted by the dead weight of the photovoltaic module is qp,

so the equivalent line load of the structure dead weight is q(1)0 = q(1)c + qp. According to
Equation (43), it can be seen that the structural mid-span deflection is determined by the
variable loads, so the two standard combinations of variable loads are denoted as q1 and q2,
i.e., q1 = q+w + qs, q2 = q−w + q+t . The two basic combinations of variable loads are denoted
as q′1 and q′2, i.e., q′1 = 1.5q+w + 1.05qs, q′2 = 1.5q−w + 0.9q−t .

Since the structural optimization design can only be conducted when the load condi-
tions are clear, and the prestress as a special self-balancing load, its distributions are not
unique when the constraint conditions are met, so the prestress should be determined first
before the structural optimization design:
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(1) Firstly, the minimum prestress H1,0 and H2,0, satisfying the constraint conditions, are
determined according to the fact that the cable cannot relax under any standard load
combination. When the structure is subjected to a downward load q1, it is assumed
that the structural deformation reaches the maximum limit [∆]; at the same time,
the upper stability cables still need to have a certain amount of cable stress, i.e., the
minimum allowable stress, σ1,min. Equation (51) can be obtained by substituting them
into Equation (41). If the vector height f 1 in the initial state of the stability cable is
known, then H1,0,min are deterministic quantities. In the same way, the minimum
prestress H2,0,min of the lower load-bearing cable can be calculated when the structure
is subjected to the upward load q2.

H1,0,min = σ1,min A(1)
1 − 8[∆]([∆]−2 f1)EA(1)

1
3l2

H2,0,min = σ2,min A(1)
2 − 8[∆]([∆]−2 f2)EA(1)

2
3l2

(51)

The larger of q1 and q2 is the load condition under which the structure has the maxi-
mum deformation [∆]. We assume that q1 is the larger of the two values for the establish-
ment of the subsequent structural optimization model.

(2) According to the equilibrium conditions of the initial state, the following equation
can be established:

f2H2,0 = f1H1,0,min +
q(1)0 l2

8
(52)

By substituting the above equation into Equation (44), the initial sag f 2 of the load-
bearing cable can be calculated under variable load q1, when the deformation reaches the
maximum limit [∆], as shown in Equation (53). Under this condition, the deformation of
the structure is the largest and the stiffness is the weakest, so f 2 is the minimum possible
value under the condition that the deformation limit of the structure is met.

16EA(1)
2

3l2 f 3
2 +

(
H1,0,min +

16EA(1)
1 f 2

1
3l2 − q1l2

8[∆]

)
f2 + H1,0,min f1 +

q(1)0 l2

8
= 0 (53)

(3) Following the previous two steps, the initial morphology of the cable truss can be
obtained under the condition that the maximum deflection control index is met. If
the lower load-bearing cable is not allowed to relax in the serviceability limit state,
it is necessary to check whether the load-bearing cable force H2 meets the allowable
minimum stress requirements under the upward variable load q2. If it does not meet
the requirements, it is necessary to increase H2,0 and H1,0, correspondingly. Finally, the
bearing capacity of the stability cable and the load-bearing cable is checked. According
to Equation (43), the deformation of the structure under the basic combination q′1 and
q′2 is calculated, and the maximum cable force H′

2 of the load-bearing cable under the
load q′1 and the maximum cable force H′

1 of the stability cable under the load q′2 are
calculated according to the deformation. If both H′

1 and H′
2 do not exceed the design

bearing capacity corresponding to the selected cable size, the iteration is terminated.
Otherwise, the cable area is increased and the iterative solution is continued.

6. Example of Optimization of the Initial Morphology

According to the above optimization model, combined with a flexible photovoltaic
support project, the optimization of the initial morphology is carried out. A CTFPS structure
is buit: span l = 63 m; two standard combinations of variable loads, q1 = 1300 N/m
and q2 = −1100 N/m; two basic combinations of variable loads, q′1 = 2000 N/m and
q′2 = −1700 N/m. For the upper stability cable, it is not allowed to relax in serviceability
limit state, and 5% of the breaking force of the stability cable is taken as the minimum
allowable cable force. For the lower load-bearing cable, there are two cases to consider:
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the first case does not allow it to relax in serviceability limit state, 5% of the load-bearing
cable breaking force is taken as the minimum allowable cable force, and the structural
deflection limits are taken as l/250, l/200, l/150, and l/100, respectively; the second case
allows the load-bearing cable to relax under the wind suction load, the single-layer cable
theory is used to calculate the upper layer of the stability cable, the downward deflection
deformation limit of structure are taken as l/250, l/200, l/150, and l/100, and the upward
deflection deformation limit under the wind suction load was taken as l/30.

6.1. No Slack in Lower Load-Bearing Cable

It can be seen that q1 is the loading condition in which the maximum deformation [∆]
of the structure occurs, assuming that the vector height of the stability cable in the initial
equilibrium state f 1 = l/50 = 1.26 m. The four maximum allowable deformations of the
structure are taken, respectively, for structural optimization, and the final optimization
results of the structure under the four deflection limits are shown in Table 5. From the
results of the optimization, it can be seen that, as the deflection limit increases, the initial
sag f 2 of the load-bearing cable decreases significantly and the thickness of the structure
also decreases continuously. However, in order to meet the minimum allowable cable force
of the lower-bearing cable, the cable force in the initial equilibrium state is increasing, and
the specifications of the load-bearing cable are also increasing. Due to the existence of
the equilibrium relationship shown in Equation (52), in the initial equilibrium state of the
structure, the stability cable specification decreases as the deflection limit increases.

Table 5. Optimization results under the condition of no slack in the lower load-bearing cable.

Deflection Limit

Stability Cable Lower-Bearing Cable
Structural

Thickness H/mVector Height
f 1/m Specification Sag

f 2/m Specification

l/250

1.260

2 × D19.3 4.786 D21.8 6.046
l/200 2 × D19.3 3.095 D28.6 4.355
l/150 2 × D18.9 2.537 D28.6 3.797
l/100 2 × D17.8 1.710 2 × D21.8 2.970

6.2. Slackening in Lower Load-Bearing Cable

It can be seen that a larger specification of load-bearing cable is required to ensure that
the lower load-bearing cable always meets the constraints of the allowable minimum force
in the serviceability limit state from Table 5. In order to effectively reduce construction
costs, it is suggested to allow the lower load-bearing cables to relax in the serviceability
limit state.

If the lower bearing cable relaxes under wind suction load, the upward deflection
deformation ∆2 of the upper stability cable and the horizontal component H1 of the cable
force are calculated according to the single-cable theory. The ∆2 is set to l/30 according to the
deformation limit of the single-cable structure. The maximum allowable deformation [∆] of
the structure is taken as l/250, l/200, l/150, and l/100, respectively. The final optimization
results of the structure under the four deflection deformation limits are shown in Table 6.
In the literature [8], the results show that, under wind suction load, the load-bearing cables
will relax and fail, and the load is mainly born by the stability cables; under wind pressure
load, the load is born by the stability cables and the load-bearing cables together, but the
effect of the initial tension of the load-bearing cables on the displacement of the trusses
is more obvious, and the vector height of the stability cables can effectively reduce the
displacement of the trusses under the wind suction load. As can be seen from Table 6 and
Figure 11, with an increase in the deflection deformation limit value, the specifications
of the load-bearing cable still show an increasing trend, and their initial sag f 2 gradually
decreases; the cable length also shortens accordingly. However, if the lower load-bearing
cables are allowed to relax under wind suction load, the specifications of the cable can
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be effectively reduced, with comparison to ensure that the lower load-bearing cables are
always in a tense state under the serviceability limit state, which is mutually confirmed
with the research findings in [7]. The literature research results show that the deflection
tolerance value of the main cable and the secondary cable of the flexible cable-suspended
photovoltaic supports is recommended to be L/150 and L/50, respectively. Compared with
the research results of this paper, the increase in the deflection limit value will increase
the specification of load-bearing cables, but at the same time, it can effectively reduce the
thickness of the structure and the length of the cables. To summarize, it is recommended
that the deflection limit for the CTFPS structure should be 1/100 of the single span.

Table 6. Optimization results under condition of slackening in lower load-bearing cable.

Deflection Limit

Stability Cable Lower-Bearing Cable
Structural

Thickness H/mVector Height
f 1/m Specification Sag

f 2/m Specification

l/250

1.260

2 × D17.8 6.782 D17.8 8.042
l/200 2 × D17.8 5.265 D19.3 6.525
l/150 2 × D17.8 3.874 D21.8 5.134
l/100 2 × D17.8 2.137 D28.6 3.397
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6.3. Economic Discussion

The flexible photovoltaic support structure is extremely sensitive to economy; when
designing and selecting the photovoltaic support structure, it is necessary to minimize
material consumption under the premise of the strength and structure stability, so as
to reduce the overall project cost. For the CTFPS structure, the deflection value of the
structure is mostly controlled by pre-arching the upper cable. Table 7 shows the results of
optimizing the initial morphology of the structure by setting the pre-arched height f 1 of
five kinds of upper stability cables at equidistance between 0 and l/50, and allowing the
lower load-bearing cables to relax in the serviceability limit state.

It can be seen from Table 7 that increasing the structural thickness and the cable
prestress can reduce the deflection deformation of the structure; cable quality is mainly
affected by cable specifications, and is not sensitive to changes in structural thickness; the
pre-arch of the upper stability cable can effectively reduce the structural deflection, but can
also increase the total thickness of the structure; under the same cable specifications, the
greater the arch amount, the greater the total thickness of the structure.
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Table 7. Summary of economic optimization results.

Deflection Limit

Stability Cable Lower-Bearing Cable
Cable Mass

M/kgVector Height
f 1/m Specification Sag

f 2/m Specification

l/250

0

2 × D17.8

7.076

D17.8

286.86
0.315 7.048 286.67
0.630 6.990 286.65
0.945 6.902 286.64
1.260 6.782 286.62

l/200

0

2 × D17.8

5.877

D18.9

300.33
0.315 5.844 300.31
0.630 5.779 300.29
0.945 5.682 300.27
1.260 5.265 D19.3 313.12

l/150

0

2 × D17.8

4.237

D21.8

347.35
0.315 4.198 347.23
0.630 4.127 347.21
0.945 4.020 347.18
1.260 3.874 347.14

l/100

0

2 × D17.8

2.603

D28.6

456.64
0.315 2.554 456.61
0.630 2.466 456.57
0.945 2.332 456.51
1.260 2.137 456.45

7. Conclusions

(1) Based on the theory of cable structure design, the relationship between morphology
and internal force of single-cable structure is deduced, and the analytical method
for solving the internal force and displacement of CTFPS structure under uniform
load is provided. By comparing to the results of finite element analysis, the error of
displacement is less than 3%, and the error of the cable force is less than 4%, which
verifies the accuracy of the analytical formulations.

(2) So far, there is no relevant specification to stipulate a reasonable value range of
deflection deformation of flexible photovoltaic support, this paper establishes a finite
element analysis model of the flexible photovoltaic support structure and analyzes the
cable force and displacement under the static action. It is suggested that the deflection
deformation of the double-layer cable truss structure should be taken as 1/100 of the
single span.

(3) According to the analytical formulations, a mathematical model for optimizing the
initial morphology is proposed with the objective of reducing the construction cost of
flexible photovoltaic supports, which achieves the optimization objective of minimiz-
ing the cable force, i.e., minimizing the cable specification.

(4) For CTFPS structure, compared with ensuring that the lower load-bearing cable
is always in the tension state under serviceability limit state, allowing it to relax
under wind suction load can effectively reduce the cable specification. Therefore,
it is recommended that the lower load-bearing cable is allowed to relax during the
structural design.

(5) For CTFPS structures, the stability cables can be pre-arched to bring their mid-span
vector height up to the deflection deformation limits. With the increase in the pre-
stress of the load-bearing cable, the brace height required to maintain the structural
deformation limit decreases gradually, but the specification of the load-bearing cable
increases accordingly. Therefore, when choosing the most economical morphology, it
is necessary to comprehensively consider the cost of both steel structure and cables,
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and it is recommended that the total height of the mid-span should be between 1/20
and 1/15 of the single span of the structure.
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