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Abstract: The adaptive facades serve as the interface between the indoor and outdoor energy of
the building. Adaptive facade optimization design can improve daylighting performance, the
thermal environment, view performance, and solar energy utilization efficiency, thus reducing
building energy consumption. However, traditional design frameworks often neglect the influence
of building envelope performance characteristics on adaptive facade optimization design. This
paper aims to reveal the potential functional relationship between building fagade performance
characteristics and adaptive fagade design. It proposes an adaptive facade optimization design
framework based on building envelope performance characteristics. The method was then applied to
a typical office building in northern China. This framework utilizes a K-means clustering algorithm
to analyze building envelope performance characteristics, establish a link to adaptive facade design,
and use the optimization algorithm and machine learning to make multi-objective optimization
predictions. Finally, Pearson’s correlation analysis and visual decision tools were employed to explore
the optimization potential of adaptive facades concerning indoor daylighting performance, view
performance, and solar energy utilization. The results showed that the optimized adaptive facade
design enhances useful daylight illuminance (UDI) by 0.52%, quality of view (QV) by 5.36%, and
beneficial solar radiation energy (BSR) by 14.93% compared to traditional blinds. In addition, each
office unit can generate 309.94 KWh of photovoltaic power per year using photovoltaic shading
systems. The framework provides new perspectives and methods for adaptive facade optimization
design, which helps to achieve multiple performance objectives for buildings.

Keywords: adaptive fagades; building envelope performance; daylighting performance; quality of
view; solar energy utilization; K-means clustering algorithm; multi-objective optimization

1. Introduction

Over the past three decades, as human demand has continued to grow, energy con-
sumption in the building sector has shown a significant upward trend, with the building
sector accounting for about 40% of global energy consumption [1]. At the 75th United
Nations General Assembly, China pledged to peak its domestic carbon emissions by 2030
and to become carbon neutral by 2060. However, public buildings that excessively pursue
large-area glass curtain walls often consume much energy to maintain a stable indoor envi-
ronment [2]. As of 2023, the world’s energy demand is growing at nearly 1.8% per year [3].
Therefore, performance simulation, prediction, and evaluation at the early building design
stage have great potential for building energy conservation and emission reduction [4].

The building envelope and the building skin are two essential components of a build-
ing. They are the transition zones for exchanging material and energy between the interior
and exterior. The building envelope is a significant barrier separating indoor and outdoor
environments and effectively protects against adverse environmental influences. The build-
ing envelope significantly affects the visual and thermal comfort of users, as well as the
building’s energy consumption [5]. As a regulator of the building envelope, the building
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skin can effectively regulate the outdoor environment’s direct effect on the building en-
velope and plays a crucial role in improving the quality of the indoor environment [6].
Research shows that people spend 90% of their time indoors [7]. The indoor environment’s
quality, determined by factors such as the indoor daylight environment, thermal envi-
ronment, and view performance, significantly impacts users’ lives [8,9]. Several studies
have emphasized balancing daylighting performance and view performance to create a
comfortable indoor environment [10]. The synergistic effect of the building envelope and
building skin is not only critical to building design in terms of functionality and aesthetics
but also plays a vital role in improving building performance in terms of indoor daylighting,
view performance, and solar energy utilization [11]. This study only considers the building
envelope for the building facade structure.

Sunlight, as a direct source of natural daylight, can improve the indoor daylight en-
vironment and significantly enhance user productivity and efficiency [12]. However, the
variability in the sky environment and the ever-changing angle of sunlight incidence can
lead to an uneven distribution of indoor daylight and potential glare issues [13,14], resulting
in problems such as visual fatigue and impairment, which can seriously impact the users’
quality of life [15]. If lighting fixtures are provided for indoor areas with insufficient day-
lighting, not only will they increase building energy consumption but traditional lighting
also lacks the spectral combination and quality required to stimulate the circadian rhythm
system [16]. Therefore, when designing building skins, it is necessary to balance the indoor
daylighting performance requirements with the potential risk of glare discomfort, improve
the quality of indoor daylighting, and create a favorable indoor daylight environment.

As one of the essential functions of the building envelope, visual field observation es-
tablishes a visual connection with the external environment through windows, significantly
impacting indoor users’ physiological comfort and psychological health [17,18]. Having a
good view can positively influence indoor users’ physical and mental health [19], happi-
ness [20], and comfort [21]; improve users’ mood and spatial satisfaction; and thus increase
work efficiency by 10-25% [22]. However, some dense building skin designs can disrupt
the window view landscape, negatively affecting the users’ physical and mental health [17].
Quality of view (QV) is an important indicator for evaluating indoor view performance.
However, previous research on indoor environmental quality usually presented a subjective
evaluation or directly ignored QV [17], resulting in limited relevant research methods and
evaluation indicators [23,24]. Improvements were not made until the introduction of the
LEED v4 standard by the Chartered Institution of Building Services Engineers (CIBSE) and
the New European Daylighting Standard EN 17037 [25] into the design guidelines. Through
performance simulation, the subjective judgment of QV is transformed into objective data
indicators, which improve the reliability of research methods and evaluation indicators of
view performance [26].

Solar energy is the most important renewable and clean energy source, which not only
plays a crucial role in improving the indoor thermal environment but also holds signifi-
cant importance in helping boost solar photovoltaic power generation and contributing to
energy savings and emission reduction [27]. In the field of architecture, the utilization of
solar energy is primarily divided into two categories: passive and active [28]. The building
envelope, as the primary receiving surface of solar radiation, utilizes passive technology to
regulate solar indoor entry, thereby improving the indoor thermal environment. Especially
in cold climate regions, solar energy is a vital factor for enhancing the indoor thermal
environment of the building [29]. The active utilization of solar energy, represented by
photovoltaic power generation technology, has propelled the development of two types of
buildings: building integration photovoltaic (BIPV) [30] and building attached photovoltaic
(BAPV) systems [31]. Photovoltaic shading systems (PVSSs), one of the essential technical
means for these two types of buildings, can regulate the indoor daylight environment
and utilize solar photovoltaic power generation [32]. However, an excessive increase
in the area of photovoltaic shading panels can harm the indoor daylight environment,
impairing the quality of the users’ view and reducing indoor comfort. Therefore, when
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utilizing solar radiation energy to improve the indoor thermal environment, it is necessary
to fully consider other building performance objectives, such as indoor daylighting per-
formance and view performance, and design the PVSSs reasonably to achieve the goal of
sustainable development.

In summary, the interaction between the building envelope and building skin has
significant impacts on the quality of the indoor environment, solar energy utilization, and
sustainability. However, multiple building performance objectives need to be considered
when optimizing the design of the building skin. The relationship between these perfor-
mance objectives is not simply linear; there may even be contradictory relationships that
constrain each other. Therefore, this paper proposes a method of adaptive fagade design
based on the performance characteristics of the building envelope to solve these contra-
dictions. The potential functional connections between building envelope performance
characteristics and adaptive fagade design were explored by integrating four performance
objectives to achieve a good indoor environment and efficient solar energy utilization.

2. Background

As the primary type of outdoor shading for buildings, building skins are investigated
for their shape, material, size, and motion adjustment methods to explore their potential
performance in improving indoor daylighting performance, view performance, and solar
energy utilization efficiency [33,34]. However, most existing research focuses on single
performance studies, such as daylighting performance or energy consumption, with rela-
tively few comprehensive analyses covering the three dimensions of the indoor daylight
environment, thermal environment, and solar energy utilization. There are considerably
less studies on the analysis of indoor viewing performance. Secondly, the adaptive facade
proposed by Loonen et al. [35] has been widely favored by architects due to its flexible and
changeable structural attributes, demonstrating significant advantages in responding to
changes in climatic environments, user preferences, building performance, and the aesthet-
ics of building facades [36]. This flexible form and multiple functional requirements place
higher demands on design methods and efficiency. Additionally, previous studies have
often used horizontal grid sensor indicators to directly explain the impact of building skin
on indoor performance [24,37], ignoring the direct connection between building envelope
performance characteristics and the building skin.

Traditional blinds, one of the most common building skin types, primarily improve
indoor daylighting performance by shading sunlight directly with a single performance
objective. However, the design of blinds with a fixed tilt angle may lead to poor daylighting
performance and potentially increase the energy consumption of the building [38]. Olbina
et al. [39] pointed out that different parts of the window carry multiple functions, requiring
different skin forms and control strategies in different parts of the window. The emergence
of a split blind system solves this problem, dividing traditional blinds vertically into
three parts and providing 400-500 Lux daylight illumination in 45% of the wintertime by
controlling the angle of the slats in different parts to meet different functional requirements,
saving 12% to 37% of the annual electrical lighting energy consumption. In order to
effectively solve the problem of uneven indoor daylighting and reduce the influence of
glare, Alsukkar et al. [40] modified the split blind system. Blinds were divided into upper
and lower parts based on the dual functions of building envelope daylight and shading
heat protection, which successfully solved the problem of indoor glare and increased the
uniformity of indoor daylighting performance to 60%, significantly improving the quality
and comfort of indoor daylighting. Subsequently, a light shelf was installed into the split
blind system. By adjusting the spacing and angle of the light shelf, more sunlight was
reflected into the deep indoor space, improving the deep indoor space daylight environment
and providing a guide for adjusting the rotational angle of the blinds in response to regular
changes in the split blinds’ control [41]. Furthermore, to reduce the effect of blinds on
the indoor view performance, Kim et al. [42] not only improved the indoor daylighting
performance but also ensured a satisfactory view performance by controlling the projection
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length and tilt angle of the blind slats. Valitabar et al. [43] proposed a multi-layer blind
system (MLBS) consisting of seven groups of three separated slats, which can rotate around
a horizontal axis. The middle slats are marked as visual field blinds to control daylighting
performance and view performance. The combination of the MLBS and a light shelf offers
a practically glare-free indoor space. Most studies improve building performance by
controlling the width or rotation angle of blinds, but the single-function blind has some
limitations in performance improvement. Although a few studies have considered the
combination design of different types of building skins, there is also a lack of data support
for building skin combination design.

With the development of parametric and performance simulation techniques [44], the
building skin has been transformed from a static monomorphic form to an adaptive facade.
Research has been gradually focused on the potential connection between the building
envelope’s performance characteristics and the adaptive fagade’s design, aiming for a
design more responsive to changes in the external environment and the users’ needs. Kim
et al. [45-47] proposed a design strategy for the adaptive facade based on the parametric
behavior diagram (PBM). This strategy determines the most suitable adaptive facade
state for the outdoor environment every hour by collecting the amount of solar radiation
received by the adaptive fagade in different states each hour. It integrates the optimized
adaptive facade state into the entire building envelope to improve the indoor daylight
environment and reduce energy consumption. Furthermore, Samadi et al. [48] controlled
the rotation angle of each adaptive fagade unit using data from the incident angle of
sunlight and the daylighting test points on the ceiling, achieving precise regulation of indoor
daylighting performance. Wang et al. [49] utilized performance simulation technology to
analyze the solar radiation intensity on the building envelope. The adaptive facade was
specifically designed based on differences in solar radiation distribution, resulting in a
14.8% improvement in indoor thermal comfort with the air conditioning on and a 4.7%
improvement with the air conditioning off. Moreover, the building’s energy consumption
was reduced by 20%. Despite the overall improvement in the building’s performance in
this study, the use of a 3 m x 3 m grid division in the analysis of solar radiation intensity
led to some building units having adaptive fagade distributions that were too compact.
Consequently, Wang et al. [50] divided the envelope between the two columns into three
smaller regions in the simulation platform. They selected the simulated average of the solar
radiation at the center of each area as the basis for designing the adaptive fagade, resulting in
improved solar radiation heat gain and indoor daylighting performance. In addition, Shen
et al. [51] designed the adaptive fagade into different module units, calculated the daylight
coefficients of each module unit, and finally achieved the optimal design of the adaptive
facade through integer programming. Meanwhile, Hosseini et al. [52-54] established a
connection between users and the sun’s position through a simulation platform. They used
the intersection point of this line with the building envelope as the attracting point for
adaptive facade control, thus achieving user-centered adaptive fagade design. Multiple
variable factors influence the optimization of adaptive facade design and require weighing
several performance objectives. The complexity mentioned above increases the time and
cost of performance simulation calculations.

Since 2010, artificial intelligence (AI) technologies have been progressively used in
all phases of the building lifecycle to improve building sustainability and building energy
efficiency [55-57]. In particular, Al technologies and optimization algorithms have been
introduced into the building design process to provide new ideas and methods for building
design. AI technologies can quickly process the hidden relationships between various
data and make accurate predictions, and with the fast search capability of optimization
algorithms, they can explore multiple possibilities of design and find the optimal design
solution. Initially, an artificial neural network was utilized to investigate the relationship
between the blind slat angle and indoor daylighting, which enhanced building skin design
efficiency [58]. Subsequently, Gadelhak et al. [59] integrated a building performance
simulation and optimization algorithms. They used a genetic optimization algorithm to
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enhance indoor daylighting by combining light shelves and vertical blinds. This method
resulted in multi-objective performance optimization in the design of the adaptive facade.
Sadegh et al. [60] used a multi-objective optimization method to explore the influence
of factors such as the distance between the adaptive facade and the building envelope,
the size of the adaptive facade unit, and how the adaptive fagade is adjusted on indoor
daylighting performance. This strategy resolved the mutual contradictions between the
parameters at the early design stage, resulting in improved office building daylighting
performance. Luo et al. [61] utilized radial basis function neural networks to predict
the influence of the adaptive facade on indoor daylighting performance. Lin et al. [62]
explored the internal relationship between different adaptive facade forms and building
performance. They used daylight penetration as the “intermediate characteristic value”
between parameters and objectives, training a neural network model for daylighting
performance capable of predicting the adaptive facade of various building types. El-
Mowatfy et al. [63] investigated the environmental response capacities of different adaptive
facades. They extracted 22 variables, defined 18 adaptive fagade models, and utilized
the K-nearest neighbor algorithm to find the optimal shading system, thus improving
building performance. Li et al. [64] explored the impacts of different adaptive facades
on building daylighting performance through machine learning. Additionally, Alsharif
et al. [65] combined machine learning with multi-objective optimization algorithms to
determine the optimal size and rotation angle for adaptive facade design, minimizing
thermal discomfort time, energy consumption, and total shading area. The combination of
these advanced technologies offers more architectural design possibilities and significantly
improves the quality and efficiency of design.

In summary, the existing research and application of adaptive facade optimization
design face three main limitations or deficiencies. These are as follows:

1.  Existing research primarily focuses on enhancing indoor daylighting or thermal
environments by controlling the geometric dimensions and rotation angles of adaptive
facades, with only a few studies exploring the indoor view performance. However,
research has yet to be conducted that integrates and analyzes the four performance
objectives of indoor daylighting, view performance, solar radiation heat gain, and
solar photovoltaic power generation in buildings.

2. There is a close connection and interaction between the building envelope and the
adaptive facade, and adjusting the adaptive facade to change the direct influence of the
external environment on the building envelope improves numerous building perfor-
mances. However, existing research usually establishes a direct link between adaptive
fagade design parameters and building performance objectives, neglecting the direct
influence of building envelope performance characteristics on adaptive facade design.
As a consequence, adaptive facade designs lack precision and relevance.

3. Traditional static and single-form building skins cannot meet indoor daylighting,
thermal environment, and user needs simultaneously. In contrast, adaptive facades
respond to external environmental changes by adjusting various design parameters to
enhance multiple aspects of building performance. However, traditional design meth-
ods struggle with solving problems involving multiple objectives and parameters.

This study explores the potential of adaptive fagades for multi-objective performance
optimization in office buildings. The novelty presents an adaptive facade optimization
design framework based on building envelope performance characteristics. At the early
design stage, the building envelope’s performance characteristics are analyzed and divided
into parts with different functional attributes. Based on the division results, the design
of the building’s adaptive facade modular units is guided. The framework integrates the
analysis of multi-objective building performance to create good indoor daylighting and
thermal environments while ensuring indoor view performance, improving the efficiency
of solar photovoltaic power generation, and reducing the building’s energy consumption.
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3. Methods

This section proposes an adaptive fagade optimization design framework based on
building envelope performance characteristics. The framework consists of five main steps:

Create office parametric and performance models;
Analysis of building envelope performance characteristics;
Adaptive facade modular unit design;

Training neural network prediction models;
Multi-objective optimization and decision-making.

G L

Figure 1 illustrates the framework for integrating 3D parametric models, performance
models, neural network prediction models, and multi-objective optimization decisions
using Rhinoceros 7.0 and Grasshopper software [66]. the performance characteristics of the
building envelope were analyzed by a clustering algorithm, and based on the clustering
analysis results, adaptive facade modular units with different functions were designed in
a targeted manner. Decision-making for the optimal adaptive facade solution for office
space was performed in terms of indoor daylighting performance, view performance, solar
radiation heat gain, and solar photovoltaic power generation. The research used a personal
computer (Intel Core i7 2.80 GHz and 16 GB RAM) for development and experimentation.
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Figure 1. Integrated 3D parametric model, performance model, neural network prediction model,

and multi-objective optimization and decision-making workflow.

3.1. Create Office Parametric and Performance Models

The study was conducted in Jinan, a city in northern China located at 36°40’ N and
117°00" E. The city belongs to warm temperate semi-humid monsoon climate with hot,
rainy summers and cold, dry winters [67]. With the influence of solar radiation, general
atmospheric circulation, and the geographical environment, the peak dry-bulb temperature
in Jinan is as high as 42 °C, and the coldest temperature in winter is around —19 °C. This
results in global horizontal irradiance, in particular, direct normal irradiance, mostly from
the south. Therefore, when designing adaptive fagades for buildings, it is necessary to
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weigh multiple performance objectives, such as warmth in winter and coolness in summer.
A typical office building in the city of Jinan, facing south, was selected as a case study. The
mid-floor office unit of the building was selected for parametric modeling, with spatial
dimensions of 42 m x 7.2 m X 3.6 m and a window-to-wall ratio of 0.95 (Figure 2). The
open-source Ladybug tools provided by the Grasshopper platform were used to construct
the indoor daylighting model, the quality of view model, the solar radiation model, and the
photovoltaic power generation model, respectively. Ladybug tools are proven simulation
tools that have been widely used [68,69]. The workflow utilizes EnergyPlus Weather Data
meteorological data provided by the U.S. Department of Energy.

0
0
g

0
J
8]

@ T

Figure 2. Example of an office unit plan and 3D model.

3.1.1. Indoor Daylighting Model

The primary indicators for evaluating indoor daylighting include the daylight factor
(DF) [70], daylight coefficient (DC) [71], useful daylight illuminance (UDI) [72], and daylight
autonomy (DA) [73]. Since DF and DC are commonly used evaluation metrics for a
static daylighting analysis, their use in a dynamic daylighting evaluation may lead to
inaccurate calculations. Therefore, UDI is selected as the evaluation index for an indoor
dynamic daylighting environment. UDI is divided into three evaluation levels based
on the illuminance range: less than 100 Lux, 100-2000 Lux, and over 2000 Lux. The
illuminance value between 100 Lux and 2000 Lux is indicated to ensure the demand for
indoor daylighting while also avoiding the hazards of glare or overheating indoors caused
by excessive sunlight. Honeybee utilized Daysim and Radiance tools to conduct an hour-
by-hour daylighting simulation analysis throughout the year. The measurement grid size
was set at 0.5 x 0.5 m, located at a height of 0.8 m above the office desktop, with a total of
112 daylighting test points. The reflectance (R) of the office building boundary materials is
listed in Tables 1 and 2 shows the radiance simulation accuracy settings.

Table 1. Setting of boundary condition reflectance (R) values.

Boundary Conditions Reflectance
Floor 0.30
Ground 0.50
Ceiling 0.85
Window 0.80

Table 2. Simulation accuracy settings for radiance.

Radiance Ambient Ambient Ambient Ambient Ambient
Parameters Bounces Divisions Sampling Accuracy Resolution
Medium Quality 4 1024 256 0.2 64

3.1.2. Quality of View Model

A quality of view (QV) assessment, according to the green building standard LEED
v4 [74], requires that at least 75% of the commonly used building area be directly connected
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to the outdoor landscape through vision glazing. Furthermore, at least two of the following
four landscapes must be satisfied: (a) multiple lines of sight separated by at least 90 degrees
in different directions from the vision glazing; (b) include outdoor natural landscape or
urban landscape elements; (c) unobstructed view fields are within three times the height of
the head of the vision glazing; and (d) have a view factor of at least greater than 3. Ladybug
tools was used to analyze QV, and a 60-degree horizontal cone was selected as human
vision to study the range of visual fields from the indoor space to the outdoor landscape.
The simulation principle involves emitting radiation 360 degrees around each viewpoint
based on the horizontal line of the field of view within a 60-degree cone range. The number
of lines of sight passing through the window is counted, and the percentage of the field
of view for each test point is calculated. The indoor area percentage that meets the field
of view quality requirements is selected based on the field of view factors. The QV test
grid is located at a height of 1.2 m from the ground when office workers are sitting. The
measurement grid size is set to 0.3 m x 0.3 m, totaling 336 test points.

3.1.3. Solar Radiation Model

Solar radiation has a significant impact on the indoor thermal environment. Windows,
as one of the most essential components of the building envelope, are characterized by
low thermal resistance and high thermal conductivity. Therefore, in order to prevent
indoor overheating during the hot summer months, the direct connection between solar
radiation and the room should be reduced. In order to increase indoor temperatures
during the cold winter months, it is necessary to increase the amount of indoor solar
radiation. Designers should thoroughly consider the impact of solar radiation on the indoor
thermal environment of buildings during both winter and summer [75,76] to maximize
the utilization of solar radiation energy. The environmental analysis module of Ladybug
tools created the solar radiation model. The window was used as the test surface, and the
grid size was set to 0.3 x 0.3 m, totaling 143 test points. The solar radiation energy for
winter (December-February) and summer (June-August) was calculated separately. The
beneficial solar radiation energy (BSR) was determined by subtracting the harmful solar
radiation energy in the summer from the solar radiation energy in the winter. The equation
is as follows:

BSR= TSRuwinter — TSRsummer 1)

where BSR represents beneficial solar radiation energy, TSRiyter represents winter solar
radiation energy, and T'SRsymmer represents summer solar radiation energy.

3.1.4. Photovoltaic Power Generation Model

Solar energy primarily exists in the form of sunlight and thermal radiation. The heat
from solar radiation can directly enhance the indoor thermal environment, meeting users’
needs for indoor comfort. Sunlight provides sufficient daylight for the room and improves
the quality of indoor daylighting. It can also be converted into renewable energy through
photovoltaic power generation technology to use clean energy efficiently. The renewable
energy module of Ladybug tools was employed to construct a solar photovoltaic power
generation model. Polysilicon, with a photovoltaic conversion efficiency of 15.42%, was
selected as the photovoltaic material to calculate the photovoltaic power generation (PVG)
for one year. The settings of the above performance model remained consistent throughout
the workflow.

3.2. Analysis of Building Envelope Performance Characteristics

As mentioned above, the building envelope’s primary performance characteristics
include daylighting, thermal, and indoor view performance. The study identified three key
indicators to represent these performance characteristics: UDI, QV, and BSR. Firstly, the
building envelope was divided into multiple unit modules to assess these performance
characteristics. Subsequently, the performance simulation of each unit module was carried
out individually. The performance indicator values of each unit module were collected,
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and the data were analyzed using the K-means clustering algorithm to divide the building
envelope into parts with different functional attributes.

When analyzing the performance characteristics of the building envelope, it is nec-
essary to ensure the precision of the division of the functional attributes of the building
envelope and to consider the dimensional design of the adaptive modular units. Based
on the parametric model created in Section 3.1, the building envelope was divided into
56 individual unit module windows, each measuring 0.5 x 0.5 m. Each unit module win-
dow was assigned a serial number ranging from 0 to 55. The three building performance
models from Sections 3.1.1-3.1.3 were integrated, and the performance indicators UDI,
QV, and BSR were simulated for each unit module window in turn. It is worth noting
that during the simulation and analysis of the indoor view performance, the field of view
factor needed to be set to 0 due to the small size of each unit module window. A field of
view factor greater than 0 at a test point indicates that the window view is visible at that
location; otherwise, it is not. To avoid the influence of data types of different dimensions
and magnitudes on the clustering algorithm and to ensure consistency, the performance
indicators of the simulation calculation were normalized. The results are shown in Figure 3,
and the normalized equation is as follows:

x* _ X — Xmin (2)
Xmax — X¥min
where x represents the original data, xmax represents the maximum value in the set, Xmin
represents the minimum value in the set, and x* represents the normalized data.
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Figure 3. Original data (left panel) and normalized data (right panel) of unit module performance
characteristics.

K-means is an unsupervised clustering algorithm that groups data objects with the
same characteristics through similarity calculations among data objects. The algorithm
has been widely used, with a fast clustering speed and a good clustering effect [77]. The
algorithm divides the data into k clusters based on n given sets of data objects, each
containing at least one data object, and each data object can only belong to one cluster. This
study uses the K-means clustering algorithm to perform a cluster analysis of the normalized
unit module performance characteristic values, with the K value set to 3. As depicted in
Figure 4, the building envelope is segmented into three parts of the region—upper, middle,
and lower—through cluster analysis.

3.3. Adaptive Fagade Modular Unit Design

The purpose of Figure 5 is to further investigate the results of building envelope divi-
sion and extract the performance characteristic values of each region unit module for a box
diagram analysis. Firstly, the average size of the performance indicators UDI, QV, and BSR
in the upper part of the building envelope is ranked as follows: UDI (0.658) > BSR (0.506) >
QV (0.281). This ranking indicates that indoor daylighting and thermal performance are
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the main functions of this part. When designing adaptive facades for this part, it is essential
to focus on enhancing indoor daylighting and reducing the obstruction of solar radiation
energy. Secondly, the average size of the performance indicators UDI, QV, and BSR in
the middle part of the building envelope is ranked as follows: QV (0.893) > UDI (0.793) >
BSR (0.488). This ranking indicates that the indoor view and daylighting performance are
the main functions of this part. In designing the adaptive facade for this part, emphasis
should be placed on reducing visual field obstructions and improving daylighting perfor-
mance. Additionally, the average size of the performance indicators UDI, QV, and BSR for
the lower part of the building envelope is ranked as follows: QV (0.920) > BSR (0.465) >
UDI (0.119). This ranking indicates that the indoor view and thermal performance are
the main functions of this part. When designing adaptive facades, focusing on reducing
obstructions to the visual field and maximizing BSR is necessary. After a comprehensive
analysis of the performance characteristic values of the upper, middle, and lower parts of
the building envelope, it was found that the upper and middle parts significantly impact
UDLI. Furthermore, the building envelope’s middle and lower parts significantly impact QV.
The influence of BSR on the three parts of the building envelope is almost equivalent.

. /

Figure 4. Clustering of building envelope performance characteristic values.
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Figure 5. Analysis of the performance characteristic values of each part of the building envelope.

Based on the results of K-means clustering analysis of the performance characteris-
tics of the building envelope, a highly integrated and multifunctional adaptive facade is
designed, and parameterized adaptive fagade modular units are designed for the upper,
middle, and lower parts of the building envelope through the Grasshopper platform. The
aim is to realize an immediate response to external environmental changes through the ad-
justment of each part of the adaptive modular unit so as to improve the overall performance
of the building.

Firstly, for the upper part of the building envelope, it adopts light shelf devices to
reflect more outdoor sunlight into the deep indoor space and utilizes its own shading to
reduce the risk of glare near the windows, thus increasing the overall proportion of useful
daylight illuminance in the room. The part improves the indoor daylighting environment
by flexibly adjusting the width and angle of the modular units by applying the principles of
translational change and horizontal rotation angle to different light shelf types. The design
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parameters of the part therefore include the light shelf type (LST), light shelf width (LSW),
and light shelf angle (LSA).

Secondly, based on the results of the performance characterization of the middle part
of the building envelope, the focus of the design of this part of the adaptive facade modular
unit is to reduce the obstruction of the visual field and maximize the use of daylighting.
The design of this part of the adaptive facade focuses on arranging the three skin forms of
vertical shading, horizontal shading, and comprehensive shading along the boundaries
of the modular units and adopts the principle of translational change in order to regulate
the width of the shading plates, which in turn improves the quality of the indoor view
and controls the effect of indoor daylighting. Therefore, the design parameters of this part
include the shading plate type (SPT) and shading plate width (SPW).

Finally, the study improves solar energy utilization to meet the functional requirements
of the lower part of the building envelope while also ensuring indoor view performance.
The study utilized a photovoltaic shading system (PVSS), which not only provides shading
but also integrates photovoltaic power generation technology. This photovoltaic shading
system is capable of adjusting the width and angle of the photovoltaic shading plate
according to the change in solar orientation through the principles of translational change
and rotational change to ensure that the photovoltaic shading plate has a maximized
photovoltaic energy production area, thus increasing the photovoltaic power generation
benefits of the building envelope. Therefore, the design parameters of this part include the
photovoltaic shading width (PVW) and photovoltaic shading angle (PVA). Table 3 shows
the form of the adaptive facade module units, and Table 4 shows the design parameter
constraints and range of material settings.

Table 3. Adaptive fagade modular unit forms.

Module Unit Type I II II1 v

Light Shelf
(Upper part of
the envelope)

Shading Plate
(Middle part of
the envelope)

Photovoltaic shading
(Lower part of
the envelope)

Table 4. Module units’ design parameter constraint ranges and material reflectance (R).

Parameter Variables Min Max Steps Unit Reflectance
Light Shelf Type 1 4 1 -
Light Shelf Width 0.0 0.9 0.1 m 0.84
Light Shelf Angle 0 90 10 degree
Shading Plate Type 0 2 1 - 0.30
Shading Plate Width 0.0 0.9 0.1 m ’
Photovoltaic Shading Width 0.0 0.6 0.1 m 035

Photovoltaic Shading Angle 0 90 10 degree
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3.4. Training Neural Network Prediction Models

The performance simulation process takes too long due to the complexity and diver-
sity of design parameters and optimization objectives. Utilizing artificial neural networks
to establish a mapping model between adaptive facade design parameters and perfor-
mance objectives allows for rapid building performance prediction. This study employed
the Grasshopper platform to build backpropagation neural network (BPNN) prediction
models using the LunchBox tool [78]. These models include an indoor useful daylighting
illuminance backpropagation neural network prediction model (BPNN_UDI), an indoor
quality of view backpropagation neural network prediction model (BPNN_QV), a beneficial
solar radiation energy backpropagation neural network prediction model (BPNN_BSR),
and a photovoltaic power generation backpropagation neural network prediction model
(BPNN_PVG). Training these neural network prediction models consists of three steps:
gathering sample data, optimizing neural network hyperparameters, and validating neural
network prediction models accurately.

3.4.1. Gathering Sample Data

The study uses Latin Hypercube Sampling (LHS) [79] to improve the simulation
efficiency and optimize the adaptive fagade design process. LHS randomly selects a
specified number of feasible solution samples from the diverse set of adaptive facade
design parameters. Subsequently, the optimization objectives corresponding to these
samples are simulated and calculated using performance models. These calculated values
serve as the sample data for the training prediction model. The sample data are divided
into training and validation datasets for neural network training and validation. Previous
research has shown that samples larger than twice the number of design parameters
provide a better representation of architectural design space [80]. In order to improve
the accuracy of the prediction model as much as possible, the number of samples was set
to 400, and the sampling process was completed within the Simlab 2.2 software, which
represented adaptive facade design solutions with different characteristics. The sampled
design parameters were then loaded into Grasshopper’s Panel module as input data for the
prediction model. The four building performance objectives of UDI, QV, BSR, and PVG were
simulated separately in conjunction with the performance model in Section 3.1, and the
calculated performance data were used as the output data for training the prediction model.

3.4.2. Optimizing Neural Network Hyperparameters

Before the neural network hyperparameter optimization, preprocessing of the adaptive
facade design parameters and building performance objective data is required, which
includes data normalization and division into a training set and a validation set. Firstly, the
design parameters and performance objective data need to be normalized, and all input
values were normalized from 0 to 1 along the feature axis. Secondly, 400 sets of data were
divided into a training dataset and a validation dataset at a ratio of 8:2, with 320 sets of data
used to train the BPNN model and 80 sets of data used to validate the prediction accuracy
of the BPNN model.

Optimizing the BPNN model’s hyperparameters is required to enhance the model’s
prediction accuracy. The hyperparameters of the BPNN model include the number of
hidden layer layers, the number of neurons in the hidden layer, and the learning rate,
which directly determine the prediction accuracy of the BPNN model and do not change
with the number of training times. A complex, black-box relationship exists between
hyperparameters and prediction model accuracy, making it challenging to debug various
parameters manually. Therefore, the SPEA2 optimization algorithm was used in this study
to optimize BPNN training hyperparameters automatically. During the model training
process, the objective is to minimize the mean squared error (MSE) between predicted and
simulated values while maximizing the coefficient of determination (R?) of the predicted
and simulated results. These criteria serve as guidelines for the hyperparameter optimiza-
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tion process of the BPNN, aiming to achieve higher prediction accuracy. The calculation
formulas for MSE and R? are as follows:

1 i
MSE = — Y3 (yi = 4i)° )

n A YA
R2:1— Eln:1(yl ]/_1)2 (4)
Yia(yi—7)
where y;, 1j;, and 7 denote the simulated value, the predicted value, and the average of the
simulated values for the i-th sample, respectively, and 7 is the total number of samples.

3.4.3. Validating Neural Network Prediction Models Accurately

According to the R? and MSE of the predicted value of the BPNN model and the
simulated value, it was determined whether the predictive model could accurately reflect
the mapping relationship between the adaptive facade design parameters and the building
performance objectives. R? signifies the proportion of the simulated values that can be
explained by the predicted values, reflecting the degree of fit between the predicted and
simulated values. A higher absolute value of R?, closer to 1, indicates a better fit. Generally,
when the R? is higher than 0.93, the predicted values output from the BPNN model are
considered to fit well with the simulated values. The MSE represents the error between the
predicted and simulated values, with a smaller value indicating a more accurate description
of the mapping relationship. The validation results of the four performance prediction
models, as depicted in Figure 6, show that the MSE and R? for each model meet the accuracy
requirements, rendering them suitable for performance prediction. The hyperparameter
settings of each prediction model are detailed in Table 5.
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Figure 6. Accuracy validation of the four performance neural network prediction models.
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Table 5. Neural network model hyperparameter settings and evaluation metrics.
Title BPNN_UDI BPNN_QV BPNN_BSR BPNN_PVG
Hidden Neurons 17 18 26 34
Learning Algorithm  Backpropagation Backpropagation Backpropagation Backpropagation
Alpha 1.6 1.3 0.2 0.7
Activation Function Sigmoid Sigmoid Sigmoid Sigmoid
Iterations 2081 2412 2424 2340
Learning Rate 0.24 0.5 0.4 0.65
MSE 0.001 0.001 0.001 0.001
R2 0.970 0.960 0.963 0.998

3.5. Multi-Objective Optimization and Decision-Making

In order to determine the adaptive facade optimization design strategy, this study coupled
the performance prediction model with the multi-objective genetic optimization algorithm,
optimized and analyzed the design parameters of adaptive fagade modular units in each part,
obtained Pareto front solutions, and visualized the decision-making process by combining it
with the Design Explorer platform [81]. The study selected Octopus, a plugin for the Grasshop-
per platform, to carry out multi-objective optimization [82], which performs optimization
searches for multiple performance objectives through a genetic algorithm. According to the
relevant literature and the experience of many experiments [76,83], the multi-objective genetic
optimization algorithm is set up as described in Table 6. The Pareto front solution sets
are obtained through the optimization algorithm and imported into the Design Explorer
decision-making platform, where the screening criteria are set for each performance in-
dicator. The optimal solution that meets the requirements is finally selected. This study
aims to achieve the best four building performances of UDI, QV, BSR, and PVG through a
multi-objective optimization algorithm. The objective functions are as follows:

f1(LST;, LSW}, LSA;, SPT;, SPW;, PVW, PVA;) = min(—UDI) (5)
f2 (LSTj, LSW]', LSA]', SPT]', SPW]', PVW]', PVA]') = min(—QV) (6)
f3(LST;, LSW;, LSA;, SPT;, SPW;, PVW;, PVA;) = min(—BSR) )
fz(LST]', LSW]', LSA]', SPT]', SPW]', PVW]', PVAj) = min(—PVG) (8)
minF (LST;, LSW;, LSA;, SPT;, SPW;, PVW, PVA;) = min(fi, f2, f3, f1) 9)

LST; € [1,2,3,4],

LSW; € [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

LSA; € [0,10,20,30,40, 50,60, 70,80,90],

st.{ SPT; € [1,23], (10)
SPW; € [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9],

PVW; € [0.1,0.2,0.3,0.4,0.5],

PVA; € [0,10,20,30, 40,50, 60, 70, 80, 90],

where f1, f2, f3, and f4 are the four optimization objective functions. j is the number
of design parameters. LST;, LSW;, LSAj, SST;, SSW;, PVW,, and PVA; represent the
light shelf type, the light shelf width, the light shelf angle, the shading plate type, the
shading plate width, the photovoltaic shading width, and the photovoltaic shading angle,
respectively, of the design parameters.

Table 6. The genetic optimization algorithm settings.

Boundary Elitism Mut. Mutation Crossover Population
Conditions Probability Rate Rate Size

Values 0.5 0.1 0.5 0.8 100
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4. Results

This section determines the potential relationship between adaptive fagade design
parameters and performance objectives through Pearson’s correlation analysis and a dis-
tribution plot of the design parameters for the Pareto front solutions to capture the data
distribution characteristics quickly.

The 400 datasets sampled in Section 3.4 were imported into OriginPro2023b software
for data analysis. The study plotted the seven adaptive facade design parameters and four
performance objectives in a bivariate scatter matrix to test the linear correlation between
them, as depicted on the left side of Figure 7. This result shows that a significant linear
correlation exists between the performance objectives and multiple design parameters.
As shown on the right side of Figure 7, the Pearson method was used for the correlation
analysis between design parameters and performance objectives. The potential relation-
ships between the adaptive fagade design parameters and the four performance objectives
of UDI, QV, BSR, and PVG were further explored. The Pearson correlation coefficient is
between —1 and +1. When the correlation coefficient is between —1 and 0, it indicates a
negative correlation between the variables; when it is between 0 and 1, it means a positive
correlation. The larger the absolute value of the Pearson correlation coefficient, the stronger
the correlation.
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Figure 7. Bivariate scatter matrix (a) and Pearson’s correlation coefficient matrix (b).

As illustrated in Figure 7, the correlations between UDI and LST, LSW, and LSA are
0.24, 0.41, and —0.065, respectively. This suggests that indoor daylighting performance is
primarily affected by LSW and has a weak connection with LST and LSA. The correlation
coefficient between UDI and SPT is 0.32, indicating a moderate correlation between indoor
daylighting performance and the SPT, and the correlation coefficient with SPW is 0.6,
indicating that the changes in the SPW have a strong positive correlation with indoor
daylighting performance. According to the correlation coefficients of UDI with PVW and
PVA, which are 0.11 and —0.044, respectively, these design parameters have little to no
effect on indoor daylighting performance.

Secondly, regarding the correlation analysis between the adaptive facade design
parameters and the indoor view performance, the correlations between QV and LST, LSW,
and LSA are —0.18, —0.36, and 0.36, respectively, with LSW and LSA showing a moderately
correlated relationship with the indoor view performance. LST has little effect on the indoor
view performance. The correlation coefficients of QV with SPT and SPW are —0.17 and
—0.27, respectively, indicating that the SPT and the changes in the SPW have little effect on
the indoor view performance. The correlation coefficients of QV with PVW and PVA are
—0.33 and 0.45, respectively, indicating that changes in PVW and PVA significantly affect
the indoor view performance.
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In the correlation analysis between adaptive fagade design parameters and BSR, the
correlation coefficients between the BSR and LST, LSW, and LSA are —0.14, —0.26, and
0.26, respectively. This suggests that LST, LSW, and LSA have only tiny impacts on BSR.
Similarly, the correlation coefficients of BSR with SPT and SPW are —0.25 and —0.62,
respectively, which all show negative correlations. Notably, the SPW exhibits a strong
negative correlation with the BSR, indicating that the changes in the SPW have a more
significant impact. Furthermore, the correlation coefficient between BSR and PVW is —0.44,
indicating that PVW significantly impacts BSR. The correlation coefficient with PVA is
0.053, with only a marginal impact of changes in the degree of PVA on BSR.

Additionally, regarding the correlation analysis between PVG and adaptive fagade
design parameters, PVG’s correlation coefficients with LST, LSW, and LSA are 0.026, 0.0057,
and —0.083, demonstrating that the light shelf has minimal impact on PVG. Additionally,
the correlation coefficients of PVG with SPT and SPW are —0.013 and —0.064, respectively,
indicating that the shading plate has almost no effect on the PVG. The correlation coef-
ficients of PVG with PVW and PVA are 0.95 and 0.27, respectively, suggesting that the
variation in PVW has a more significant impact on PVG than changes in PVA. In summary,
LSW and SPW have more significant impacts on indoor daylighting performance and are
positively correlated. PVD has a more significant impact on the indoor view performance,
SPW has a more significant impact on BSR, and PVW has a more significant impact on solar
photovoltaic power generation.

Lastly, Pearson’s correlation coefficient was employed in this study to examine the
potential relationships among the four performance objectives. The correlation coefficients
of UDI with QV, BSR, and PVG are —0.58, —0.82, and —0.085, respectively. UDI exhibits a
strong negative correlation with QV and BSR, significantly impacting indoor daylighting
performance. Furthermore, the correlation coefficients of QV with BSR and PVG are
0.68 and —0.2, respectively, indicating that BSR significantly impacts the indoor view
performance. Lastly, the correlation coefficient between BSR and PVG is —0.41. Moreover,
the correlation coefficient between BSR and PVG is —0.41, suggesting a moderately negative
correlation between these performance objectives.

Since some of the adaptive fagade design parameter combinations result in substan-
dard building performance, screening criteria were established for the four performance
objectives to enhance the efficiency of finding the Pareto front solution using the multi-
objective optimization algorithm. The set criteria are as follows: UDI > 75%, QV > 70%,
BSR > 200 KWh, and PVG > 200 KWh. After 500 generations of optimization iterations,
the four performance objectives gradually converge and stabilize. The last generation
of the Pareto front solution set was selected, and duplicate data were deleted, resulting
in 136 groups of valid Pareto front solution sets. Visual decision-making for the Pareto
front solution sets was conducted through the Design Explorer2 platform. The parallel
coordinates plot in Figure 8 displays 136 groups of Pareto front solutions, with each line
segment representing a solution. The parallel coordinate plots reveal the distribution range
of the four performance optimization objectives. Specifically, the UDI distribution ranges
from 75.14% to 86.30%, the QV distribution ranges from 70.04% to 82.59%, and the BSR
distribution ranges from 203.60 to 549.80 KWh. The PVG distribution spans from 300.00 to
599.00 KWh.
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Figure 8. Parallel coordinate plots of Pareto front solutions.
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Figure 9 illustrates the results of the adaptive fagade design parameter distribution for
the Pareto front solution. In the upper part of the adaptive facade, the light shelf module
units are predominantly of types II, IV, and III. The widths of the light shelf are mainly
distributed at 0.1 m, 0.9 m, and 0.3 m, with rotation angles primarily at 70°, 80°, and 0°.
In the middle part of the adaptive facade, the shading module units primarily comprise
the comprehensive and horizontal shading types. The widths of the shading plates are
mainly distributed at 0.9 m, 0.6 m, and 0.8 m. In the lower part of the adaptive facade, the
width of photovoltaic shading module units is mainly distributed at 0.5 m, 0.3 m, and 0.4 m.
Additionally, the rotation angle of photovoltaic panels is mainly 90°, 80°, and 70°.
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Figure 9. Design parameter distributions of the Pareto front solutions.

5. Discussion

Previous studies often selected traditional blinds as building envelope shading devices
to regulate indoor daylighting and reduce solar heat radiation [84]. Therefore, traditional
blinds were selected for the comparative analysis in this study. In the same situation, the
traditional blinds are attached to an office unit, with the blind slats set at a width of 0.3 m
and a spacing of 0.25 m, tilted downward at 5 degrees. As traditional blinds typically cover
the entire surface of the building envelope, and using photovoltaic panels is less common,
the three primary performance objectives considered were UDI, QV, and BSR. Simulations
of the performance of the applied traditional blinds indicate a UDI of 85.78%, a QV of
71.43%, and a BSR of 338.69 KWh.

Considering the inherent error in the neural network prediction model and referring
to traditional blinds” performance data, the decision-making screening criteria were set
as follows: UDI > 84.5%, QV > 72%, and BSR > 340 KWh. Figure 10 shows the screening
results from the Design Explorer platform, totaling ten groups of Pareto front solutions,
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and the data are corrected by performance simulation with the specific parameters shown
in Table 7. Three groups of solutions, namely Group A, Group B, and Group C demonstrate
superiority over traditional blinds in all three performance aspects—UDI, QV, and BSR.
Subsequently, the three groups of optimal solutions will be discussed in terms of each of
the four performance aspects: UDI, QV, BSR, and PVG.

Design Parameters Optimization Objectives
LST LSW (m) LSA (°) SPT SPW (m) PVW (m) PVA (°) UDI (%) QY (%) BSR (KWh) PVG (KWh)
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Figure 10. Standards-compliant Pareto front solutions.
Table 7. The final selected ten groups of optimal Pareto front solutions.
LSW SPW PVW UDI BSR PVG
LST LSA (° PT PVA (° V (%

Group S (m) SA (°) S (m) (m) ©) (%) QV (%) (KWh)  (KWh)
A 2 0.8 70 2 0.9 0.3 90 85.94 76.79 343.55 309.94
B 4 0.3 70 2 0.9 0.3 920 86.97 75.60 346.95 309.94
C 3 0.7 70 2 0.6 0.3 90 86.30 76.79 389.25 309.94
D 3 0.9 70 2 0.5 0.5 90 86.73 76.20 298.83 516.57
E 4 0.3 80 2 0.6 0.3 90 85.88 74.41 319.66 309.94
F 3 0.5 80 2 0.6 0.3 90 85.80 74.41 323.26 309.94
G 2 0.9 70 2 0.7 0.3 90 84.73 77.98 372.06 309.94
H 2 0.9 70 2 0.8 0.3 90 85.62 77.38 341.36 309.94
1 2 0.7 70 2 0.9 0.3 90 85.43 76.79 383.32 309.94
J 4 0.3 90 2 0.6 0.3 90 86.73 68.46 252.20 309.94

Section 4 shows that LSW and SPW have more significant impacts on indoor daylight-
ing performance than other design parameters, with the same SPW parameter for both
the Group A and Group B solutions. Therefore, to better analyze the indoor daylighting
performance for each group of solutions, the indoor daylighting distribution maps for each
group of solutions were simulated separately for three conditions: below 100 Lux (insuf-
ficient daylight), 100-2000 Lux (useful daylight), and over 2000 Lux (excessive daylight).
The simulation results are shown in Figure 11.

Firstly, the daylighting performance of Group A and Group B solutions was analyzed.
When comparing indoor daylighting situations with UDI (<100 Lux), the Group A solution
showed a 0.28% reduction in the illumination ratio of daylight insufficiency compared to
the Group B solution. Conversely, when comparing UDI (>2000 Lux), it was observed
that the Group A solution had a 1.24% increase in UDI compared to the Group B solution,
resulting in a 1.04% reduction in useful indoor daylighting illuminance in the Group A
solution. The reason for that difference is that the module units on the upper part of the
adaptive facade in the Group A solution incorporate two light shelf panels, each with a
width of 0.8 m and spaced at 0.5 m intervals. This configuration allows more outdoor
sunlight to enter the room through reflection, thereby increasing the overall daylighting
illuminance of the room. Consequently, the proportion of sunlight exceeding 2000 Lux
increases, while the proportion of UDI between 100 and 2000 Lux decreases. In contrast,
the upper module units of the adaptive facade in the Group B solution comprise four 0.3 m
wide light shelf panels arranged at a spacing of 0.15 m. With a narrower LSW of 0.3 m,
sunlight entering the room through reflection is reduced. This design avoids excessive
indoor daylighting illuminance while increasing the indoor daylighting illuminance ratio
to meet the requirements of 100-2000 Lux.
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Figure 11. Indoor daylight distributions for the three groups of solutions.

Additionally, the Group C solution differs in the adaptive facade design parameters
LST, LSW, and SPW compared to the Group A and B solutions. The Group C solution
consists of three light shelf planes with a width of 0.7 m, spaced at 0.25 m intervals. The
0.7 m width of the light shelf allows more outdoor sunlight to enter the room through
reflection, thereby improving indoor daylighting in deeper spaces. However, utilizing
comprehensive shading with a width of 0.6 m in the adaptive facade diminishes the
shading effect on outdoor sunlight. Consequently, there is an increase in the proportion of
illuminance over 2000 Lux at the daylighting test points in the near-window section. In
summary, Group B solutions have the best indoor daylighting performance, followed by
Group C solutions, while Group A solutions are relatively poor.

Secondly, concerning the indoor view performance analysis, as discussed in Section 4,
the Pearson correlation coefficient reveals that PVA has the most significant impact on the
QV compared to other adaptive facade design parameters. It is worth mentioning that PVA
is set at 90° for all three solution groups. As shown in Table 7, the indoor view performance
for the Group A solution is equal to that of the Group C solution, and both surpass the QV
achieved by the Group B solution (QV_A = QV_C > QV_B). All three solution groups meet
the LEED v4 requirement, ensuring that at least 75% of the regularly occupied floor area
provides outside views.

Figure 12 illustrates a more detailed analysis of these three groups’ indoor view
performance. This study selected a view factor of five as the evaluation criterion in the
indoor view performance simulation. It was found that the test areas of Group A solutions
and Group C solutions with a view factor of more than five were almost the same. Therefore,
the QV for Group A solutions is equal to that of Group C solutions. However, Figure 12
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shows that the test area with a view factor of more than 15 for the Group C solution is
significantly larger than that for the Group A and B solutions in the near-window section
of the office. Furthermore, the SPW of the adaptive facade design parameter negatively
correlates with the QV. The 0.6 m width of the shading plate for the Group C solution is
smaller than the 0.9 m width of the shading plate for the Group A and Group B solutions,
contributing to the superior QV in the Group C solution when compared to the Group A
and Group B solutions.

Group B solution Group C solution
Figure 12. Distribution of the QV for the three groups of solutions.

Regarding the analysis of BSR, the BSR of the Group C solution is significantly better
than that of the Group B and Group A solutions in Table 7. According to the correlation
coefficient analysis in Section 4, SPW and PVA have more significant impacts on the BSR
than other design parameters and show negative correlations. The design parameter PVA
for the three groups of solutions is 0.3 m. Therefore, the influence of SPW parameters on
BSR is primarily analyzed. The SPW of 0.6 m for the Group C solution is smaller than that
of 0.9 m for the Group A and Group B solutions. The SPW of the group C solution allows
more beneficial winter solar radiation energy to be projected onto the building envelope,
thereby improving indoor temperatures.

Finally, according to the solar photovoltaic power generation analysis based on the
correlation coefficient analysis in Section 4, the parameter PVW has a strong positive
correlation with PVG. Since all three solutions of PV panels have a width of 0.3 m and the
same rotation angle of 90°, the PVG of each group of solutions is 309.94 KWh.

In summary, although Group C’s solution is weaker than Group B’s regarding indoor
daylighting performance, it is better than Group A’s and Group B’s solutions regarding
indoor view performance and beneficial solar radiation energy performance. Therefore,
the Group C solution was selected to compare the building performance analysis with the
traditional blinds. Table 8 indicates that the adaptive facade corresponding to the Group C
solution outperforms traditional blinds in all building performance indicators. Notably, the
most significant improvement is observed in the performance of beneficial solar radiation
energy, with an increase of 51.26 KWh, representing a 14.93% improvement. Secondly,
there is a 5.36% enhancement of indoor view performance. The indoor daylighting perfor-
mance improved by 0.52%. Additionally, using photovoltaic shading systems resulted in
309.9 KWh of solar photovoltaic power per office unit per year.
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Table 8. Building performance of traditional blinds versus adaptive facades.
UDI (%) QV (%) BSR (KWh)  PVG (KWh)
Traditional blinds 85.78 71.43 338.69 /
Adaptive 86.30 76.79 389.25 309.94
facade
Enhancement 0.52 5.36 51.56 309.94

6. Conclusions

This research proposes an adaptive fagade optimization design framework integrating
a 3D parametric model, performance models, neural network prediction models, multi-
objective optimization, and decision-making. It selects a typical office building in Jinan
City as a study case for practical application. Reviewing the previous research results
of the adaptive fagade design process and applying optimization algorithms and artifi-
cial intelligence technology in the building adaptive facade design field provide essential
technical support and reference for the study. Finally, the optimized adaptive facade was
compared with traditional blinds. The results indicate that the adaptive facade design,
based on building envelope performance characteristics, has excellent performance in
multiple aspects of building performance. The novelty and originality of the whole study
are presented in two aspects. Firstly, the framework integrates four building performance
objectives: UDI, QV, BSR, and PVG. It achieves a quickly optimized design of the building’s
adaptive fagade by combining a neural network prediction model with a multi-objective
optimization algorithm. Secondly, through the K-means clustering algorithm, the perfor-
mance characteristics of the building envelope are fully explored to establish a functional
connection between the building envelope and the adaptive facade design, providing data
support for the optimization design of the adaptive facade.

The primary outcomes of the study are as follows:

1. The research framework uses a parametric platform that integrates performance sim-
ulation, clustering analysis, a neural network prediction model, and multi-objective
optimization decision-making, establishing an integrated framework for adaptive
facade optimization design and improving the efficiency of adaptive facade design.

2. The functional connection between building envelope performance characteristics
and adaptive facade design was explored. Through a K-means clustering analysis
of the performance characteristics of the building envelope, it is divided into three
parts with different functional attributes: the upper part mainly corresponds to the
daylighting performance, the middle part corresponds to the view and daylighting
performance, and the lower part mainly corresponds to the view and solar radiation
heat gain performance. This division provides data support for the targeted design of
the adaptive facade.
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3. The research reveals the interactions between four building performance objectives
(UD, QV, BSR, and PVG) and adaptive facade design parameters of the office building
in this case through Pearson’s correlation coefficient analysis, where LSW and SPW
have significant impacts on UDI, PVA on QV, SPW on BSR, and PVW on PVG.

4. The research focuses on optimizing the design of building adaptive facades from
three aspects: indoor daylighting performance, view performance, and solar energy
utilization. Compared with traditional blinds, the UDI, QV, and BSR performance in-
dicators have improved by 0.52%, 5.36%, and 14.93%, respectively. Additionally, using
photovoltaic shading technology can also generate 309.94 KWh of photovoltaic power.

This study presents some limitations. Firstly, this study used only BPNN as a building
performance prediction model. Attempts at using other machine learning methods, such
as the random forest model [85], the support vector machine model, and the decision
tree model, should be tried. The building performance prediction effect can be evaluated
more comprehensively by comparing the prediction accuracy of different machine learning
methods. Secondly, the study only used simulated data. It did not use actual measured
data for analysis and calibration, which may lead to some deviation of the research results
from the actual situation. In order to improve the accuracy and reliability of the study, it is
recommended that simulated data be corrected using actual measurement data in future
studies [86]. Finally, the application case for this study is an office building in northern
China. Considering that the optimal inclination of blind slats is affected by geographical
latitude [87], the impact of adaptive fagades on indoor performance may vary in different
climatic regions. In order to fully validate the applicability of this design framework, it is
recommended that climate zones at different latitudes be selected for experimentation and
validation in future studies [88].

Future research can combine the specific behavioral state of indoor users; take ad-
vantage of parametric modeling, performance simulation, artificial intelligence, and other
advanced technologies for solving complex scientific problems; and design adaptive facades
for human-computer interaction. Secondly, to meet the aesthetic demand, it is necessary
to design a uniformly changing adaptive fagade that can respond to different functional
attributes of the building envelope, adjust the corresponding adaptive fagade morphology,
and even form the required pattern according to the state of the building envelope. In addi-
tion, we will further explore and improve the interdisciplinary integration of mechanical
engineering, control science and engineering, computer science, and electrical engineering
in the adaptive facade operating system in order to achieve a more efficient and intelligent
adaptive facade.
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