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Abstract: Excavations for underground structures, such as working shafts, underground grain
silos, and parking garages, are characterized by uniformity, consistent dimensions, large quantities,
and strict timelines. Prefabricated recyclable supporting structures (PRSS) are gaining attention
over traditional retaining structures due to their standardized design, efficient construction, and
reusability, which suit such excavations better. To validate their performance, full-scale tests are
conducted to analyze the deformation and stress characteristics of PRSS. The results show that the
average maximum lateral displacement of supporting pile is 0.07% of the excavation depth (He),
roughly half that of steel plate. Differences in ground surface settlement behind steel plates and the
supporting piles are not as significant as those in their lateral displacements. While the displacement
of the supporting piles is insufficient to induce soil movement into the active limit state on the
non-excavation side, the circular excavation’s arching effect reduces the earth pressure on this side of
the supporting piles below the active earth pressure limit. Furthermore, the earth pressure acting
on the steel plates is lower than that acting on the supporting piles, suggesting the presence of a
soil arching effect between two adjacent piles. These findings offer valuable insights for guiding the
construction of PRSS.

Keywords: circular excavation; prefabricated supporting structure; full-scale test; earth pressure; deformation

1. Introduction

The rapid urbanization in China has spurred a rising demand for underground in-
frastructure, such as working shafts [1,2], underground grain and oil storage silos [3],
and automated underground parking garages [4,5]. Circular excavations for these under-
ground structures play an important role on their construction, characterized by consistent
structural forms, similar cross-sectional dimensions, large quantities, temporary, and tight
construction schedules. A retaining system is often used to prevent soil collapse and to
protect the surrounding environment during the excavation process.

Existing retaining systems mainly include diaphragm walls [6,7], bored pile walls [8–10],
soil nail walls [11,12], soil mixing walls [13–15], sheet pile walls [16,17], and so on. Al-
though these retaining walls are widely used in practical engineering, they do not fit well
with the characteristics of the excavations mentioned above. For instance, most of them
are made of cement-based material, which require extended curing periods to achieve
sufficient strength and pose challenges for demolition after the underground structures are
completed, resulting in long-term construction time and a large amount of construction
waste. Moreover, although diaphragm walls and bored pile walls exhibit high stiffness
and strong deformation resistance, they are less cost-effective when used in the excavation
mentioned above, considering their complex construction processes. In contrast, while
soil nail walls and soil mixing walls have high construction efficiency and low costs, they
exhibit weak deformation resistance. Steel sheet pile walls also have a weakness in their
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deformation resistance as well as leakage at the joints [18], despite the fact that they can
be recycled and reused. In recent years, there has been growing concern about the en-
vironmental impact of infrastructure development, including carbon dioxide emissions
and waste generation [19–21]. As a result, green construction technologies have emerged
as a major focus in civil engineering [22,23]. Therefore, it is necessary to research new
eco-friendly types of retaining structures based on the characteristics of the excavation
mentioned above.

In comparison to traditional retaining structures, prefabricated recyclable supporting
structures have attracted attention due to their standardized design, efficient construction,
and reusability, making them more suitable for such excavations [24–26]. Guan et al. [27]
and Zhao et al. [2] proposed a prefabricated prestressed structure for small-sized working
shafts and validated its feasibility through theoretical calculation, numerical simulation,
and on-site loading tests. Pan et al. [26] proposed a new recyclable supporting structure for
underground grain silos, which has the advantage of stability, rapid construction, recyclable
utilization, and low cost. Its mechanical and deformation characteristics when used in
rectangular shafts was studied by Guo et al. [24,25] through numerical simulation and
model tests. Zhang et al. [28] investigated its bearing performance and stability. However,
these studies primarily focus on rectangular excavations and lack consideration of circular
excavations. Circular excavations differ significantly from rectangular ones in terms of their
stress and deformation characteristics. It is found that the lateral earth pressure acting on a
circular excavation, which accounts for the soil arching effects, is less than that predicted
by Rankine theory [29–33]. Additionally, the spatial arch effect in circular excavations
increases as the diameter decreases, leading to smaller wall deflection [34,35]. Therefore, it
is necessary to investigate the performance of the circular excavation retained by PRSS.

In this paper, full-scale tests are conducted to understand the performance of a cir-
cular excavation retained by PRSS. The lateral displacements of supporting structures,
groundwater levels, ground surface settlements, lateral earth pressures, and axial forces
of walings are measured and analyzed to draw conclusions for the further application of
similar structures. In addition, this study provides comprehensive field measurements on
PRSS, enhances the existing experimental database on eco-friendly retaining systems, and
contributes to reducing the environmental impact of the construction industry.

2. Full-Scale Test
2.1. Site and Geological Conditions

The full-scale test was conducted in Pingyu county, Henan Province, China, situated
in the Ru River alluvial plain. According to the geotechnical investigation report, the
subsoils within a depth range of 50.0 m from the ground surface are classified as late and
middle Pleistocene alluvial deposits, predominantly composed of silty clay. A series of
site investigations and laboratory tests were performed to determine the soil properties at
different depths, as depicted in Figure 1. The groundwater table is located at a depth of
approximately 3.5 m.

2.2. Design Scheme and Instrumentation Layout

As shown in Figure 2, the excavation has a diameter of 10.0 m and a final excavation
depth of 9.0 m. The supporting piles are 12.0 m in length and composed of H350 and
L125 steel. There were a total of 20 supporting piles in the excavation with an interval of
1.56 m between two adjacent piles. Moreover, four walings were installed at elevation
levels of 0.0, 3.0, 6.0, and 9.0 m below the ground surface, respectively. In order to improve
the impermeability of PRSS, a two-component expansive polymer was grouted behind
steel plates [26,36].
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represents permeability coefficient. 
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Figure 1. In situ geotechnical profile and soil properties. Note: γ represents unit weight, w represents
water content, e represents the void ratio, φ′ represents effective internal friction angle, c′ represents
effective cohesion, IP represents plasticity index, IL represents liquidity index, Es represents com-
pression modulus, qc represents cone resistance in CPT, N represents the blow count of SPT, and K
represents permeability coefficient.

Various instruments were installed to measure the deformations and forces of the
PRSS caused by excavation. Inclinometer casings were firmly attached to the supporting
piles and the steel plates to monitor their lateral displacements. To monitor the ground
surface settlements around the excavation, seven hydrostatic levels were installed behind
Pile A and Plate B, respectively. Earth pressure cells were installed on Pile A, Pile B, and
Plate A. On the non-excavation side, six soil pressure cells were buried at depths of 2.0 m,
4.0 m, 6.0 m, 8.5 m, 10.0 m, and 11.5 m below the ground surface. On the excavation side,
three soil pressure cells were buried at depths of 8.5 m, 10.0 m, and 11.5 m below the ground
surface. In order to assess the performance of walings, a pair of sister bar strain gauges
were welded on two flanges of each monitored waling to monitor their axial forces. To
ensure a dry working face during excavation, four dewatering wells were installed evenly
around the perimeter of the excavation at 1.5 m away. Three groundwater observation
wells were installed outside the excavation on the west and north sides, respectively.
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Figure 2. The excavation retained by PRSS and the monitoring scheme: (a) plane view; (b) cross-section view.

2.3. Construction Sequence

As shown in Figure 3, the walings and supporting piles are prefabricated in the factory
using specialized equipment according to design requirements, and then transported to
the site for secondary assembly and installation. The waling is designed as a ring, which
requires bending processing of the profile steel to ensure they meet design specifications
and assembly accuracy. Plasma cutting is used to create connection holes on the walings
and supporting piles according to the design. The supporting piles are assembled from
H-section and L-section steels.
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Figure 4 presents the construction sequence of the PRSS. Firstly, following the boring
of the pile holes at the designated location, the supporting piles are lifted into the holes
and the holes are then backfilled (Figure 4a). After all the supporting piles are installed,
the first-level waling is assembled (Figure 4b). Next, a hydraulic pile press machine is
used to drive a custom-made sheet pile into the soil along the grooves of the supporting
piles to form a slot, and then a steel plate is inserted into the slot (Figure 4c). Subsequently,
excavation is carried out to a depth of 3 m below the ground surface, and the second-level
waling is installed (Figure 4d). Expansion polyurethane is then grouted behind the steel
plates (Figure 4e). These steps (i.e., excavation, installation of waling, and grouting) are
repeated to complete the excavation for the second stage (He = 6 m) and the third stage
(He = 9 m) (Figure 4f).
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Figure 4. Construction sequence of the PRSS: (a) installation of supporting piles; (b) installation of
first-level waling; (c) installation of steel plates; (d) excavation of soil and installation of second-level
waling; (e) grouting behind the steel plates; (f) repeating soil excavation, installation of waling, and
grouting until reaching the final depth.

3. Results and Discussion
3.1. Lateral Displacement
3.1.1. Supporting Piles

Figure 5 shows the variations of lateral pile displacements with depth at different
excavation stages. After the first stage of excavation, supporting piles deform as a cantilever,
with an average lateral displacement of 1.5 mm at the top of supporting piles A and B. This
is attributed to the loose connection between the supporting piles and the crown beams
caused by installation errors, as well as the absence of preload in crown beams, resulting
in insufficient stiffness to restrain inward movement. As the excavation progresses to the
deeper levels, lateral pile displacements gradually increase, and their maximum values
occur at deeper positions because upper pile movements are constrained by new walings or
stiffening of existing walings. It should be noted that at the last excavation stage (He = 9 m),
the maximum lateral displacement of supporting piles reaches 9.1 mm, which is far less
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than the warning value of 18 mm [37]. Supporting piles A and B have a deep inward type
of movement, consistent with findings of Clough and O’Rourke [38] and Ou et al. [39].
However, significant movements occur at supporting pile toes, with an average value of
4.9 mm for the two tested piles. It indicates the lack of resistance from the soil beneath the
excavation bottom due to shallow embedment depth of the supporting piles.
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Figure 5. Lateral displacements of supporting piles: (a) pile A; (b) pile B.

3.1.2. Steel Plates

The lateral displacements of steel plates A and B are illustrated in Figure 6. It is
evident from the figure that these displacements increase progressively with excavation
depth. Since the steel plates are attached to the supporting piles, they move along with
the supporting piles. Consequently, the total displacements of the steel plates equal the
sum of the displacements of the supporting piles and the relative displacements of the steel
plates with respect to the supporting piles. It can be observed that although the total lateral
displacements of the steel plates follow a similar pattern to those of the supporting piles,
they are significantly larger. Notably, at the final excavation stage, the average total lateral
displacement of steel plates A and B grows to 16.2 mm, approaching the warning value. In
terms of the shape of the deformation, the distribution of the relative lateral displacement
of the steel plate along the depth is similar to its total lateral displacement. With regard to
the magnitude of the deformation, the relative value of the steel plate is approximately half
of its total lateral displacement. Additionally, the lateral displacement of the supporting
piles is about half of the total lateral displacement of the steel plates.

Figure 7 shows the relationship between maximum lateral displacement and excava-
tion depth, and the corresponding locations of δhm against He. As illustrated in Figure 7a,
the δhm/He ratio for supporting pile ranges from 0.05% to 0.10%, with an average value of
0.07% for supporting pile. For steel plates, the δhm/He ratio ranges from 0.10% to 0.18%,
averaging 0.14%. Nevertheless, the average δhm/He ratios for both supporting piles and
steel plates in this study are close to those reported for diaphragm walls by Liu et al. [40],
but are smaller than those for contiguous pile walls studied by Ni et al. [41] and sheet
pile walls investigated by Mana et al. [42]. Furthermore, it can be seen that as excavation
progresses, the location of δhm shifts gradually downward. However, for the supporting
piles, their maximum lateral displacements occur at a higher level compared to the steel
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plates, as shown in Figure 7b. The locations of δhm of the supporting piles are near the
excavation bottom, whereas for the steel plates, δhm locates at a position that is 1.5 m
above the excavation bottom. This difference is mainly due to the higher stiffness of the
supporting piles compared to that of the steel plates.
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Figure 7. Variations of maximum lateral displacement: (a) maximum lateral displacement versus
excavation depth [36,40–42]; (b) maximum lateral displacement depth versus excavation depth.

3.2. Groundwater

Figure 8 shows the variations of the groundwater table during construction. It can
be seen that prior to dewatering, the groundwater level was approximately 3.4 m below
the ground surface. After dewatering, the groundwater level at 0.5, 3.0, and 11.0 m
from the edge of the excavation stabilized at 10.28, 9.27, and 6.18 m below the ground
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surface, respectively. Site observations revealed that the excavation bottom remained
dry throughout the entire excavation process, confirming that the groundwater level
consistently stayed below the maximum excavation depth.
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Figure 8. Variations of underground water level.

In order to verify the impermeability of PRSS, dewatering is halted after the completion
of the base slab, and changes in the groundwater level outside the excavation and leakage
are monitored. According to Figure 8, after dewatering is stopped, the groundwater table
outside the excavation returns to approximately 3.4 m below the ground surface. However,
as shown in Figure 9, no obvious water leakage is found inside the excavation. This
confirms the efficacy of the supporting structure, comprised of steel plates and grouted
polymer, in preventing leakage. Since the waterproofing performance of the PRSS has only
been preliminarily validated, further improvements in construction and design, as well as
additional model tests, are necessary to enhance this supporting system.
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3.3. Ground Surface Settlement

Figure 10 shows the variations of ground surface settlements behind the supporting
piles and the steel plates at different construction stages. It can be seen that prior to
excavation, dewatering outside the excavation leads to ground surface settlement, with an
average maximum value of 3.0 mm. As excavation progresses, ground surface settlements
show an increasing trend, which is more pronounced at a distance of 12 m (1.3 He) from



Buildings 2024, 14, 2552 9 of 15

the excavation and diminishes with greater distance. Moreover, the apparent influence
range expands with increasing excavation depth. The settlement profile changes from a
spandrel type to a concave type, indicating that the location of maximum settlement shifts
outward from the excavation edge. The ultimate maximum ground surface settlement
behind supporting pile reaches 6.80 mm, representing 0.075% of the excavation depth,
occurring at a distance of 2 m (0.22 He) from the excavation edge. On the other hand,
there are no significant differences in curve shape, settlement value, affected area, or depth-
related changes in ground surface settlement behind steel plates compared to supporting
piles. However, the maximum ground surface settlement behind steel plates at the final
excavation stage is 7.28 mm, accounting for 0.081% of the excavation depth. Furthermore,
throughout the entire excavation process, the maximum ground surface settlement is
less than the warning value of 25 mm. In contrast to lateral displacements shown in
Figures 3 and 4, it is observed that the differences in ground surface settlement behind steel
plates and the supporting piles are not as significant as those in their lateral displacements.
The primary reason for this phenomenon is that behind the steel plates, soil arching effects
are formed between two adjacent piles, which provide support for the soil outside of them.
As a result, the displacement of the soil outside the soil arch is significantly smaller than
that of the steel plate.
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Figure 10. Ground surface settlement outside the excavation: (a) behind the supporting pile;
(b) behind the steel plate.

Figure 11 presents the maximum ground surface settlements (δvm) against the maxi-
mum lateral displacements (δhm) of supporting piles and steel plates. As mentioned above,
the lateral displacements of steel plates are significantly greater than those of supporting
piles, while ground surface settlements behind steel plates appear to be close to those
behind supporting piles. Therefore, it can be seen that the δvm/δhm ratio of steel plates is
smaller than that of supporting piles. The δvm/δhm ratio of steel plates ranges from 0.4 to
1.2, with an average value of 0.7. For supporting piles, the δvm/δhm ratio ranges from 0.7 to
2.2, averaging 1.2. This findings aligns with Goldberg et al. [43] and Moormann [44], who
observed that the δvm/δhm ratio generally falls in the range of 0.5 to 2.0 for excavations in
soft ground supported by various retaining systems. Other studies examining the relation-
ship between the movements of retaining walls and ground surface in deep excavations in
soft soils [42,45,46] indicate that the δvm/δhm ratios are bounded by the range of 0.5 to 1.0.
Ali and Khan [47] reported that the ratio of δvm/δhm generally fell into the range between
0.7 and 1.4 for anchored pile walls in soft to stiff clays. These variations may be attributed
to differences in soil conditions, types of retaining walls, and excavation dimensions.
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Figure 11. Relationship between maximum ground settlement and maximum lateral displacement.

3.4. Lateral Earth Pressure
3.4.1. On Supporting Piles

Figure 12 presents the distribution of earth pressure on the supporting piles. It can
be observed that before excavation (He = 0 m), the measured earth pressure on the non-
excavation side of the supporting piles is lower than the earth pressure at rest (σh0). This
shows the impact of supporting pile installation, which induces unloading in the surround-
ing soil [48]. Although the drilled pile holes are backfilled, they are not consolidated as
much as undisturbed soil. In addition, the soil around the borehole exhibits a certain
self-stability due to the soil arching effect. This effect, if not disturbed before excavation,
partially reduces the lateral earth pressure acting on the supporting piles. When the first
soil layer is excavated (He = 3 m), there is a small inward movement on the upper part of
the supporting pile. It is widely acknowledged that when a retaining wall moves away
from the soil, the soil behind the wall will gradually transition from at an rest state to an
active state, resulting in a decrease in earth pressure acting on the wall [49]. Nevertheless,
in Figure 10a,b, there is no obvious trend of decreasing earth pressure. This indicates that
in practical applications of PRSS, when the movement is small, the earth pressure acting on
supporting piles is influenced not only by displacement but also by pile installation. As the
excavation deepens (He = 6 m), there is a noticeable decrease in the soil pressure on the
supporting piles. At the final excavation stage (He = 9 m), the lateral earth pressure acting
on the non-excavation side of the supporting pile continues to decrease. For the upper part
of the supporting pile at a depth of 6 m, the earth pressure lies between the active (σha) and
at rest (σh0) earth pressure. However, for the lower part of the supporting pile at the same
depth, the earth pressure is less than the active earth pressure, even though the lateral pile
displacement has not reached the threshold for entering the active state. This phenomenon
is due to the soil arching effect formed by circular excavation [50–52].

Figure 12c shows the distribution of lateral earth pressure on the excavation side of
supporting pile A, along with theoretical at rest (σh0) and passive (σhp) earth pressures for
comparison. It can be found that at the same excavation stage, the earth pressure increases
with depth. According to Figures 5 and 12c, although the lateral displacement of the em-
bedded part of the supporting pile increases significantly with excavation depth, reaching a
maximum of 7.5 mm, the earth pressure decreases. Throughout the entire construction pro-
cess, the passive limit state was never reached and the measured earth pressure consistently
remained below the passive earth pressure. However, the earth pressure in the passive
zone is still moving towards the passive limit state, and the gap between the measured and
passive earth pressure is gradually narrowing. This indicates that the excavated soil inside
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the excavation has a greater influence on reducing the passive soil pressure in the passive
zone than the effect of the displacement of the supporting pile towards the excavation. On
the other hand, as the lateral displacement of the embedded portion of the supporting
piles increases, the soil in the passive zone is gradually compressed, and the soil arching
effect of the circular excavation gradually comes into play. This effect enhances the soil’s
deformation resistance in the passive zone to some extent.
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Figure 12. Lateral earth pressure on supporting piles: (a) non-excavation side of pile A; (b) non-excavation
side of pile B; (c) excavation side of pile A.

3.4.2. On Steel Plates

Figure 13 shows the earth pressure distribution on the non-excavation side of steel
plate A. It can be observed that prior to excavation (He = 0 m), the earth pressure on the
steel plate is significantly less than the earth pressure at rest. Similar to the supporting
piles, this is due to the steel plates between piles being inserted after trenching and then
backfilled, causing some disturbance to the original soil. Upon completion of the first layer
of excavation (He = 3 m), the earth pressure near the bottom of the excavation decreases
significantly and is even less than the earth pressure on the supporting piles at the same
depth, reflecting the soil arching effect between the piles. However, the change in the earth
pressure on the steel plates at greater depths is less pronounced, which is consistent with
the lateral displacement trend of the steel plates shown in Figure 6. After completing the
second layer of excavation (He = 6 m), there is minimal change in earth pressure above
4 m, whereas the earth pressure below 4 m decreases significantly. Upon completion of
the third layer of excavation (He = 9 m), minimal change is observed above 8.5 m, with a
decrease in earth pressure below this depth. This indicates an increasing force imbalance
between the two sides of the supporting structure with greater excavation depth. Due to
the soil arching effect between the two adjacent supporting piles, the steel plates mainly
bear the local earth pressure. Consequently, the earth pressure on the steel plates does
not vary significantly with increasing excavation depth but remains relatively constant.
Given the limited number of soil pressure measurement points in front of the steel plates,
the exact horizontal distribution of the soil pressure at specific depths cannot be precisely
determined. However, it is evident that the earth pressure acting on the steel plates is lower
compared to that on the supporting piles, highlighting the presence of the soil arching
effect between the piles.
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Figure 13. Lateral earth pressure on the non-excavation side of the steel plates.

3.5. Axial Force of Walings

Figure 14 presents variations of axial forces of walings during the excavation process.
The axial forces of walings increase gradually with the excavation depth. At the three exca-
vation stages, the axial forces of the first-level waling are 43.73 kN, 67.07 kN, and 86.64 kN,
respectively. According to Figure 5, it can be observed that at the third stage (He = 9 m),
the displacements of the supporting piles at their connections with the first-, second-,
and third-level walings are 2.1 mm, 5.1 mm, and 8.1 mm, respectively. Consequently, the
third-level waling experiences the highest axial force compared to the upper-level walings,
due to the largest displacement increment observed at that location under all conditions.
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4. Conclusions

In this paper, full-scale tests were conducted to verify the performance of PRSS in
circular excavation, and the deformation and forces of the PRSS were analyzed. The
conclusions drawn from this study are summarized below:

(1) The lateral displacements of both the supporting piles and the steel plates exhibit
a convex shape; however, the lateral displacements of the steel plates are significantly
greater than those of the supporting piles. The maximum lateral displacement values are
0.10% He for the supporting piles and 0.18% He for the steel plates. The maximum lateral
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displacements of the supporting piles and steel plates occur above the excavation bottom,
at depths of 0.80 He and 0.91 He, respectively.

(2) As excavation depths increase, the ground surface settlement profiles behind
both the supporting piles and steel plates transition from a spandrel to a concave shape,
with maximum settlement values of 0.075% He and 0.081% He occurring at a distance
of 0.22 He from the supporting structure, respectively. The differences in ground sur-
face settlements behind the supporting piles and steel plates are not as obvious as their
lateral displacements.

(3) The arching effects caused by the circular excavation result in the earth pressure on
the supporting piles being less than the active earth pressure. Moreover, due to the soil
arching effect between two adjacent piles, the earth pressure acting on the upper part of the
steel plates shows little change with increasing excavation depth, while the soil pressure on
the lower part decreases noticeably.

(4) As the excavation depth increases, the supporting piles move toward the inside of
the excavation, and the walings gradually provide support for the piles, while the axial
force on the walings tends to increase.
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