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Abstract: In previous studies, drones have been used to carry out visual inspections of heritage
elements. To complement the information obtained with common drones, a new underwater drone
model is proposed for the specific case of old bridges. The aim is to verify the applicability of
underwater drones for inspecting submerged elements of old heritage bridges, given the large
number of bridge disasters and collapses linked to failures in their foundations. To this end, we
carried out an underwater inspection of the visible submerged elements (submerged but not buried)
of three old bridges crossing different rivers. The different locations and characteristics of these
bridges allow us to draw some initial conclusions. The results of the operations carried out show
that underwater drones are not only useful for this type of inspection, but also the work is much
safer than with the means currently used (underwater divers). In addition, the use of drones makes it
possible to study certain parameters that can anticipate subsequent foundation problems affecting
the entire bridge, such as the settlement or rotation of piers or abutments. This is the main innovation
and contribution of this research: the possibility of inspecting submerged elements of masonry
constructions using unmanned vessels.

Keywords: drones; masonry bridge; underwater inspection; heritage preservation; old bridge conservation

1. Introduction

This research aims to complement a paper presented at the REHABEND 2022 Congress [1],
which analysed the use of drones for the inspection of architectural heritage elements,
unique constructions and ancient or fragile structures, including two Roman bridges. For
that paper, the researchers carried out an experimental inspection of several ancient struc-
tures in accordance with the regulations of the time. In other words, the inspection was
purely visual, analysing only the visible elements. Some of the structures included in
the study were ancient masonry bridges. In these cases, part of the inspection could not
be carried out due to the presence of river currents that made it impossible to see and
access certain elements. However, the analysis of such elements can be essential to obtain a
complete assessment, given the number of damages originating from the foundation that
occur in this type of structure [2,3].

In addition to the experience described above [1], there have been many attempts
to use drones to inspect heritage elements [4–6]. These have shown excellent results, all
of which demonstrate the importance of using drones for this purpose: drones make it
possible to get close to heritage structures in order to analyse them, reducing the risks for
the inspectors and for the structures themselves, and allowing a complete visual inspection
to be carried out with optimal levels of quality and precision.

Every inspection begins with an analysis of the foundation and the start of construc-
tion [4,7]. If these elements are visible, a visual inspection may be a perfectly acceptable
way of analysing them. In most cases, however, these elements are neither visible nor
accessible. This means that possible defects in the foundation can only be detected indi-
rectly through external signs visible in other elements of the bridge, such as, excessive
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movements, deformations, or cracks [7,8]. Therefore, the geometric and pathological char-
acteristics of the substructure and superstructure must be carefully monitored. In practice,
the first procedure that can (and should) be used to correctly identify problems related to a
foundation’s deficient structural response is the observation and subsequent analysis of
symptoms that may occur in the superstructure as a result of twisting, absolute settlement
or differential settlement in the foundation. The drone has proven to be a key and very
useful tool in this task.

However, in many cases where foundation elements are in a poor state of stability and
present a reduced level of safety, these deficiencies do not manifest themselves in obvious
external symptoms at the time of inspection. This is all the more serious if one considers the
risk of reaching extreme situations or unexpected instability, as well as large movements or
even partial or total collapse. It is therefore not possible to carry out a complete inspection
that provides total certainty as to the real state and stability of an ancient structure when
part of the monument is underwater.

The main drawback of localised damage to the foundation of structures (not only
bridges) is the difficulty of visual inspection. If the inspection is carried out during the sum-
mer, it may be somewhat easier to detect possible deterioration problems in the structural
element in question, but this is not always possible. This detection can even be extended
to problems caused by the deterioration of the entire soil–foundation complex. In the
particular case of bridges, the foundation usually starts at a certain depth and is typically
either underwater or invisible to inspection because it is covered by sediment. In such
circumstances, inspection is understandably an arduous (if not unmanageable) task if it is
to be done visually.

Damage directly to the foundation is caused by two main factors [8]: the deteri-
oration of the materials making up the substructure and the poor performance of the
soil–foundation complex in response to the various actions to which the complex is ex-
posed [2,3,9,10]. Factors such as the action of water currents on submerged elements or the
increase in hydraulic velocity of the current due to a reduction in the cross-section of the
channel or a change in the longitudinal profile can also cause such deficiencies.

Therefore, in addition to a detailed visual inspection of the foundation, it is important
to estimate, as far as possible, the type and dimensions of the foundation element, the
type of terrain, the longitudinal profile of the riverbed, the cross-section upstream and
downstream of the structure, the degree of cleaning of the channel and the layout of
the drag elements in it. These are all areas where a drone can reveal certain deficiencies
and limitations.

Special inspection techniques are often required to provide enough information to
ensure a complete understanding of the actual condition of the structure and the detailed
bathymetry of the channel beneath it and in its immediate vicinity, both upstream and
downstream. In line with the above, just as the use of a drone has been proposed for visual
inspection, an equivalent tool has been sought to inspect the submerged part of structures.
This has led to the underwater drone (Figure 1). At the time of writing, no known drone
model has been used for this purpose.

This is the main contribution of this article and, above all, the main innovation and con-
tribution of this research: to raise the possibility of carrying out the inspection of submerged
elements of river masonry bridges using unmanned vessels, rather than human resources.
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Figure 1. General view of the underwater drone used to inspect the San Lorenzo Bridge. At the time
of the photo, the device was being launched towards the submerged elements of the structure for
reasons of accessibility (photo by the author).

2. Objectives

Once again, our research is based on the idea that structures need to be inspected to
obtain the necessary data to determine their functional, structural, and aesthetic condition
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over time. Therefore, the main objective of this paper is to verify the applicability of
underwater drones for inspecting the submerged part of the substructure of an old masonry
bridge, in view of the large number of bridge disasters and collapses linked to failures in
their foundations, and as a complement to the visual inspections for which the common
drone has proven effective.

The author’s experience and analysis of three underwater inspections carried out
by him on three large ancient river bridges (the Roman Segura Bridge, the San Lorenzo
Bridge, and the Brandomil Bridge) will serve as a basis for verifying the achievement of the
research objective.

A PowerVision PowerDolphin PDW10 (4K) underwater drone was used to carry out
these inspections (Figures 1 and 2). This drone has been manufactured in Beijing, China.
It weighs 2268 g and is used in conjunction with a remote control linked to an iPad (iOS
system) for better viewing. This underwater drone has a 4K HD camera with multiple
resolution settings and the ability to rotate up to 220◦ on its own axis, allowing it to see
above and below the water’s surface. It also has a built-in GPS with bathymetric detection
and “return home” functions. It has a two-hour battery life and can reach a maximum
speed of 4.50 m/s (16.20 km/h). This drone model was chosen for its simplicity in use
and handling, as well as its accessibility. In addition, its low cost made it ideal for this
initial research.
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3. Methodology

As noted in the Introduction, the underwater inspection is intended to complement
the visual inspection contemplated above when signs of damage linked to the foundation
are revealed.

A diagram of the procedure to follow in the event of locating signs of deterioration
in the foundation after the visual inspection is included in Figure 3. Drone inspection
makes it possible to locate damage due to poor structural behaviour or degradation of the
structural element.
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Figure 3. Diagram of the procedure to follow in case of locating signs of deterioration in the
foundation after visual inspection (graphic by the author).

As we can see in Figure 3, the inspection is concluded when the visual inspection
does not detect any signs of damage to the foundation. However, when signs of damage
to the foundation are discovered, the underwater drone is used to inspect the submerged
elements.

From a safe point on the riverbank, close to the bridge to be inspected, the underwater
drone is launched to inspect the submerged elements and the river bottom around them.
This allows for a diagnosis of the main damage that the foundation of a masonry bridge
can suffer. With this diagnosis, the bridge inspection can be considered complete.

4. Examples of Experimental Underwater Inspections

Several studies have discussed the deliberate intention of ancient engineers, especially
Roman engineers, to locate buildings, especially bridges, in places with good foundation
conditions [11]. Eugène Viol-let-le-Duc suggested that after the fall of the Roman Empire,
technical innovation was practically non-existent until the Carolingian period [12]. At the
end of the Middle Ages, the Renaissance revived the Greco-Latin tradition in architecture
and construction. The Renaissance imitated this tradition to an unprecedented degree. In
the centuries that followed, this imitation continued with less intensity but always on the
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premise of applying what had proven effective. The foundation of masonry structures is
one of the clearest examples of this.

With this premise in mind, a sample of three granite rock bridges from different periods
and geographical locations on the Iberian Peninsula was selected to test the suitability of
using an underwater drone to inspect their submerged elements:

1. The Segura Bridge, a thousand-year-old Roman bridge in Extremadura, on the border
between Spain and Portugal;

2. The San Lorenzo Bridge, a nineteenth-century Roman-inspired bridge in the northwest
of the peninsula, on the border between Spain and Portugal;

3. The Brandomil Bridge, a medieval bridge in Galicia.

In all three cases, the presence of a river of a certain size under the bridge, the ge-
ometric dimensions of the structures to be analysed, and the inaccessibility of certain
areas (in all three cases, several of the central piers are submerged in river water) make
the selected bridges ideal for verifying the validity of using the underwater drone. In
addition, the beauty, significance and historical and heritage value of each of the selected
bridges undoubtedly add value to their inspection. The fact that they are of great historical,
archaeological, engineering, and pathological interest reinforces this idea.

The three inspections were carried out during the summer when the flow of the
rivers is lower. At this time of year, it is much easier to navigate the device and detect
any deterioration problems in the foundation elements or deficiencies caused by the poor
behaviour of the soil–foundation complex.

4.1. The Roman Segura Bridge

Located on the border between Spain and Portugal, in the province of Cáceres, the
Segura Bridge spans the Erjas River, a tributary of the Tagus. It still carries road traffic today,
linking the Extremaduran town of Piedras Albas with the Portuguese town of Segura. It is
estimated to have been built around the same time as the nearby Alcántara Bridge, in the
2nd century AD [13,14].

The bridge has five spans with arches of unequal span (Figure 4). The largest is in
the middle, with a span of 10.50 m [9]. The thickness of the bridge varies slightly between
2.85 m and 3.00 m.

The entire bridge as it is currently preserved is not the original Roman one. There
is evidence of a reconstruction in the 16th century and another in the 19th century [13],
the latter involving masonry that contrasts with the Roman ashlar and allows the bridge
platform to be adapted to the traffic of the time, as well as facilitating the drainage and
evacuation of water [14–16].

The bridge was built directly on the schistose rock that characterises this section of the
Erjas River channel. The first rows of ashlars were placed on it to form the bridge’s piers
and abutments (Figures 5 and 6).

In 1996, the lower part of the piles was lined at a variable height (Figures 3 and 5),
an intervention that has been the subject of several less-than-positive evaluations for its
aesthetics and effect on the original material [17]. This will not be discussed in this paper
but cannot be ignored given the research objective. This protective covering was made
of concrete.

Based on this premise, the underwater drone used for the inspection was launched
from a point with access to the river, downstream of the bridge, and approached the Roman
structure against the current to inspect the submerged elements (Figure 7).

This made it possible to check that there was no deterioration damage to the bridge.
The element inspected was the concrete casing mentioned above, which had recently been
installed to protect the lower ashlars at the expense of hiding them. The texture of the
concrete showed no loss of material due to the direct action of the water (Figure 8) and was
relatively healthy despite being submerged and exposed to flowing water. The drone was
able to verify that there were no cracks in the concrete, no exposed steel reinforcement and
no disaggregation.
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The drone also analysed the soil–foundation complex to check for signs of possible
future undermining. The visual inspection of the elevation had indicated that there were
no previous settlement or pile rotation problems. However, it is believed that the effect of
water flow on the foundation and pile bases is the most common cause of failure in the soil–
foundation complex for this type of structure, leading to very serious instability situations
as a result of cavity formation and decompression of the soil around the pile bases.

For this reason, in addition to the detailed visual inspection of the submerged support
bases, the channel bed in the vicinity of these bases was also analysed with the aid of the
drone. This made it possible, firstly, to determine the condition of the bed in the vicinity
of the elements and thus to have an idea of the type of material it is made of (sand) and
its consistency, and, secondly, to check that there were no significant irregularities in the
bed, such as those caused by the formation of horizontal axis eddies in the direction of
water flow.

The lack of evidence of destabilisation and mobilisation of significant thicknesses in
the riverbed, along with the good condition of the concrete protection, indicates that there
has been no increase in the erosive power of the water, at least in recent times. Analysis
of the area around the base of the submerged breakwaters showed that no bed material
had been torn from the edge by the vertical component of the flow, lifted, and carried by
the current. When one of the piles was removed (the first, counting from the abutment on
the Portuguese side), no evidence of conical depressions in the bed was found. A small
depression was found at the edge of the breakwater of this first pile, but its size and depth
were minimal and therefore not of concern (Figure 9).

All this led to the conclusion that the submerged elements of the bridge were in a
suitable state of preservation and able to fulfil their function in the short and medium term,
thus guaranteeing the absence of undesirable phenomena related to the foundation.
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4.2. The San Lorenzo Bridge

The San Lorenzo Bridge (Figure 10) is a granite ashlar structure that allows road traffic to
cross the Tormes River, a tributary of the Duero, on the provincial border between Zamora and
Salamanca in Spain [18,19], very close to Portugal. Its geometric and structural characteristics
make it a Romanesque bridge, although it was built in the 19th century [20,21]; its construction
was completed in 1871, according to an inscription on its parapet. The bridge is made up of
five identical semicircular arches resting on piers topped by rounded breakwaters, making
them symmetrical.

The imposing Almendra reservoir, the third largest in Spain, created by the highest
dam in the country [22], was built in 1970 on the Tormes riverbed, just seven kilometres
upstream from the bridge. As a result of its construction, the riverbed that the bridge spans
and supports is now much smaller than it was during the first hundred years of its life.
This made it easier to carry out the experimental inspection and allowed the support of one
of the abutments and one of the piers to be seen (Figures 10 and 11). These are now outside
the riverbed and, given the condition of the first ashlars, must have been submerged before
the dam was built. It was also possible to verify that the piers and abutments of the bridge
rest directly on outcropping substrates of thick two-mica granite, characteristic of this area
of the Arribes del Duero [23,24].

The inspection of this bridge was particularly representative, not only because of the
beauty of the structure but also because of its inherent complexity: the location of the
bridge, in the difficult-to-access Puerto de La Cicutina, was compounded by the abundant
vegetation in the area, which made it impossible to see the entire structure (Figure 8).

In order to carry out this inspection properly, the pilot had to position himself on
a riverbank upstream of the bridge, where the riverbed was accessible, and position the
drone there (Figure 2), from where it could follow the course and flow of the Tormes River.
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In this way, it approached the central piers from upstream of the bridge and was able to
carry out the inspection properly (Figure 11).
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Figure 11. Underwater drone approaching one of the central piers of the San Lorenzo Bridge from
downstream to allow observation of the submerged elements (photo by the author).
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Unlike the Segura Bridge, the piers here have no additional concrete elements. The
underwater drone confirmed the observation made on the non-submerged elements
(Figures 12 and 13): the piers rest directly on the ground and the first ashlars rise out
of the sand of the riverbed (Figures 14 and 15). As in the previous case, detailed observation
allowed us to verify that there were no symptoms of the type that may appear in the
superstructure as a result of the main foundation defects: twisting, absolute settlement or
differential settlement. A quadcopter drone was used for this purpose.
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Figure 12. View of the first pier of the bridge, counting from the northern abutment (Zamora side),
showing its support (photo by the author). This photo served to give an idea of the foundation of the
bridge elements, as not all of them were visible.

The underwater drone inspection of the submerged parts confirmed the correct state
of the elements underwater: there were no missing granite ashlars, and the granite forming
the submerged ashlars was in an adequate state of preservation. The presence of stone slabs
in various joints between the ashlars and their appropriate location (Figure 14) appeared to
help maintain the position of the ashlars by mutual friction against the erosive action of the
river. This would have prevented the need to use grouting mortar, which inevitably tends
to dissolve or be lost over time due to the washing action of the flowing water.

It was also possible to verify that the lower part of all the submerged piles was in
complete contact with the riverbed. This, together with the absence of deformations in the
position of the ashlars, allowed us to confirm the absence of undermining under these piles.

In order to obtain a complete final assessment of the soil-pile interaction under the
Tormes riverbed, a visual survey of the material making up the bed adjacent to the sub-
merged elements was carried out using the underwater drone, bearing in mind that this
material may undergo some displacement due to the erosive action of the water and, as a
consequence, some of these partially submerged piles may be undermined. The analysis
showed that there were few irregularities in the bed and that its depth around all the
partially submerged elements was virtually identical. The river sand was interspersed with
granite elements and the bed remained at a virtually constant level across the section.
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Figure 13. Another view of the pile shown in Figure 12, with the northern abutment in the background
(photo by the author). This photo also served to give an idea of the foundation of the bridge elements,
as not all of them were visible.
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Figure 14. Underwater drone image showing the status of a fragment of the lower part of the pile
inspected in the position of Figure 11 (photo by the author). The granite ashlars and the fixing slabs
can be seen in the image.
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Figure 15. Condition of another fragment of the lower part of one of the inspected piles, in an image
captured by the underwater drone (photo by the author). The stone elements on the river bottom,
around the base of the piles, can be seen in this photograph.

All this led to the conclusion that the submerged elements of the bridge were in a
good state of preservation and able to fulfil their function in the short and medium term,
thus guaranteeing the absence of undesirable phenomena related to the foundation.

4.3. The Brandomil Bridge

The Brandomil Bridge is located in the municipality of Zas, in the province of A
Coruña, and spans the Xallas River. Although it does not currently carry traffic, this bridge
is particularly representative because it was part of the last stretch of the old Pilgrim’s
Way to Santiago de Compostela, linking Santiago and Fisterra [25]. Until about eighty
years ago, it fully supported the passage of carriages on the overlying road. In the 1940s, a
new concrete bridge was built a few metres upstream to replace it [26]. The pilgrims who
disembarked at the ports of Muxía and Fisterra on their way to Santiago de Compostela
passed through Brandomil and, more specifically, over this bridge [27]. The width of the
road over the bridge is 2.75 m.

The bridge has four ashlar arches (Figure 16): three of them with the same span
(8.20 m) and the last, at the southern end of the bridge, with a considerably smaller span
(4.30 m). The piers, with breakwaters that rise to the top, are very thick, around 3.00 m. The
two vaults on the right bank are double-threaded. The vaults, tympanums and parapets
are made of granite ashlar [28]. Its constructive and aesthetic characteristics date it to the
17th century, although there is evidence of the existence of an earlier bridge in the same
place [25], even from Roman times [14].

The piers and abutments of this bridge are built directly on schist and paragneiss
substrates, with some intercalations of para-amphibolites [24], which are characteristic of
this area of the Xallas course, only hidden in some areas of the riverbank by the alluvial
plains and the bottoms of the valleys.
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Figure 16. General view of the downstream elevation of the Brandomil Bridge, in an image captured
by a quadcopter drone (photo by the author).

Prior to the underwater drone inspection, the bridge underwent a complete and
meticulous inspection of its visible parts using a quadcopter drone [29]. This inspection
made it possible to check that there were no defects in the various visible elements that
would indicate that the foundation was not functioning properly.

Once again, the underwater drone was launched from a point downstream of the
bridge, where the riverbed was accessible (Figure 17), to navigate against the current
through the Xallas River towards the stone structure, reaching the bridge to analyse the
foundations of the piers built on the riverbed. The drone inspection showed that the
submerged part of the elements was in perfect state of preservation (Figure 18) and that
there was a slight settlement in one of the bases, which appeared as a lack of linearity in one
of the courses of the ashlars. This slight movement must have taken place some years ago,
as there was no evidence of any depressions in the vicinity of the foundations, particularly
in the area upstream of the element in question.

The drone inspection showed that the materials forming the base of the submerged
piles were in adequate condition: the granite showed no signs of deterioration or erosion
from the action of the water, nor were there any missing elements, particularly ashlars.

The analysis of the riverbed in the vicinity of the elements was somewhat more
complicated in this case than in the previous ones, due to the presence of thick vegetation
remains deposited on a large part of the riverbed surface (Figure 18). Despite this, it was
possible to verify that the level of the riverbed was virtually uniform, with no trenches,
deposits, or other irregularities that could be caused by the action of water currents on
the piles.

Thanks to the drone, it was possible to rule out the existence of any degradation
phenomena in the material making up the submerged elements, as well as the presence
of any signs of poor performance of the soil-pile assembly due to the actions to which
this assembly is exposed. It was therefore concluded that the foundation was in good
working order.
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5. Economic Valuation

However, to make a complete analysis, the logistical analysis is insufficient. An
economic assessment must be conducted, comparing the cost of a traditional underwater
inspection (with divers) to an underwater inspection using a submersible drone.

For this assessment, the economic evaluation criteria of two Spanish public admin-
istrations were taken into account: the Port Authority of the Balearic Islands (Autoridad
Portuaria de Baleares) and the Port Authority of Las Palmas (Autoridad Portuaria de Las
Palmas). Both define underwater inspections as inspections focused on analysing the
foundation, the bottom, and the lining blocks, locating points of interest or anomalies, and
taking measurements of possible misalignments (height, bottom, and length).

The Port Authority of the Balearic Islands is a public entity under Puertos del Estado
(Ministry of Public Works), which manages the five general interest ports of the Balearic
Islands. This public entity estimates the daily cost of the diving equipment needed to carry
out the inspection at EUR 1800 (USD 2016) and the daily cost of the support boat needed
for these underwater works at EUR 600 (USD 672) [30].

Based on these data, and on the available structures and their geometric characteristics,
this body has established a price for underwater inspection of EUR 5.90/m2 of structure
(USD 6.59/m2). Applying this to the constructions analysed in this research, it would
amount to:

• The Roman Segura Bridge: EUR 830.13 (USD 928.13).
• The San Lorenzo Bridge: EUR 1886.82 (USD 2109.57).
• The Brandomil Bridge: EUR 1451.40 (USD 1622.75).

The Port Authority of Las Palmas, also a public entity under Puertos del Estado,
manages five ports in the province of Las Palmas, in the Canary Islands [31].

This public entity values these inspections in a range between EUR 1440.00 (USD
1609.73) and EUR 2280.00 (USD 2548.74), depending on the difficulty of access to the struc-
tures being inspected. With the first inspection under the most favourable conditions, the
drone used in this research would have already been paid for, as it currently costs USD
1059.59 on the market. Therefore, the economic savings are added to the logistical advan-
tages.

6. Conclusions

This research was based on the premise that it is not possible to carry out a complete
inspection of an ancient structure to ensure absolute certainty of its true state and stability
when part of it is underwater. Therefore, to carry out a full assessment, an underwater
drone was used to complement the aerial drone. This underwater drone is capable of
visually inspecting the submerged parts of bridge substructures. In this study, it was used
on three bridges, as well as the riverbed around each structure, to determine its condition
and verify the soil–foundation complex.

The three examples above have shown that, from a logistical point of view, the use
of an underwater drone is perfectly valid for the objective pursued. The result is work of
optimal quality without risk to the safety and health of any operator.

The inspections conducted in this research confirmed that the submerged elements
were in a remarkable state of preservation, with no significant defects or damage associated
with deterioration in virtually any of them. Indeed, all of the submerged elements were in
good condition.

For the three bridges analysed, the underwater drone inspection confirmed that it is
not easy to distinguish between the structural element of the foundation and the bridge
pier, which is very common in old masonry bridges. However, the drone was able to rule
out any defects in the soil–foundation complex and, therefore, any signs of settlement in
its elements. Only one slight settlement of two ashlars was observed in one of the piers
of the Brandomil Bridge, in the area of the joint between the two. After analysing the
riverbed in the vicinity, it was possible to confirm that this settlement had occurred some
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time ago, without having the slightest effect on the pier it supports, and therefore on the
rest of the bridge.

The results of the inspections show that a suitable drone can be used to make a detailed
and complete visual observation of the submerged elements that make up an important
monument. This tool prevented the need for underwater inspections by divers, which
would have been necessary if this tool had not been available. The following conclusions
can be drawn from this experience:

1. Underwater drones can be used to visually inspect the condition of the materials that
make up submerged bridge elements.

2. Underwater drones can be used to inspect the material forming the bed adjacent to
the substructure, which can be displaced or altered by the erosive action of the water,
causing undermining of piles or abutments.

3. Underwater drones can be used to check the scour conditions at each pile and abut-
ment and to estimate the maximum scour depth.

4. Underwater drones simplify the planning of traditional underwater inspections.
5. Underwater drones simplify the fieldwork required to identify and assess the deterio-

ration of each element of a bridge.
6. Underwater drones reduce all kinds of safety risks for workers involved in underwater

inspections, given the inherent dangers: with a drone, no worker needs to expose
themselves to the risk of drowning associated with underwater diving.

7. The six points above represent significant financial savings that do not, in any way,
imply a reduction in the quality of the work. As demonstrated in Section 5, the
economic savings are added to the logistical advantages.

Underwater inspection is a very labour-intensive and costly task in terms of human,
logistical, and financial resources, which is why it is often only used when there is no
other option. The main inspection guide [32] recommends that underwater inspections be
carried out every five years, or more frequently if a structure requires special monitoring,
e.g., where the foundations are particularly exposed to the action of water, where a rapid
evolution of the hydraulic conditions of the river has been observed, or where some
anthropic intervention has occurred that may have harmful effects in the area of influence.
The advent of this new type of device, which makes underwater inspections much safer and
more accessible, can be an incentive to carry out these inspections more frequently, resulting
in greater durability and better conservation of structures with submerged elements. The
experience gained from the experimental inspections carried out for this study can be
extrapolated to many other works of the same nature, opening up an infinite range of
possibilities for these small devices, which are undoubtedly here to stay and are sure to
change the way certain elements are inspected.

This paper has focused exclusively on the use of underwater drones to inspect her-
itage structures with partially submerged elements. Although it was not used here, the
underwater drone involved in this research has a built-in probe that would make it possible
to carry out perimeter bathymetry around the element to be inspected. In other words,
this tool could be used to measure the depth of the bed around the element, with periodic
inspections providing an idea of how the bed is changing over time. Furthermore, when
diagnosing the first signs of undermining of an element, this built-in probe would make
it possible to measure the length of the bed on which the element is not in contact and to
quantify the depth of the diagnosed undermining.

This option opens up a wide range of basic operations for proper and rapid assessment
of foundation defects, as a bathymetric survey of the channel would make it possible to
define the longitudinal profile of the riverbed, as well as its cross-sections upstream and
downstream of the bridge. Hydraulic calculations can then be carried out to determine
the basic parameters of the object under study, such as river velocity or water depths at
particularly sensitive points, such as around the piers or abutments.

Similarly, the drone model used can be equipped with small accessories. This possibil-
ity should be explored, for example, to allow a small sample to be taken during a campaign.
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Finally, this research focused on the submerged elements of three bridges built to
cross low-flow and low-depth rivers. This was done using an underwater vision drone
that navigated on the surface at all times. In practice, and in a more powerful river,
the drone’s range could be limited and it could provide partial and biased information.
However, there are indications of other devices on the market that have the ability to dive
underwater and not just stay on the surface, making it possible to reach and inspect deeper
and inaccessible elements.

In short, the use of more powerful and versatile unmanned immersion equipment
would allow inspections of much more complex structures and in much more inaccessible
areas. Furthermore, technological advances in this field cannot be ignored: every so often,
new tools appear on the market, with more and better features, more advanced and with
more and more functions, which can be incorporated into the scope of study of this research.
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