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Abstract: The dynamic modulus of in-service asphalt pavements serves as a critical parameter for
the computation of residual life and the design of overlays. However, its acquisition is currently
limited to laboratory dynamic modulus testing using a limited number of core samples, necessitating
a reassessment of its representativeness. To facilitate the prediction of dynamic modulus design
parameters through Falling Weight Deflectometer (FWD) back-calculated modulus data, an integrated
approach encompassing FWD testing, modulus back-calculation, core sample dynamic modulus
testing, and asphalt DSR testing was employed to concurrently acquire dynamic modulus at identical
locations under varying temperatures and frequencies. Dynamic modulus prediction models for
in-service asphalt pavements were developed utilizing fundamental model deduction and gene
expression programming (GEP) techniques. The findings indicate that GEP exhibits superior efficacy
in the development of dynamic modulus prediction models. The dynamic modulus prediction
model developed can enhance both the precision and representativeness of asphalt pavement’s
dynamic modulus design parameters, as well as refine the accuracy of residual life estimations for
in-service asphalt pavements. Concurrently, the modulus derived from FWD back-calculation can
be transmuted into the dynamic modulus adhering to a uniform standard criterion, facilitating the
identification of problematic segments within the asphalt structural layer. This is of paramount
importance for the maintenance or reconstruction of in-service asphalt pavements.

Keywords: in-service asphalt pavement; dynamic modulus; prediction model; modulus back-calculation;
gene expression programming

1. Introduction

With the increasing number of reconstruction and expansion projects, there is a grow-
ing demand for in-service asphalt pavement life prediction and overlay design. The
dynamic modulus parameter characterizes the performance of asphalt pavement structure
in service and will be directly input into the calculation model. The accuracy of dynamic
modulus will directly affect the calculation accuracy of residual life and overlay thickness.
The dynamic modulus parameters are mainly obtained by core drilling and indoor testing.
However, the data sources for this method are not representative enough. For example,
the test results of a few core samples represent the structural layer parameters of tens of
kilometers. In addition, this method takes a long time and causes damage to the asphalt
pavement in service [1,2]. Although the dynamic modulus parameters of asphalt pave-
ment in service can be obtained by FWD modulus back-calculation, the temperature and
frequency parameters cannot be controlled during FWD detection, which is different from
the indoor test [3–5]. However, the dynamic model parameters that need to be input to
calculate the remaining life of asphalt pavement in service and the thickness of overlay are
obtained at 20 ◦C and 10 Hz. Therefore, the conventional inverse modulus results cannot
be used.
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For new asphalt pavement, the Witczak model or the improved Witczak model was
used by MEPDG to predict the dynamic modulus of the asphalt mixture [6,7]. Subsequently,
several researchers have also studied dynamic modulus prediction models, such as the
Hirsch model, the Al-Khateeb model [8], and the Global model [9]. The study of these
models has accurately predicted the dynamic modulus of asphalt mixture, allowing the
use of predictive models to obtain the dynamic modulus of asphalt mixture in new low-
grade roads by asphalt pavement design specifications [10,11]. However, predicting the
dynamic modulus of asphalt pavement in service is challenging due to the damage and
aging phenomena. Some researchers have found that the dynamic modulus predicted by
the Witczak model is larger than that measured in the laboratory under the action of asphalt
aging [12–14]. Bech and Irwin found that the changing trend in the modulus of asphalt
pavement was inconsistent under the combined action of aging and fatigue damage [15,16].

To predict the dynamic modulus of asphalt pavement in service, researchers modified
an existing model using field test data and achieved good results [17–21]. Seo proposed a
conversion factor for dynamic modulus prediction using FWD modulus back-calculation
and achieved dynamic modulus prediction using an undamaged dynamic modulus pre-
diction model [17]. However, the relevant characteristic indicators of the mixture must be
inputted, which requires conducting tests on the in-service asphalt pavement mixture be-
fore predicting the dynamic modulus. The prediction method can be relatively cumbersome.
Furthermore, the impact of thickness on the accuracy of FWD modulus back-calculation
has not been taken into account in the results. Additionally, the modulus back-calculation
of a single-layer structure is performed directly, and its accuracy is unknown. Solatifar
has collected dynamic modulus prediction models for all new road asphalt mixes. Then,
FWD test data are used to directly fit the model parameters, and then different dynamic
modulus prediction models of in-service asphalt pavement are constructed. Finally, the
optimal prediction model is selected by error analysis. The model still requires a large
number of mixing parameters, making it inconvenient to use [22–24]. However, the model
takes into account the effect of thickness on the accuracy of FWD back-calculation results.
The analysis is conducted on the entire asphalt structure layer, rather than on a single
asphalt layer.

Before using the existing dynamic modulus prediction model for asphalt pavement
in service, it is necessary to conduct testing. Once the index parameters, such as mixture
gradation and asphalt content, are obtained for the pavement in service, the dynamic
modulus at different temperatures and frequencies can be predicted using the FWD inverse
modulus. The process can be complex. Some prediction models do not take into account the
sensitivity of FWD back-calculation modulus to the thickness index of the structural layer.
Predicting the dynamic modulus for a single asphalt layer can result in a large deviation in
FWD inverse modulus results, which makes the prediction model unreliable. To predict
the remaining life and calculate the overlay thickness of in-service asphalt pavement,
it is necessary to combine the dynamic modulus of different asphalt layers to form the
dynamic modulus of the whole asphalt structural layer, even if the dynamic modulus of a
single structural layer is successfully predicted. Analyzing the dynamic modulus prediction
model of a single asphalt layer may be difficult and unnecessary for design purposes. In this
paper, the prediction model of dynamic modulus design parameters of in-service asphalt
pavement is studied based on the modulus back-calculation, which changes the present
situation of relying on complicated laboratory tests in the past. The prediction model takes
into account the fatigue damage and aging factors of asphalt pavement in service, and
realizes the dynamic modulus transformation under different parameters. Through this
study, it will be possible to quickly obtain a large number of dynamic modulus design
parameters under standard conditions, and greatly improve the representativeness and
accuracy of design parameters.
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2. Research Methods
2.1. Research Ideas

In order to conveniently obtain dynamic modulus parameters for asphalt pavement
design, FWD detection was carried out at 58 detection points at different temperatures and
then dynamic modulus data were calculated by modulus back-calculation.

The coring work was carried out for the testing locations, and the indoor dynamic
modulus test was conducted to obtain the dynamic modulus data at different temperatures
and frequencies. Combining the FWD back-calculated modulus data and the indoor
dynamic modulus data, a dynamic modulus prediction model was constructed by using
the basic model formula and GEP for fitting analysis. Eventually, the dynamic modulus
design parameters under standard temperature and frequency can be obtained through
FWD testing, which solves the dilemma that can only be obtained through coring in the past,
and greatly improves the representativeness of the dynamic modulus design parameters of
in-service asphalt pavements. The research idea is shown in Figure 1.
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2.2. Experimental Methods
2.2.1. Back-Calculation Modulus Database

The FWD test was conducted on in-service asphalt pavement at various temperatures,
and deflection basin data were obtained at the same point under different temperatures, as
shown in Figure 2. The FWD testing was conducted at each testing point using a minimum
of three temperatures, with each temperature being at least 5 ◦C apart.

According to Loulizi, the FWD loading time for asphalt structural layers with different
depths is 0.03 s, resulting in a loading frequency of 33 Hz in structural layers with different
depths [25,26]. The semi-sinusoidal period is defined as a complete loading mode in the
indoor dynamic modulus test regulations [27]. The frequency used for calculating the
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dynamic modulus of the FWD is 33 Hz. The frequency of the dynamic modulus for the
FWD back-calculation is fixed at 33 Hz.
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Figure 2. Schematic diagram of experimental method.

2.2.2. Laboratory Test Modulus Database

Following the completion of the FWD test, 15 detection points were selected for
coring. Subsequently, the indoor dynamic modulus test was conducted, as illustrated in
Figure 2. The dynamic modulus was obtained at different temperatures and frequencies.
The dynamic modulus prediction model was constructed based on the FWD modulus
back-calculation data and the indoor core modulus data.

2.3. Model Building Method
2.3.1. Theoretical Model Deduction Method

As the Witczak model is the most widely used and validated, this paper builds a
dynamic modulus prediction model for in-service asphalt pavement based on the Witczak
prediction model through mathematical deduction. The Witczak model comprises mix-
ture gradation, volume parameters, asphalt viscosity, and test frequency, as shown in
Equation (1). Among these, asphalt viscosity and test frequency have the most significant
impact on the dynamic modulus of the mixture. To enhance the model’s accuracy, it is
essential to obtain asphalt viscosity data in order to deduce the model. Dynamic shear
rheological tests were conducted on various types of bitumen in this paper to establish a
model for predicting complex viscosity.

log|E∗| = 3.750063 + 0.2932ρ200 − 0.001767(ρ200)
2

−0.00284ρ4 − 0.058097Va − 0.802208
( Vbe f f

Vbe f f +Va

)
+

3.871977−0.0021ρ4+0.003958ρ38−0.000017(ρ38)
2+0.005470ρ34

1+e(−0.603313−0.313351 log ( f )−0.393532 log (η))

(1)

where |E∗| is the dynamic shear modulus of asphalt (unit: psi). ρ200 is passed through #200
sieve (%). ρ4 is the accumulated sieve allowance on #4 sieve (%). Va is the porosity. Vbe f f
is the effective asphalt content. ρ38 is the accumulated sieve allowance on the #3/8 sieve.
ρ34 is the accumulated sieve allowance on #3/4 sieve. f is the frequency (unit: Hz). η is
asphalt viscosity (106 Poise).

2.3.2. Gene Expression Programming

Gene expression programming (GEP) was first proposed by Ferreira in 2001 as an
adaptive evolutionary algorithm based on genotype and phenotype [14,28,29]. GEP is a
combination and extension of genetic algorithms and genetic programming, also inspired
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by biological genetic mechanisms but introducing a more complex genetic algorithm-based
coding mechanism that contains not only genetic information (genotypes) but also the
forms in which this information is expressed (phenotypes). Unlike traditional intelligent
algorithms, GEP can directly provide explicit relational expressions between data during
data exploration [30,31]. For analysis methods such as neural networks, engineers may find
them inconvenient to use. However, GEP provides models directly, which can effectively
improve the accessibility of models. Therefore, in this paper, GEP is used to analyze the
data and develop a dynamic modulus prediction model for in-service asphalt pavements.

3. Experimental Results
3.1. FWD Modulus Back-Calculation

The FWD testing was conducted on the Guangzhou–Shenzhen Expressway. The
pavement structure is illustrated in Figure 3. The wheel track zone of the carriageway was
selected as the testing area, with the testing points spaced 50 m apart and clearly marked
with paint to ensure accurate positioning for each test. The test started at 8:00 a.m. The
FWD test was carried out every hour, with each test point ensuring at least three different
temperatures of the FWD test data to obtain different temperatures of the deflection basin
data. The FWD test parameters and results are shown in Table 1.
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Figure 3. Pavement structure (AC: Asphalt Concrete; ATB: Asphalt-Treated Base; CSM: Cement-
Stabilized Macadam; GM: Grading Macadam).

Table 1. FWD test parameters and results.

Item Value

FWD sensor position 0/20/30/60/90/120/150/180/210 cm

FWD load 50 kN

Diameter of FWD loading disk 300 mm

Number of data 206

Road surface temperature 31 ◦C–54 ◦C

Modulus back-calculation value 1122 MPa–9969 MPa

The average value of modulus back-calculation 3617 MPa

The thickness of the structural layer is a crucial factor that affects modulus back-
calculation. However, the current testing techniques are unable to obtain thickness data
for different asphalt structural layers [32,33]. To enhance the accuracy of modulus back-
calculation and reduce the impact of structural layer thickness, the current approach groups
similar structural layers [34]. For instance, all the asphalt structural layers are considered
as one layer, and all the semi-rigid base layers are considered as another. In the modulus
reverse calculation process, the Guangzhou–Shenzhen Expressway pavement structure
from the surface layer of SMA-13 to the base layer of ATB-30 is classified as the asphalt layer,
whose thickness is 36 cm. The semi-rigid base layer is a layer, whose thickness is 23 cm.
The crushed stone layer is a layer, whose thickness is 55 cm. The modulus back-calculation
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software used in this study was developed by the South China University of Technology. It
mainly employs neural network algorithms and is verified using data from the China Ring
Road Test Site. The software has been successfully applied in various reconstruction and
expansion projects in China, including Kaiyang, Yangmao, Maozhan, and the Shenzhen-
Shantou West Reconstruction and Expansion Project. The impact load of FWD is simplified
as a half-wave sinusoidal uniformly distributed load, as shown in Equation (2), with a load
radius of 15 cm. The dynamic modulus data at different temperatures were obtained by
the back-calculation of the FWD test data, and the results are presented in Table 1.

p(t) = pmax sin(
π

T
t) (2)

where p(t) is the load value of FWD. t is the loading time. pmax is the peak load value,
which is generally 0.7 MPa. T is the period of FWD impact load, which is 0.03 s.

The temperature recorded during the FWD testing represents the surface temperature
of the pavement. However, the modulus back-calculation applies to the entire asphalt struc-
tural layer. Therefore, it is necessary to convert the surface temperature of the pavement to
the central temperature of the asphalt layer. This paper utilizes the research findings from
the Jiangxi Province highway regarding temperature conversion (refer to Equation (3)). The
location of the dependent project is similar to this project, with comparable solar radiation
and sunshine time [35].

Td = Ts + (−0.486d − 0.0014d2 + 0.0006d3)× sin(0.311t + 72.48) (3)

where Td is the internal temperature of the pavement structure. Ts is pavement surface
temperature. d is the depth of the center point of the structural layer thickness. t is the test
time, such as 13:30 converted to 13.5.

3.2. Core Sample Dynamic Modulus Experiment

The field core sample was divided into two layers to carry out dynamic modulus tests
in accordance with the relevant requirements of the ‘Code for Design of Highway Asphalt
Pavement’ (JTG D50-2017, [36]). This was necessary because the standard thickness of the
asphalt structural layer is 36 cm, while the standard thickness of the dynamic modulus
test is 15 cm. The tests were conducted at the frequencies of 0.796 Hz, 1.592 Hz, 3.979 Hz,
5 Hz, 10 Hz, 25 Hz, and 33 Hz. The frequency of 33 Hz was used to verify the back-
calculation results of the FWD dynamic modulus. Therefore, the test temperature at this
frequency corresponded to the FWD test temperature at the core sample point. The test
temperatures for other frequencies were 10 ◦C, 20 ◦C, 40 ◦C, and 60 ◦C, respectively. After
obtaining the dynamic modulus data, the data for different horizons at the same point were
combined using Ullidtz’s compounding principle, as described in Equation (4) and shown
in Table 2 [37]. A total of 61 data points were obtained. The dynamic modulus test was
not successfully performed on some core samples under all the design temperature and
frequency conditions.

ECM = (
∑n

i=1 hi × 3
√

Ei

∑n
i=1 hi

)3 (4)

where ECM is the combined dynamic model parameter. hi is the height of each layer after
layering. Ei is the dynamic modulus of each layer after stratification.

Table 2. Composite results of dynamic modulus of core samples of in-service asphalt pavement.

Min/MPa Max/MPa Average/MPa

949 21,702 7324

Table 3 presents the difference between the modulus values derived from the FWD
back-calculation and those obtained from the indoor dynamic modulus testing. The mean
deviation between the dynamic modulus of back-calculation and the results of the indoor
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dynamic modulus testing registers at 14.5%. This deviation primarily arises due to the core
samples being maintained at a constant temperature during indoor testing, whereas the
temperature fluctuated with the road surface depth during the FWD testing process [38].
Additionally, the modulus obtained from back-calculation reflects the cumulative behavior
of all the asphalt structural layers. In contrast, for the indoor dynamic modulus assessment,
it is imperative to conduct evaluations at 15 cm intervals within the structural layers,
followed by a synthesis of dynamic modulus data to derive the comprehensive dynamic
modulus. There is also a certain degree of difference in the test state. The FWD back-
calculation is based on the full-scale test results, while the indoor dynamic modulus testing
is based on the small-size specimen of a single core sample, and the test results will be
different to a certain extent.

Table 3. Verification of back-calculation results of FWD modulus.

No. Modulus of Back-Calculation/MPa Modulus of Core Test/MPa Deviation/%

1 3527 3248 8.6

2 4891 5573 12.3

3 2956 2890 2.3

4 3576 3587 0.3

5 2379 2274 4.6

6 4673 5543 −15.7

7 5171 6513 −20.6

8 4832 4261 13.4

9 2651 3245 −18.3

10 3495 2877 21.5

11 2751 3259 −15.6

12 4125 5131 −19.6

13 3816 2924 30.5

14 2662 2303 15.6

15 3859 4782 −19.3

3.3. Asphalt Viscosity Test

The dynamic shear rheological experiments were conducted on 50# matrix asphalt,
70# matrix asphalt, and SBS-modified asphalt. Dynamic shear rheological viscosity data
were obtained at temperatures of 10 ◦C, 20 ◦C, 40 ◦C, and 60 ◦C. Test frequencies were set
at 0.796 Hz, 1.592 Hz, 3.979 Hz, 5 Hz, 10 Hz, and 25 Hz. The test results are depicted in
Figure 4.

To simplify the method for determining asphalt viscosity during the dynamic modulus
prediction of in-service asphalt pavements, a model incorporating asphalt viscosity, test
temperature, and frequency was established with reference to Equation (5). An asphalt
viscosity prediction model was proposed and calibrated with the test data. The fitting
results can be seen in Table 4.

log(η) = m1 +
m2

1 + e(m3 log(T)+m4 log( f )+m5)
(5)

where η is the viscosity of asphalt. m1, m2, m3, m4, and m5 are the fitting parameters. T is
the test temperature. f is the test frequency.
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Table 4. Fitting results of model parameters.

Asphalt m1 m2 m3 m4 m5 R2

50# 8.570 −6.239 −1.817 −1.451 2.166 0.81

70# 13.218 −11.238 −1.281 −0.995 0.631 0.83

SBS −0.309 6.495 3.085 0.299 −5.504 0.98

As the back-calculation method can only precisely determine the dynamic modulus of
the entire asphalt layer, it becomes imperative to integrate the asphalt viscosities of various
structural layers to establish a composite viscosity before developing the dynamic modulus
prediction model. In line with the composite dynamic modulus Equation (4), the composite
asphalt viscosity model was introduced, as delineated in Equation (6).

ηCM = (
∑n

i=1 hi × 3
√

ηi

∑n
i=1 hi

)3 (6)

where ηCM is the viscosity of asphalt after the combination of pavement structures. hi is
the thickness of each layer of the pavement structure. Ei is the viscosity of asphalt used in
each structural layer.

To determine the composite viscosity of asphalt across varying temperatures, it is
essential to translate the pavement surface temperature to the corresponding temperatures
at various depths. Given the pavement structure configuration and asphalt application on
the Guangzhou–Shenzhen Expressway, the pavement is stratified into layers of 4 cm (SBS),
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4 cm (50#), and 28 cm (70#), and the temperature at the midpoint of each structural layer
(2 cm, 6 cm, and 22 cm) is considered the representative value. To ascertain the internal
temperatures of the pavement structure, Equation (3) is employed for the conversion. When
integrated with the road surface temperature recorded during the FWD test, the asphalt
viscosity index is depicted in Table 5.

Table 5. Calculation results of composite viscosity.

Indicators Minimum Value Maximum Value Average

log(η) 2.633 2.854 2.726

4. Model Construction
4.1. Construction of Deduction Model

Equation (1) may be transformed into Equation (7). Parameters δ and α, representing
mixture gradation, asphalt volume, and porosity, are delineated in Equations (8) and (9).
In the prediction of the dynamic modulus of an operational asphalt pavement, these parame-
ters are presumed to be constant, and the data are utilized to establish the fitting parameters.

log E = δ +
α

1 + e(a log(η)+b log( f )+c)
(7)

δ = 3.750063 + 0.2932ρ200 − 0.001767(ρ200)
2

−0.00284ρ4 − 0.058097Va − 0.802208
( Vbe f f

Vbe f f +Va

) (8)

α = 3.871977 − 0.0021ρ4 + 0.003958ρ38 − 0.000017(ρ38)
2 + 0.005470ρ34 (9)

The in-service asphalt pavement modulus Ein has the following relationship to the
original pavement modulus E.

dj =
Ein
E

(10)

Equation (7) can be transformed into Equation (11).

log Ein = δ + log dj +
α

1 + e(a log(η)+b log( f )+c)
(11)

When utilizing FWD data for calculating the dynamic modulus of in-service asphalt
pavement, the relevant parameters are substituted into Equation (11). Equation (11) may
be re-expressed as Equation (12).

log EFWD = δ + log dj +
α

1 + e(a log(ηθ)+b log( fθ)+c)
(12)

In this context, ηθ refers to the asphalt viscosity, which is related to the internal
temperature of the pavement during the FWD test. fθ signifies the frequency at which the
FWD test is administered. Based on the outcomes of Loulizi’s investigations, the FWD
test frequency is consistently maintained at 33 Hz within the pavement structure [25].
Consequently, this constancy permits the simplification of Equation (12) to Equation (13).

log EFWD = δ + log dj +
α

1 + e(a log(ηθ)+cθ)
(13)

Equation (13) can be further converted to Equation (14).

δ + log dj = log EFWD − α

1 + e(a log(ηθ)+cθ)
(14)
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Upon substitution of Equation (14) into Equation (11), Equation (15) is consequently
obtained.

log Ein = log EFWD − α

1 + e(a log(ηθ)+cθ)
+

α

1 + e(a log(η)+b log( f )+c)
(15)

Dynamic modulus data at the same point, different temperatures, and different fre-
quencies are formed in the dynamic modulus database constructed above, so Ein and EFWD
can use dynamic modulus data of the same point and different parameters. log(ηθ) can
be calculated by composite viscosity directly, in which the temperature corresponding to
composite viscosity is the internal temperature of the pavement structure corresponding
to the data EFWD. log(η) can be calculated by composite viscosity directly, in which the
temperature corresponding to the composite viscosity is the internal temperature of the
pavement structure corresponding to the data Ein. Substitute the data into Equation (15),
the input parameters are shown in Table 6, and the fitting results are shown in Table 7,
Figure 5, and Equation (16).

Table 6. Input parameters.

Parameter Minimum Value Maximum Value Average

Ein, EFWD 1122 9969 3617

log(ηθ), log(η) 2.633 2.854 2.726

Table 7. Fitting results.

Root Mean Square Error (RMSE) The Sum of Squared Error (SSE) R-Squared (R2)

0.007 53.7 0.76
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Dynamic modulus data previously established for various temperatures and frequen-
cies at the specified test point enable the direct acquisition of parameters Ein and EFWD.
Since Ein and EFWD are data associated with temperature and frequency, respectively, the
number of fitting data can be effectively expanded by utilizing the correspondence of
data at different temperatures and frequencies when constructing the fitting data. This
can effectively improve the fitting effect. Parameters log(ηθ) and log(η), indicative of the
composite viscosity, can be ascertained post-asphalt extraction from operational asphalt
pavements, if it is available. Within this study, composite viscosity values derived from
Equation (5) are utilized for parameters log(ηθ) and log(η), representing the composite
viscosity at the internal temperature of the pavement structure aligned with the EFWD data,
while corresponding to the composite viscosity at the internal temperature in line with
the Ein data. Upon the substitution of the data into Equation (15), the input parameters
are presented in Table 6, and the fitting results are depicted in Table 7, accompanied by
Figure 5. The examination of Table 7 and Figure 5 indicates that the extrapolated model
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has an R-squared (R2) value of 0.76. A small number of points exhibit deviation from the
empirical data.

The deduction model is obtained after the deduction of the basic model. Although
the basic model has been verified by a large number of data, it is also an empirical model
obtained through a large number of data fitting, and it will have certain biases. In addition,
in the fitting data, there is a certain deviation between the FWD modulus back-calculation
results and the indoor dynamic modulus test results, and the viscosity data of asphalt is
calculated through combination, so the overall data have a certain error. Although the
deduction model has a certain reliability, there is a certain deviation from the basic model.
Moreover, there are some errors in the fitting data, which leads to some deviation in the
obtained dynamic modulus prediction modulus.

log Ein = log EFWD − 0.40352
1+e(−158.88215 log(ηθ )+492.36898) +

0.40352
1+e(−158.88215 log(η)−200.63724 log( f )+771.05827) (16)

4.2. Construction of Gene Expression Programming Model

An exploratory analysis was conducted on the GEP model using the same dataset,
with 80% allocated for training and the remaining 20% utilized for validation purposes.
The parameter configurations are detailed in Table 8. The quantity of genes correlates with
the complexity of the predictive model. Within the constraints of limited data, an increase
in gene count typically yields higher predictive accuracy, albeit at the cost of increased
model complexity [39]. To enhance the model’s applicability and streamline its structure,
the gene number parameter was established at 2. Both the population size and gene head
length serve as complexity coefficients for individual genes [40,41]. Augmented values
for population size and gene head length parameters elevate computational complexity
and predictive model accuracy while concurrently extending the duration of computation.
Based on preliminary computational trials, the population size was configured at 30, and the
gene head length was determined to be 12. The derived model is presented in Equation (17),
and the computational outcomes for both the training and validation sets are depicted in
Figure 6 and Table 9.

Ein = log
[
10(7.622978×log ηθ−log f+EFWD−log η) − 2 × log(7.622978 − log ηθ) + log η

]
+

1
2 ×

{
EFWD +

[(
EFWD − (log f )2 + log f × log η

)
× (log η)1/2 × (EFWD + log f )

]1/3
} (17)

Table 8. Parameter settings of GEP algorithm.

Parameter Name Value

Number of genes 2

Population size 30

Gene head length 12

Selection function +, −, ×, /, exp(x), ln, x2, pow, log, x1/3

Connection function +

Table 9. Indicator of GEP.

Indicators Training Group Validation Group

Root Mean Square Error (RMSE) 0.004 0.002

Mean Square Error (MSE) 0.000016 0.000004

The sum of Squared Error (SSE) 14 4

R-squared (R2) 0.88 0.84
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Figure 6. Results of GEP: (a) training results; (b) verification results. Figure 6. Results of GEP: (a) training results; (b) verification results.

The inspection of Figure 6 and Table 9 reveals that the GEP model exhibits superior
predictive capabilities for the dynamic modulus of in-service asphalt pavement. The R2

for the GEP model stands at 0.88 in the training set and 0.83 in the validation set. Figure 7
illustrates the deviations between the predicted and actual values of the GEP model within
the validation dataset. A majority of the deviations are below 5%, with only 7.1% of the
observations exhibiting a deviation exceeding 5%. The maximum deviation is 18.8% and
the average deviation is 2.3%. These values suggest that the predictive model, which
utilizes gene expression analysis, exhibits a high degree of accuracy. This is mainly due
to the reliability of the GEP algorithm, which greatly improves the effectiveness of model
construction. In addition, different from the deduction of the model itself, GEP fully utilizes
the fitting data to construct the dynamic modulus prediction model, so that a better fitting
effect can be obtained.
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Figure 8 demonstrates the predictive performance of both the deduction model and
the GEP model. The R2 of the GEP model attained 0.88, in contrast to the deduction model
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which registered a lower R2 of 0.76. Within the validation dataset, 92.9% of the data points
for the GEP model maintained a deviation below 5%. This indicates that the GEP model
exhibits a high level of fit. Utilizing the GEP model allows for the precise calculation of the
dynamic modulus of in-service pavement across varying temperatures and frequencies.
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5. Discussion

Conducting FWD testing and core sample dynamic modulus testing is imperative
during the implementation of in-service asphalt pavement reconstruction and expansion
projects. The FWD test serves solely to ascertain the pavement’s structural strength and the
core dynamic modulus test is conducted exclusively under standard conditions, with only
a select number of core test results being utilized as dynamic modulus design parameters.
The proposed prediction method for the dynamic modulus of in-service asphalt in this
paper builds upon the requisite work during the reconstruction and expansion of in-service
asphalt pavements and enables the prediction of dynamic modulus with minimal additional
detection efforts. For FWD detection, it suffices to incorporate repeated measurements
across varying temperatures in the feature section into the conventional testing regimen.
For indoor dynamic modulus assessment, simply extending the standard test protocol to
include measurements at varied temperatures and frequencies is required. The viscosity
index of asphalt may be quantified through extraction from the asphalt mix when conditions
permit. If extraction is not feasible, the viscosity prediction model developed herein can
be directly employed for calculation. The dynamic modulus prediction model, which
utilizes the calculated viscosity values, not only meets the accuracy requirements but also
significantly diminishes the associated workload.

The dynamic modulus back-calculated from FWD is converted into asphalt pavement
design parameters (test temperature is 20 ◦C and test frequency is 10 Hz) via the GEP model,
yielding 1280 data points for the dynamic modulus. Without the GEP model’s conversion,
dynamic modulus data would be limited to those derived from only 15 core samples
collected in the field. The comparative results of these two approaches are presented in
Table 10.

Extensive FWD testing is typically necessitated for the assessment and evaluation
of in-service pavements in resurfacing and widening projects, with a conventional test
interval of 50 m. Additionally, a limited series of core dynamic modulus tests are conducted.
As indicated in Table 10, the dynamic modulus data derived from the core samples exhibit
reduced precision, with their numerical accuracy being directly contingent upon the core’s
location. Consequently, the dynamic modulus data obtained from core samples fail to
accurately reflect the true condition of the asphalt pavement’s dynamic modulus. The
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discrepancy between the core sample dynamic modulus data and the model-converted
dynamic modulus data stands at 22%, implying that the utilization of core sample data
for estimating the remaining lifespan of the existing roadway could introduce significant
error, potentially impacting the decision-making process for the management of in-service
pavements during reconstruction and expansion projects.

Table 10. Comparison of dynamic modulus data.

Indicators Model Transformation Core Sample

Number of data(pcs) 1280 15

Representative value(MPa) 7212 8816

Data bias 22%

The dynamic modulus of the asphalt mixture, when characterized under standard
parameters, constitutes a critical technical metric for assessing asphalt pavement perfor-
mance. Historically, the acquisition of this modulus was confined to the laboratory testing
of core samples, precluding the possibility of extensive data analysis. Utilizing the dynamic
modulus prediction model for in-service asphalt pavements, the back-calculation modulus
with non-standard parameters is converted to align with standard parameters for the
asphalt mixture, facilitating the analysis of dynamic modulus distribution, as depicted in
Figure 9.
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Figure 9 illustrates that the dynamic modulus values fluctuate in conjunction with
variations in pile numbers. Employing the principle of cumulative modulus difference
for data analysis allows for the segmentation of dynamic modulus data into four distinct
categories, as delineated in Table 11. Notably, the segments from K45 + 650 to K48 + 050
and from K50 + 550 to K56 + 100 register lower dynamic modulus values. The distribution
of dynamic modulus values enables the clear identification of sections with reduced mod-
ulus, facilitating the determination of targeted remedial measures in reconstruction and
expansion projects.

Table 11. Partition of dynamic modulus data.

No. Starting Pile No. End Pile No. Average Modulus (MPa) Remarks

1 K44 + 100 K45 + 650 8672

2 K45 + 650 K48 + 050 6286 Smaller

3 K48 + 050 K50 + 550 8291

4 K50 + 550 K56 + 100 6450 Smaller

6. Conclusions and Prospect

Utilizing data from FWD tests, modulus back-calculation, core sample dynamic modu-
lus assessments, and asphalt DSR tests, a dynamic modulus prediction model for in-service
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asphalt pavements can be established through model deduction and gene expression
programming. The following conclusions were obtained:

(1) The method proposed in this paper for acquiring the dynamic modulus design param-
eters of in-service asphalt pavement through FWD detection can significantly enhance
the representativeness of the design parameters.

(2) The dynamic modulus prediction model for in-service asphalt pavements provides
dynamic modulus values under standardized conditions. In contrast to the dynamic
modulus obtained from core samples, the increased accuracy of the input parameters
significantly improves the estimation of the remaining life of the asphalt pavement
and the design of overlays.

(3) Following the acquisition of dynamic modulus data under standardized conditions via
the prediction model, it becomes possible to detect changes in dynamic modulus values
and identify problematic road sections, thereby offering substantial data support
for decision making in reconstruction and expansion projects of in-service asphalt
pavements.

The dynamic modulus prediction model for in-service asphalt pavements is predicated
on the integrated asphalt structure layer. During the model’s construction, both the dynamic
modulus test results of the core samples and the complex viscosity test results of the asphalt
need to be composited, resulting in an increased deviation in the model’s predictive
outcomes. In subsequent research, we aim to develop a dynamic modulus prediction
model based on the discrete stratification of the asphalt layer, which is anticipated to not
only enhance the model’s predictive accuracy but also broaden its applicability.
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