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Abstract: Through the use of recycled aggregates, the construction industry can mitigate its en-
vironmental impact. A key consideration for concrete structural engineers when designing and
constructing concrete structures is compressive strength. This study aims to accurately forecast the
compressive strength of recycled aggregate concrete (RAC) using machine learning techniques. We
propose a simplified approach that incorporates a two-layer stacked ensemble learning model to
predict RAC compressive strength. In this framework, the first layer consists of ensemble models
acting as base learners, while the second layer utilizes a random forest (RF) model as the meta-learner.
A comparative analysis with four other ensemble learning models demonstrates the superior perfor-
mance of the proposed stacked model in effectively integrating predictions from the base learners,
resulting in enhanced model accuracy. The model achieves a low mean absolute error (MAE) of
2.599 MPa, a root mean squared error (RMSE) of 3.645 MPa, and a high R-squared (R2) value of 0.964.
Additionally, a Shapley (SHAP) additive explanation analysis reveals the influence and interrelation-
ships of various input factors on the compressive strength of RAC, aiding design and construction
professionals in optimizing raw material content during the RAC design and production process.

Keywords: machine learning; recycled aggregate concrete; regression prediction; Shapley additive
explanations; compressive strength

1. Introduction

Concrete stands as the predominant construction material on a global scale. A fraction
amounting to 8% of global carbon dioxide released pollutants is linked to concrete produc-
tion [1,2]. Furthermore, a large amount of natural aggregates (NAs), such as river sand and
natural stone, are required in the manufacturing of concrete mixtures [3]. Consequently,
ensuring a consistent and sufficient supply of concrete aggregates is crucial for the sustain-
ability of the construction sector. Short-term deficiencies in aggregate availability have the
potential to result in project delays and escalated costs.

In China and various other countries, the demand for NAs has experienced rapid
growth, primarily driven by infrastructure construction projects. The depletion of existing
NA resources necessitates the exploration and extraction of aggregates from new areas.
However, these mining processes are not environmentally friendly and can lead to adverse
impacts on the overall environment and ecosystems. Statistics show that the construction
industry has a significant impact on the environment, accounting for over 50% of the
exploitation of natural resources and 39% of carbon dioxide emissions [4]. These waste
materials are often disposed of in landfills with the absence of recycling, causing detrimen-
tal effects on natural ecosystems. Therefore, employing recycled aggregates sourced from
building and demolition debris can make a substantial contribution to environmental con-
servation and improve the sustainability of the architecture industry [5]. As a result, there
has been a growing focus on investigating the repurposing of building and dismantling
materials in recent years [6,7].
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While extensive research has indeed been conducted on the physical and mechanical
characteristics of recycled aggregate concrete (RAC), exploratory studies are still needed
to address specific gaps and challenges. In particular, adopting efficient and intelligent
methods to preliminarily assess and better understand the mechanical properties of RAC
would greatly reduce testing costs and resource consumption. This approach will help sub-
stantiate RAC’s practical application and enhance its implementation in various contexts.
Extensive investigations have been carried out regarding RAC’s compressive strength (CS),
a critical mechanical attribute. Since recycled aggregates are a part of RAC, the relationship
between the mechanical attribute and its constituent parts is typically complex [8]. The
mechanical characteristics of concrete and the recycled components interact in a highly
nonlinear way due to the diverse composition of recycled aggregates [9]. Currently, re-
search on the compressive strength of RAC primarily relies on laboratory compression tests.
However, these tests are often time-consuming and resource-intensive, particularly when
adjusting the mix proportions to achieve the desired compressive strength. Additionally,
traditional empirical formulas, such as polynomial and exponential functions incorporating
parameters like rebound value and ultrasonic pulse velocity, can result in relatively large
errors when estimating compressive strength [10–12]. Therefore, being able to provide
an accurate estimate of compressive strength for a specific RAC mix before conducting
laboratory compression tests would be highly valuable. In fact, numerous researchers have
already conducted extensive laboratory compression tests on RAC, and the results from
these tests represent a valuable resource. Fully utilizing and mining these data would have
significant engineering value.

With the progress of artificial intelligence and computer technology, more intelligent
methods are being developed for this goal. A data-driven method has been provided
for learning and discerning relationships between the CS of RAC and its constituent ele-
ments. Specifically, the models markedly decrease the time and cost needed for sample
preparation and testing. Previous studies have explored various intelligent models for
predicting RAC compressive strength. For example, Aliakbar et al. [13] developed a pre-
diction equation for the 28-day compressive strength of RAC based on 650 samples using
gene expression programming (GEP), but the equation was complex and considered only
a few influencing factors. Using three models, i.e., the artificial neural network (ANN),
the adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR),
with 14 input parameter variables, Faeze et al. [14] obtained promising results in predicting
the 28-day compressive strength of RAC. Three models were used by Neela et al. [15]
to forecast the 28-day compressive strength of RAC. Among them, ANN demonstrated
better predictive performance compared to non-linear regression (NLR) and model tree
(MT). Catherina et al. [16], Duan et al. [17], Mohamad et al. [18], and Jesús et al. [19] have
also employed ANN for the same goal. According to the evaluation results, ANN demon-
strated a better degree of prediction accuracy and can be a valuable tool for forecasting the
compressive strength of RAC made from various types and sources of recycled aggregates.

In addition to simple ANN models, other models such as support vector machine
(SVM), extreme gradient boosting (XGBoost), gradient boosting, Gaussian process, deep
learning, and convolutional neural networks (CNNs) have also been employed to forecast
the compressive strength of RAC [20–29]. Van et al. [30] utilized the particle swarm
optimization (PSO) algorithm to form the corresponding hybrid models with gradient
boosting (GB), XGBoost, and support vector regression (SVR). In these models, the GB_PSO
model demonstrated the highest correlation coefficient (R = 0.936), accompanied by the
lowest RMSE (5.560 MPa) and MAE (4.288 MPa). To explore the predictive performances
of different models, Uma et al. [31] compared seven different machine learning models,
namely XGBoost, K-nearest neighbors (KNNs), ANN, SVM, linear regression, decision tree,
and random forest (RF) in the RAC compressive strength prediction. Of these models, the
XGBoost model showed superior testing performance.

Based on the provided information, it is clear that there is an increasing focus on the
application of machine learning models to forecast the compressive strength of RAC. Al-
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though previous studies have proposed machine learning-based models, such as traditional
single models, hybrid models, and ensemble models for predicting the RAC compressive
strength, limited studies have been undertaken on utilizing stacking learning models for
forecasting the strength outcomes of RAC [32]. Stacking models, due to their combinations
of predictions from multiple strong learners and their advantages, often achieve better
results. Therefore, it is valuable to investigate and promote stacking learning models to
provide more robust and powerful solutions for predicting the compressive strength of
RAC. This research aims to fill this gap by exploring the potential of stacking models in pre-
dicting RAC compressive strength. In addition, compared to previous studies [33,34] that
only considered using recycled coarse aggregate, this work has been improved to include
samples where recycled fine aggregates are utilized to replace their natural counterpart.

Besides accurately predicting the compressive strength of RAC, understanding the
impact of individual input parameters on the output and adjusting the parameter values to
achieve the desired compressive strength is both necessary and meaningful. A thorough
examination of the significance of input parameters is highly important, yet such studies
are scarce. Therefore, leveraging the fusion strategy of stacking models, this study proposes
a stacking model-based method for estimating the RAC compressive strength and suggests
Shapley (SHAP) additive explanations to examine how the input feature affects the output,
guiding the design of RAC mix proportion.

2. Methodology
2.1. Stacked Model

Stacking is an ensemble technique that operates in parallel, amalgamating the outputs
of multiple learners through a multi-layer learning framework. The core idea behind
the stacking model involves employing base learners in the initial layer to train on the
original data. Subsequently, the output from each base learner is utilized to construct a new
dataset. Ultimately, the meta-learner in the second layer generates the final predictions,
being trained on this new dataset with the output from the base learners as input. Figure 1
shows the framework for a two-layer stacked model.
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2.2. Learners

When constructing the stacking model, it is essential to consider both the accuracy
and diversity of the models when selecting the base learners. By combining predictions
from several models, ensemble learning produces forecasts that are often more accurate
and reliable than those from any one model alone. Thus, four effective ensemble learning
models, i.e., RF, gradient boosting decision tree (GBDT), XGBoost, and LightGBM (LGBM),
were chosen to serve as base learners in this study. A model with great generalization
capacity is usually favored for the role of the meta-learner, and the RF model was selected
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for this role. A synopsis of the four learners may be found below. For more detailed
information about these four models, please refer to the references [35,36], and this study
will not further elaborate on them.

2.2.1. RF

A classical and popular ensemble learning model is RF. The core idea of this algorithm
is to randomly select samples and feature parameters in the model. As a representative
algorithm of the bagging method, the RF model adopts bootstrap resampling from the
original data, randomly selecting multiple samples, modeling each sample into a decision
tree, and then combining them into multiple decision trees. Every decision tree has its
independent training procedure, allowing the training of random forest to be conducted
concurrently, greatly improving efficiency. The prediction result for input samples is the
average output of multiple trees. This method has advantages such as robust capacity for
generalization and quick training.

2.2.2. GBDT

The GBDT model is a decision tree model that operates iteratively based on the ensemble
learning “Boosting” concept, which combines additive modeling and the forward distribution
algorithm. It utilizes decision trees as lesser-capacity models, training current weak learner
with the negative gradient of the loss function from the preceding lesser-capacity models, and
updating the weights of the training set. Finally, it obtains the strong learner by summing the
weighted results of each round of training weak learners. The GBDT model has the benefit of
being able to produce superior prediction outcomes for a variety of features.

2.2.3. XGBoost

The ensemble learning technique GBDT has been expanded into XGBoost, which
includes improvements to the loss function and the optimization process for minimizing the
loss. Compared to the GBDT model, XGBoost provides integration within the loss function
through a second-order Taylor series expansion, which improves the model’s accuracy.
XGBoost also improves the loss function’s regularization term, preventing overfitting and
enhancing the model’s generalization capability.

2.2.4. LGBM

LGBM is another decision tree-based algorithm released by Microsoft Research in 2017,
which is a gradient boosting framework that utilizes decision trees based on histogram
methods. It is also the GBDT model’s optimization. Two strategies are used by the LGBM
model: exclusive feature bundling (EFB) and gradient-based one-side sampling (GOSS).
Samples with bigger gradients are given more weight in the GOSS strategy. The EFB
technique reduces dimensionality within features by grouping together some mutually
incompatible features. The LGBM model has the following benefits: it requires less memory,
trains models quickly, and supports parallel training.

2.3. Feature Analysis Using SHAP

In addition to accurate output predictions, understanding how input parameters affect
the result is essential. It can effectively guide the design of the RAC mix proportions,
and adjusting the mix proportions for decreasing the importance of input parameters will
significantly save time and costs. Therefore, the model interpretation based on SHAP
analysis is introduced to analyze the importance of features and their impact on the output.
SHAP was proposed by Lundberg and Lee in 2017 [37]. It presents the idea of additive
explanations, offering a unified method for comprehending predictions made by models.

The additive feature attribution technique known as SHAP, which derives from co-
operative game theory, yields an explainable output for the model. The Shapley value, as
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referred to by [38], quantifies the contribution of each characteristic. Consequently, the
explanation of the model g(x′) can be characterized as follows:

g(x′) = φ0 + ∑M
i=1 φix′i (1)

The vector of simplified input variables, denoted by x′, is derived from the dataset’s
original input variables, x. M denotes the dataset’s feature count. When there are no
inputs at all, φ0 is a constant; φi represents the attribution value of each feature i. For each
individual model, it meets the following condition:

φi(ϕ, x) = ∑
z′⊆x′

|z′|!(M − |z′| − 1)!
M!

[ϕx(z′)− ϕx(z′\i)] (2)

where |z′| denotes the non-zero entries of z′ and z′ represents the potential subsets of x′. Clearly,
directly solving the above equation would be computationally burdensome as a result of the
various feature subset options. Therefore, since TreeSHAP matches tree-based ensemble models
naturally and offers effective Shapley value computation for all features, it is used here. Once
determined, the Shapley values can be employed to easily interpret the model’s output. The
procedural flowchart for the method employed in this paper is illustrated in Figure 2. First, the
dataset is normalized to eliminate scale effects and then is randomly divided into training and
test sets. Next, machine learning models undergo parameter tuning based on cross-validation
and grid search methods. The performances of different models are compared using evaluation
metrics on the test set. Finally, the SHAP analysis is introduced to analyze the importance and
impact of input features on the prediction output.
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3. Dataset Description and Analysis

To establish an accurate compressive strength prediction model, a comprehensive
experimental database was constructed [39], containing 1100 samples. The nine input
feature variables were selected, including recycled fine aggregate (RFA), water content,
cement content, silica fume (SF) content, natural coarse aggregate (NCA), fly ash (FA)
content, natural fine aggregate (NFA), recycled coarse aggregate (RCA), and age. The
output feature variable was the RAC compressive strength. Table 1 provides a summary
of the statistical information pertaining to the dataset, which includes the maximum,
minimum, mean, standard deviation, kurtosis, and skewness based on all samples. In
Figure 3, the distributions of these variables are depicted. The compressive strength (output
variable) ranged from 5.96 MPa to 121.42 MPa. Additionally, it can be observed that for SF,
FA, NFA, NCA, RFA, and RCA, the ranges of these component content variations are quite
large, indicating a certain representativeness of the dataset.

Table 1. Attributes, range, and statistical features of variables.

Parameter Cement SF FA Water NFA NCA RFA RCA Age CS

Unit kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 days MPa
Max 600 50 227.5 271 1065 1366 1000 1632 180 121.42
Min 140 0 0 120 0 0 0 0 1 5.96

Mean 356.00 1.09 27.29 193.32 650.11 529.91 32.98 518.49 32.66 41.50
SD 72.72 6.14 58.07 26.01 222.20 447.16 134.73 427.67 36.41 18.66

Kurtosis 1.77 37.72 2.71 −0.29 2.64 −1.55 21.12 −1.10 4.84 2.10
Skewness −0.88 6.07 1.97 −0.32 −1.42 −0.03 4.52 0.27 2.07 1.01

Type Input Input Input Input Input Input Input Input Input Output
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Figure 3. Cont.
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Figure 3. Frequency distribution histograms of the counts and cumulative percentages for individ-
ual variables.

To examine the relationships between input factors and output results, Figure 4 depicts
the Pearson correlation coefficient matrix. Coefficients close to 1 in the matrix indicate
significant positive associations between two variables, while those close to −1 suggest
strong negative correlations. From Figure 4, the two variables with the strongest linear
correlation to CS are age and water, with coefficients of 0.37 and −0.36, respectively.
These values represent the positive and negative effects on CS, respectively. Nevertheless,
the linear relationships among individual input factors and the output results can be
largely disregarded, suggesting that navigating the intricate non-linear correlation among
numerous factors is a challenging task. It is the primary motivation behind the study’s
adoption of machine learning techniques to accomplish this objective. The 880 samples
(training set) and 220 samples (test set) were randomly selected from the whole dataset.
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4. Model Building and Prediction Results 
4.1. Model Implementation 

The variable data was preprocessed and standardized during the training process. 
Cross-validation and grid search were utilized for hyper-parameter tuning, and the final 
setting values are presented in Table 2. All other parameters not listed are set to the default 
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4. Model Building and Prediction Results
4.1. Model Implementation

The variable data was preprocessed and standardized during the training process.
Cross-validation and grid search were utilized for hyper-parameter tuning, and the final
setting values are presented in Table 2. All other parameters not listed are set to the default
values of the model. Subsequently, the model’s performance was assessed using the test
set, and its effectiveness was gauged through the utilization of three widely recognized
indicators: the coefficient of determination (R2), the root mean square error (RMSE), and
the mean absolute error (MAE). The definitions of these statistical indexes are shown in
Equations (3)–(5).

R2 = 1 −

N
∑

i=1
(ypre,i − yexp,i)

2

N
∑

i=1
(ypre,i − yexp)

2
(3)

MAE =
1
N

N

∑
i=1

∣∣ypre,i − yexp,i
∣∣ (4)

RMSE =

√√√√ 1
N

N

∑
i=1

(ypre,i − yexp,i)
2 (5)

where yexp,i and ypre,i are the actual value and predicted value of the sample and yexp is
the mean for N samples. A value for R2 that is closer to 1 denotes a greater degree of
accuracy since it shows a stronger connection in the context of the predicted and real results.
For RMSE and MAE, smaller values indicate smaller prediction errors and more accurate
predictions [40–42].
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Table 2. Optimal parameter selections of different ensemble models.

Model Optimal Value of Hyper-Parameters

RF n_estimators = 20, criterion = ‘squared_error’, max_features = 5, max_depth = 25
GBDT n_estimators = 1050, learning_rate = 0.2, max_depth = 3
LGBM n_estimators = 2000, learning_rate = 0.3, max_depth = 4

XGBoost n_estimators = 800, learning_rate = 0.15, max_depth = 3, min_samples_leaf = 1, min_samples_split = 1

4.2. Prediction Comparison of Different Models

Figure 5 displays the predictions obtained from the four ensemble models over all
training and testing datasets. For most samples, observations show a high degree of
agreement between the expected and actual values. For a more thorough comparison of
the model’s predictive capacity, the linear correlations between each model’s predicted
and actual values on the test samples are shown in Figure 6. In contrast to the RF model,
the other three models out of the four, which utilize boosting trees and more integrated
improvement strategies, exhibit significantly enhanced performance. The distribution
of most test samples is positioned closer to the diagonal line, indicating a substantial
agreement between the predicted and observed values. Specifically, the LGBM model
achieves the strongest correlation coefficient R2, which was 0.959, closely trailed by GBDT
with 0.958, XGBoost with 0.955, and RF with 0.908.
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Figure 6. Linear correlations between the predicted results and actual values for four models: (a) RF;
(b) GBDT; (c) LGBM; (d) XGBoost.

Figure 7 displays the stacking model testing results adopting RF as the second-layer
meta-learner. Compared to the four individual ensemble models, there is a superior linear
connection between the stacking model’s predictions and the true results, with R2 = 0.964.
However, relying solely on a single metric to evaluate the model’s performance is not
always reliable. Therefore, the error metrics MAE and RMSE are also calculated and plotted
for the test set, as depicted in Figure 8. Of the four ensemble models, the GBDT model
exhibits the most favorable predictive performance, yielding MAE = 2.624 MPa and RMSE
= 3.899 MPa. However, the stacking model exhibits even smaller prediction errors, with
MAE = 2.599 MPa and RMSE = 3.645 MPa.
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Figure 9 provides a statistical analysis of the relative errors for testing samples. Among
the 220 test samples, 173 (173/220), 163 (163/220), 163 (163/220), 171 (171/220), and 132
(132/220) samples have prediction errors within 10% for RF, GBDT, LGBM, XGBoost, and
the stacked model, respectively. Moreover, the stacked model has the fewest samples with
prediction errors exceeding 20%, which amounts to only 12 samples. These statistics further
illustrate the superiority and reliability of the stacking model.
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5. Feature Analysis Using SHAP Interpretation

The predictive outcomes of machine learning models can be explained through differ-
ent approaches using SHAP. First, as shown in Figure 10a, the feature relevance reveals
their overall influence on the prediction. In truth, it is computed as the mean of all the
datasets’ absolute Shapley values. From the graph, it can be observed that in general, “Age”
exerts the greatest impact on compressive strength, making it the most crucial variable,
followed by “Water” and “Cement”, while “SF” has the least effect. “RCA” and “RFA” also
influence the compressive strength, albeit with lower importances compared to “NFA”,
“FA”, and “NCA”.
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The feature summary plots are shown in Figure 10b, which also illustrates the effect
trends that coincide with each feature’s distribution of SHAP values. In Figure 10b, im-
portance is presented along the y-axis, with individual SHAP values represented along
the x-axis. Each point represents a sample, with the color of the point indicating a specific
value. Ranging from blue to red, the color scale represents values from lower to higher
magnitudes. The clustering of points horizontally represents the density of the samples.
It can be observed that “Age”, “Cement”, “FA”, “NCA”, and “SF” positively influence
the model’s results. On the contrary, “Water” and “RFA” have negative effects, leading to
reductions in the compressive strength of RAC. The “NFA” seems to have a positive effect,
but it is not very prominent, requiring further investigation and analysis, similar to the
case with “RCA”.

6. Graphics User Interface Development

For the convenience of estimating the compressive strength under different mix pro-
portions, a simple graphics user interface (GUI) has been designed in this study for easy
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use. As shown in Figure 11, input the actual values of the mix proportions in each text
box, then click “Predict”, and the interface will provide a prediction based on the stacking
model. For the next set of mix proportion tests, input the content of each component first,
then click “Update”, and then click “Predict” to proceed.
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It is important to highlight that the effectiveness of machine learning models in pre-
diction is significantly influenced by the dataset. As this study is based on a limited dataset
(1100 samples), where the data processing and standardization involved the highest and
lowest values of each feature, significant deviations may occur in the model’s predictions
when the input feature values of new test samples fall outside the range of the dataset used
in this study. Therefore, for new data samples that are not within the range of the dataset,
it is necessary to retrain the overall dataset with the addition of these new samples. The
incorporation of more new datasets is crucial and urgently needed to boost the utility and
generalization of the proposed model.

7. Conclusions

This study introduces a two-layer stacked model for estimating the compressive
strength of RAC. A dataset containing 1100 samples was collected for training and testing,
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and the model’s ability to predict the outcomes was compared. The SHAP method was
utilized to assess the significance of input variables and their influence on the output.

Compared with four individual models (RF, GBDT, LGBM, and XGBoost), the RAC
compressive strength on the test set was predicted more accurately by the suggested stacked
model, with R2 = 0.964, MAE = 2.599 MPa, and RMSE = 3.645 MPa. The performance
surpassed that of individual base learners, rendering it a valuable tool for predicting the
RAC compressive strength. The effects of integrating more base learners and multiple-layer
stacking models on improving prediction accuracy will be explored in the future.

SHAP analysis indicates that among the current dataset samples, the input feature
“Age” has the largest impact on compressive strength and is the most critical, succeeded
by “Water” and “Cement”, while the impact of “SF” is the smallest. “RCA” and “RFA”
also influence the compressive strength, but their importance is slightly lower than that
of “NFA”, “FA”, and “NCA”. These results provide comprehensive insights into how
features influence the prediction of compressive strength. The feature importance and
interactions between variables can serve as a guide for the mix proportioning of RAC.
Modifying the dosage of each component according to the significance of input attributes in
relation to output results will significantly reduce the adjustment time for mix proportion
and minimize the additional costs associated with production and testing.

It is worth noting that this study is limited by the dataset, which includes only a
restricted number of variables as input features. Future research will incorporate additional
factors, such as the quality and porosity of the recycled aggregate, into the model to enhance
its predictive performance and generalizability. Furthermore, comparing the performance
of the proposed model with other models will also be a key focus of future research.
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