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Abstract: This study assessed the mechanical performance of porous asphalt mixtures, specifically the
porous friction course (PFC), incorporating 10% Reclaimed Asphalt Pavement (RAP) and rubberized
asphalt. Three different methods were investigated to evaluate the stiffness of the mixtures: the
resilience modulus (RM) test at a single temperature and loading frequency, the complex modulus
|E*| test from compressive loading conducted at various temperatures and frequencies, and the
impact resonance (IR) tests performed at three temperatures with five impacts applied to the mixture.
The results demonstrated that the RAP-containing mixture exhibited a higher resilience modulus at all
tested temperatures, indicating greater stiffness compared to the mixture without RAP. Additionally,
the IR and |E*| tests revealed similar behavior between the two evaluated mixtures. These findings
suggest that both quasi-static and vibrational tests are suitable for characterizing the stiffness of
porous asphalt mixtures due to the similarity in the viscoelastic parameters of the two investigated
mixtures. This study provides important insights into the practical and scientific application of
recycled and modified materials in porous asphalt mixtures.

Keywords: friction porous course; material recycling; non-destructive evaluation; mechanical properties

1. Introduction

Road infrastructure plays a fundamental role in global connectivity and mobility,
being vital for economic and social development [1–3]. However, the construction and
maintenance of roadways often generate significant environmental challenges, including
the consumption of natural resources, waste generation, and pollutant emissions [4].

As awareness of climate change and environmental sustainability grows, the search
for more sustainable solutions and alternatives in the construction or renovation of road
pavements becomes urgent. In this context, the recycling of milled asphalt mixtures,
internationally known as Reclaimed Asphalt Pavement (RAP), in the production of new
asphalt mixtures contributes to reducing the demand for virgin materials, as well as
reducing costs and minimizing environmental impacts. Additionally, the use of recycled
materials such as RAP and steel slag in permeable asphalt mixtures can result in a reduction
of CO2 emissions of up to 23% [5].

Surveys conducted by the European Asphalt Pavement Association (EAPA) in 2021
indicate that, out of the 91 million tons of RAP generated in the United States, 95% is incor-
porated into the production of hot and warm mix asphalt. In Europe, Hungary leads in RAP
utilization, with 98% of the material being used in hot and warm mix asphalts. Following
closely are Germany and Austria, which also stand out, recycling 85% of the available RAP
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in new asphalt mixtures, along with other countries, such as France, Denmark, Slovakia,
and Spain, using RAP for pavement [6]. In Brazil, records of RAP production and destina-
tion are still incipient due to asphalt recycling not being considered a routine practice [7].
There are limitations such as the high heterogeneity of RAP and the increased stiffness of
the binder caused by aggregate over-heating during the mixing process [8]. These factors
impose restrictions on the use of RAP in conventional mixtures, typically limiting it to up
to 15% without the use of rejuvenating agents [9,10].

Traditionally, RAP from milled porous layers has been used in the production of new
porous asphalt mixtures [11–14]. However, research on the use of RAP from conventional
pavements in porous surfacing has recently been advancing, with studies primarily focusing
on the functional aspects and durability of these layers [5,15–18]. Few efforts [3,19,20] have
been directed toward evaluating the structural contribution of recycled porous asphalt
mixtures. When investigating the viscoelastic properties of a porous asphalt mixture
containing 15% RAP, Goh and You observed an increase in stiffness in mixtures with RAP,
as well as greater tensile strength compared to control mixtures [19]. Xião et al. confirmed
the stiffness of porous asphalt mixtures containing 10%, 20%, and 30% RAP. However, the
authors also identified a relative mass loss (15%) in mixtures with 30% RAP, indicating a
possible limitation when the RAP content in the mixture increases [20].

The Porous Friction Course (PFC) provides better traffic conditions for drivers during
rain events due to its porous structure (from 18 to 25% voids), offering users greater
comfort and road safety, ranging from eliminating water film on the pavement surface,
avoiding hydroplaning and splashes, and reducing heat islands to dropping noise caused by
tire/pavement interaction [10,21–24]. Despite the advantages of PFC, challenges persist in
improving its structural performance and, consequently, the durability of these pavements.

From the point of view of mechanical characterization, porous asphalt mixtures present
drawbacks with respect to conventional mixtures such as susceptibility to permanent defor-
mation, aggregate stripping, and pavement surface disintegration [21]. Another bottleneck
identified in the literature is the clogging of voids [25]. These conditions hinder the
widespread use of draining mixtures as they compromise their durability and performance
over time [26]. In this sense, research has been developed to enhance the mechanical
properties of this type of pavement through aggregate and asphalt binder modification [27].
Despite the efforts, there is still a limited amount of knowledge regarding the structural
contribution of this type of mixture [28].

Determining the stiffness of the materials and understanding their behavior is a
key factor in evaluating the structural performance of PFC considering the viscoelastic
nature of the mixtures. In the case of asphalt mixtures, materials considered to present
linear viscoelastic behavior, the complex modulus (E*) is classically obtained through a
quasi-static loading test with servo-controlled presses. The complex modulus consists of
a complex number that can be described by its absolute value (|E*|) and phase angle
(φ) [29]. While |E*| measures the proportionality between stress amplitudes and strain
amplitudes, φ measures the lag between stress and strain signals. The modulus can also
be evaluated from other techniques, such as ultrasonic techniques, since it influences the
time-of-flight of compressive and shear waves [30,31], and impact resonance techniques,
since it influences the frequency response function (FRF) of specimens constituted of the
material [32,33].

Given the aforementioned scenario, there is a need to investigate the mechanical
performance, particularly stiffness properties, of porous asphalt mixtures incorporating
RAP together with rubber-modified asphalt from discarded tires. These mixtures have
particularities that require modified binders to optimize their mechanical properties [34].
There is an immediate need for further investigation of PFC in urban pavements in cities
such as Fortaleza, Ceará, Brazil, which already has some experience with RAP. This paper
sought to characterize the stiffness parameters of two porous asphalt mixtures produced
with RAP and rubberized asphalt through destructive and Non-Destructive (ND) tech-
niques such as resilient modulus tests, complex modulus from compressive haversine
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loading tests, and complex modulus from impact resonance tests. The use of alternative
stiffness characterization methods is useful for providing the properties of bituminous
mixtures. The main contribution of this research will be the possibility of obtaining stiffness
data compatible with the material’s behavior using destructive and ND techniques. The
objective was to analyze the mixture’s performance in terms of stiffness parameters and
also to assess the suitability of the chosen tests for the mechanical characterization of the
mixtures under analysis.

2. Theoretical Background

Traffic loads impose mechanical stresses on the pavement, causing deformations
that can be classified into two types: permanent (plastic) deformations, which result in
irreversible changes in the pavement structure, and recoverable (resilient) deformations,
which reflect the elastic behavior of the structure, disappearing shortly after the load
removal [35]. Non-destructive tests under various conditions of temperature, stress, and
frequency are used in the laboratory to detect this behavior, particularly in asphalt mixtures
used in the pavement surface layer.

2.1. Resilient Modulus Test (RM)

The Resilient Modulus (RM) test is standardized in Brazil by DNIT 135 (2018)—ME [36],
whereas the international procedure follows the guidelines of ASTM D7369-20 [37]. The test
consists of applying loading cycles, during which a haversine load pulse is applied during a
given time, followed by rest, to approximate the tire loading shape. Each loading cycle lasts
1.0 s (frequency of 1 Hz), with a very particular choice of loading shape: a haversine loading
pulse is applied for 0.1 s, followed by 0.9 s of rest, Figure 1. The central parameter in this
context is the RM, which represents the relationship between the repeatedly applied maxi-
mum stress during the cycle and the resulting recoverable deformation, a relevant measure
for pavement analysis and design, even if not a fundamental material property [38]. The
RM value is determined by the ratio of the peak tensile stress to the resilient tensile strain,
calculated from the test results, including force pulses, and displacement, and considering
the specific geometry of the test [39]. However, it should be noted that the RM value is
intrinsically related to the shape of the loading, and it is virtually impossible to predict
material behavior for a variety of loading conditions in the field [38].
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Figure 1. Representation of load signals and the duration of loading and rest time in the RM test.
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2.2. Complex Modulus (E*) from Compressive Haversine Loading Tests

Complex modulus is considered the stiffness parameter that characterizes the linear
viscoelastic (LVE) behavior of asphalt mixtures, and has been adopted in countries such
as France since the 1960s and in the United States since the 1990s [40]. In Brazil, the test
is regulated by DNIT 416/2019—ME [29], while some international procedures follow
the guidelines of AASHTO T 342/2011 [41], mostly with compressive haversine loading
tests with continuous application (without rest between cycles at a given frequency), as
shown in Figure 2. In the case of asphalt mixtures, E* represents a fundamental property
for investigating LVE properties, since this test considers the effects of temperature and
frequency, and, consequently, the loading time, making it an essential test to characterize
the mechanical behavior of asphalt mixtures [39]. By considering the factors (temper-
ature, frequency, and loading), it is possible to predict the behavior of mixtures under
variable environmental conditions and traffic loading demands, including the ones to
which the material is subjected under the RM test [38]. This is accomplished by applying
time–temperature superposition principle and obtaining what is commonly called master
curves, for modulus and for phase angle, both as functions of the equivalent frequency at
the reference temperature [42–44].
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2.3. Complex Modulus from Impact Resonance Tests (IR)

In recent years, ultrasonic and Impact Resonance (IR) tests have been gaining promi-
nence [45], especially the latter. Due to their simplicity of execution and feasibility for
construction sites compared to the dynamic axial compression test, IR tests are typically
applied for this purpose [46]. Research has been carried out to develop impact resonance
testing methodologies using Frequency Response Functions (FRFs) [32,33]. The exper-
imental results allowed theoretical analysis through three-dimensional solid vibration
modeling in finite element software accompanied by an iterative optimization process
(back calculation of viscoelastic model parameters). The parameters of a linear viscoelastic
model determine the vibration amplitudes of that solid over a wide range of frequencies, as
shown in Figure 3. The FRFs then provide the possibility to identify not only the resonance
frequencies but also the damping properties (linked to peak amplitudes) of a material [47].
Then, the method provides access to complex modulus master curves using a simplified
test procedure.
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3. Materials and Methods

Two porous asphalt mixtures designed following the Superpave methodology, with
compaction levels varying between 100, 125, and 130 gyrations. This approach aimed to
achieve the volumetric properties required for the Porous Friction Course (PFC), which can
range from 18% to 25%. So, the mixtures produced a reference mixture (PFC-REF), without
RAP, and a mixture recycled, containing 10% Reclaimed Asphalt Pavement (PFC-RAP). The
materials used included 3/8” crushed stone aggregate and stone dust, both sourced from
the OCS quarry, as well as PFC-RAP provided by local asphalt plant that possesses license
for milling and managing recycled asphalt pavements, the origin of which was unknown
due to the practice of storing it in a single pile. Additionally, 4.5% of Eco-flex-AB8 asphalt
binder, a Rubber Modified Asphalt (RMA) supplied by a local asphalt producer, was used,
as illustrated in Figure 4.
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The aggregate gradation of the mixtures complied with the limits of the II Range
DNER-ES 386/1999 [48] of the PFC (approximately equivalent to ASTM 7064/2021 [49],
as presented in Figure 5. Next, the particle size distribution curve of the RAP used is
presented, both before and after binder extraction, as shown in Figure 6.
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3.1. Resilient Modulus Tests (RM)

The RM test was conducted following the guidelines of DNIT 135/2018—ME [36], sim-
ilar to ASTM D7369/2020 [37]. Specimens were conditioned at a temperature of 25 ± 5 ◦C
for 4 h using the Universal Testing Machine (UTM-30) (Figure 7). The maximum load
chosen for conducting the RM tests was set to 10% of the load corresponding to the average
ultimate load that led to failure and therefore was used to calculate the tensile strength by
diametrical compression of the mixtures. The resilient deformation of the mixtures was
obtained through the instantaneous horizontal displacement, derived from segmenting the
displacement X time curve into three regressions (Equations (1)–(3)) in accordance with
DNIT 135/2018 [36].

IM =
P

|∆Hist|t
(0.27 + µist) (1)
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IM =
P

|∆Hist|t
(0.23 + 0.78ist) (2)

IM =
P

|∆Hist|t
(0.14 + 0.45µist) (3)

where
IM = is the instantaneous modulus, expressed in MPa;
P = is the cyclic load, expressed in N;
∆Hins = the instantaneous horizontal displacement, expressed in mm;
t = is the height (thickness) of the specimen, expressed in mm;
µins = is the instantaneous Poisson’s ratio.
RM is determined by Equation (4) below:

RM =
P

|∆H|h (0.2692 + 0.9976µ) (4)

where
RM = resilient modulus (MPa);
P = the cyclical load (N);
∆H = horizontal displacement (mm);
h = specimen height (mm);
µ = Poisson ratio (estimated at 0.3 for tests at 25 ◦C).
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3.2. Complex Modulus from Compressive Haversine Loading (E*)

The complex modulus of the mixtures was obtained according to the testing procedure
of AASHTO T342-11 [41] using the hydraulic equipment UTM-30, with displacements
monitored by three LVDTs (Linear Variable Differential Transducers) positioned vertically
on the specimens, as shown in Figure 8. Three specimens of each mixture were tested,
with an estimated precision of ±12%. The tests were conducted at different temperatures
(−10 ◦C, 4.4 ◦C, 21.1 ◦C, and 37.8 ◦C) and frequencies (25 Hz, 10 Hz, 5 Hz, 1 Hz, 0.5 Hz,
and 0.1 Hz). However, due to the high deformability of the porous mixtures, it was not
possible to perform the test at 54.4 ◦C, as established in the standard. The test consisted of
applying loads that induced deformation amplitudes (peak-to-peak) within the material’s
linear viscoelastic domain (about 50–75 µm/m).
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Based on the Time–Temperature Superposition Principle (TTSP), it is possible to
establish a relationship between the increase in temperature of asphalt materials and the
decrease in the frequency at which the load is applied, and vice versa [42,50]. This allows
for the construction of the master curve, which illustrates the behavior of the mixtures
from a reference temperature (in this paper, Tref = 21.1 ◦C), predicting the stiffness of the
material at various reduced frequencies (Fred). The modulus value is determined based on
the interpretation and mathematical expressions of the 2S2P1D model, with Equation (5)
highlighting the key constants used in its calculation.

E∗ (iωτ) = E∞ +
E0 − E∞

1 + δ(iωτ)−k +(iωτ)−h + (iωβτ)−1 (5)

where
E∞ = Asymptotic modulus as the frequency approaches zero;
E0 = Asymptotic modulus as the frequency approaches infinity;
δ, β = Dimensionless constants;
k, h = Exponents associated with parabolic dampers;
ω = angular frequency
τ = characteristic time determined using time-temperature shift factors at a given

temperature, calibrated using τ0 as the reference characteristic time.

3.3. Complex Modulus from Impact Resonance (IR)

The impact resonance test was conducted using specific equipment designed for
such tests [45] in order to hit specimens placed on foam to simulate free vibration on
the surface of the specimens. The circular ends of the specimens were rectified for better
positioning of the accelerometer and impact hammer, as shown in Figure 9. The mechanical
action of the hammer involves delivering five impacts that excite the specimen in the
longitudinal direction towards the accelerometer. The signals for each hammer impact and
the accelerometer output signal are measured in both the time and frequency domains.
With these results, it was then possible to obtain the FRFs, as discussed in the work by
Carret [47]. It is also important to note that, for asphalt mixtures, the impact resonance test
was conducted at three temperatures (4.4 ◦C, 20 ◦C, and 37.8 ◦C).

For asphalt mixtures, it is necessary to use an inverse analysis after obtaining the
experimental FRFs as established by [45]. To do this, it is necessary to use finite element
software to carry out modeling to obtain an optimized FRF by varying the linear viscoelastic
parameters of the material [33–45]. In other words, using an iterative process, parameters
are determined for the 2S2P1D rheological model, which has 12 variables and characterizes
the material’s stiffness behavior for any frequency and temperature. Of the 12 variables
in question, only four undergo the interactive process of inverse analysis, as they initially
have a greater influence on the behavior of the mixtures. It is also important to note
that the interactive process only takes place for the peak of the experimental FRF, where
10 points around the resonance frequency are arbitrated. This interactive process then
uses the calculated value of the error between the experimental and optimized response
and then determines the values of the viscoelastic model variables that represent the
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material so that the error is minimized. Through these steps, it is possible to obtain the
master curve for porous mixtures with the optimum parameters for each temperature,
and the complex modulus values can be calculated for frequencies close to the resonance
frequency, constructing parts of the master curve for each test temperature and using the
Time–Temperature Superposition Principle (TTPS) [47].
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Figure 9. Schematic representation of the IR test.

4. Results and Discussions
4.1. Resilient Modulus (RM)

Figure 10 presents the results of the resilient modulus for the two analyzed mixtures
(Reference Mixture—PFC-REF and Recycled Mixture—PFC-RAP). The reference mixture
exhibited an average RM of 3209 MPa, whereas the RAP mixture demonstrated an average
of 2221 MPa. These values are consistent with those reported by [17], who investigated a
porous asphalt mixture containing 15% RAP and found RM values of approximately 2915
and 2722 MPa for the reference and recycled mixture, respectively.

Buildings 2024, 14, x FOR PEER REVIEW 9 of 16 
 

response and then determines the values of the viscoelastic model variables that represent 
the material so that the error is minimized. Through these steps, it is possible to obtain the 
master curve for porous mixtures with the optimum parameters for each temperature, 
and the complex modulus values can be calculated for frequencies close to the resonance 
frequency, constructing parts of the master curve for each test temperature and using the 
Time–Temperature Superposition Principle (TTPS) [47]. 

 
Figure 9. Schematic representation of the IR test. 

4. Results and Discussions 
4.1. Resilient Modulus (RM) 

Figure 10 presents the results of the resilient modulus for the two analyzed mixtures 
(Reference Mixture—PFC-REF and Recycled Mixture—PFC-RAP). The reference mixture 
exhibited an average RM of 3209 MPa, whereas the RAP mixture demonstrated an average 
of 2221 MPa. These values are consistent with those reported by [17], who investigated a 
porous asphalt mixture containing 15% RAP and found RM values of approximately 2915 
and 2722 MPa for the reference and recycled mixture, respectively.  

 
Figure 10. Resilient modulus results at 25 °C. 

In contrast, studies conducted by other researchers [1,51] on porous asphalt mixtures 
containing 4.5% binder content reported higher RM values compared to those observed 
in this paper, with values in the range of 4760 MPa and (6098–5219 MPa, Range IV and V 
of the DNER), respectively. This can be attributed to the presence of the rubber-modified 
asphalt binder, which tends to decrease the stiffness of the mixtures [10]. 

3,209

2,221

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

PFC-REF PFC-RAP

M
R

 a
t  

25
°C

 (M
Pa

) 

Figure 10. Resilient modulus results at 25 ◦C.

In contrast, studies conducted by other researchers [1,51] on porous asphalt mixtures
containing 4.5% binder content reported higher RM values compared to those observed
in this paper, with values in the range of 4760 MPa and (6098–5219 MPa, Range IV and V
of the DNER), respectively. This can be attributed to the presence of the rubber-modified
asphalt binder, which tends to decrease the stiffness of the mixtures [10].

Additionally, the high void content also contributes to the reduction in the properties
of porous asphalt mixtures. These findings are corroborated by laboratory tests conducted
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in Argentina, where RM values of 2200 MPa were obtained for porous mixtures, equivalent
to 60% of the values observed for dense mixtures [52].

Hammes and Thives found RM values of 2764 MPa in a porous asphalt mixture
produced with highly modified asphalt binder (HiMA), which is considered high for
this type of mixture [53]. They attribute this performance to the binder used. Other
researchers, [54,55], also reported RM values for porous mixtures produced with SBS-
modified binders, in the range of 1875 and 3281 MPa, respectively.

4.2. Complex Modulus (E*)

The experimental results were analyzed and modeled using the 2S2P1D model to
construct the following representations illustrated subsequently: master curves of complex
modulus (Figure 11), Cole–Cole space (Figure 12), master curve of the phase angle with the
2S2P1D modeling (Figure 13), and Black Diagram (Figure 14). The values from the 2S2P1D
model and the constants of the William, Landel, and Ferry (WLF) model, used for property
translation at different temperatures and for the assembly of master curves, are presented
in Table 1.
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Table 1. Parameters of the 2S2P1D model and WLF values of C1 and C2.

Mixtures
E* WFL

E∞ (MPa) E0 (MPa) k h ∆ tE (s) β C1 C2

PFC-REF 150 12,700 0.25 0.56 3.24 0.085 250 20.31 167.02

PFC-RAP 160 12,650 0.24 0.51 2.45 0.080 150 29.44 231.76

In Figure 11, the master curves of the mixtures are shown. It can be observed that the
complex modulus increases with the frequency for both mixtures evaluated.

These results are attributed to the reduced loading time, during which elastic deforma-
tions predominate in the material [51,56]. These findings are consistent with the conclusions
of [57], who investigated the viscoelastic behavior of porous asphalt mixtures and observed
a decrease in the complex modulus at higher temperatures and lower loading frequencies.

Considering the complex moduli obtained for the mixtures, it is evident that they have
structural functionality. The values found are comparable to those reported by Manrique-
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Sanchez and Caro [28], which corresponded to from 50% to 66% of the typical moduli for
dense mixtures (3000 to 4000 MPa).

When analyzing the Cole–Cole space, it was observed that the recycled mixture
(PFC-RAP) exhibited a smaller elastic portion (Real E*) compared to the reference mixture
(PFC-REF), as shown in Figure 12. However, this difference was not significant. This
phenomenon can be attributed to the binder (asphalt–rubber), which tends to reduce the
stiffness of asphalt mixtures [10]. Although the RAP had little influence on the stiffness
of the mixtures, a slight increase in stiffness was still observed for PFC-RAP, which was
expected due to the presence of the oxidized binder in the RAP [58,59].

Figure 13 displays the master curves of the phase angles of the investigated mixtures.
Both mixtures exhibit similar viscoelastic behavior. However, the reference mixture shows
a higher phase angle at nearly all frequencies, except at lower frequencies where the RAP
exhibits a higher phase angle. This phase angle behavior supports the complex modulus
results, indicating higher stiffness for the RAP mixture.

The phase angles of the mixtures at −10 ◦C exhibited some variations compared to
the experimental points of the 2S2P1D model. However, the mixtures were adjusted to the
model based on the master curve of the complex modulus, disregarding the phase angle.
Overall, the experimental points demonstrate a good fit between the observed data and the
model used.

The Black Diagram is a graphical representation of the complex modulus |E*|, on
a logarithmic scale, as a function of the phase angle (φ) for different temperatures. An-
alyzing the results of this representation, shown in Figure 14, a higher phase angle was
obtained for the RAP mixture at high temperatures, while the reference mixture demon-
strated a lower phase angle, indicating a more elastic component compared to the recycled
mixture. Regarding the complex modulus, it tends to decrease for both mixtures as the
temperature increases.

4.3. Impact Resonance Tests (IR)

The analysis of the impact resonance test results enabled the construction of master
curves for the mixtures at three different temperatures considered during the test (4.4 ◦C,
20 ◦C, and 37.8 ◦C). Figure 15a presents the master curves reflecting the stiffness of the
mixtures. An increase in stiffness with increasing frequency and decreasing temperature is
observed, similar to the complex modulus test. These results resemble the values found for
E*, demonstrating the accuracy of both tests in characterizing the viscoelastic properties of
porous asphalt mixtures.
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Regarding the mixture PFC-RAP, an increase in stiffness was observed compared
to the reference mixture, even at elevated temperatures, as shown in Figure 15b. This
phenomenon can be attributed to the presence of aged binder in the RAP. These findings
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corroborate the studies of [19], which identified higher stiffness in porous mixtures of
PFC-RAP. On the other hand, the RM results were lower for the recycled mixture, which
may be associated with the test conditions (single temperature and loading frequency).
However, it is important to note that the stiffness results for both mixtures in the complex
modulus and impact resonance tests were higher for the mixtures containing RAP.

5. Conclusions

This paper evaluated the stiffness of two porous asphalt mixtures: a reference mixture
and one containing 10% RAP (Reclaimed Asphalt Pavement), using an ND test and two
traditional tests. It also investigated three different methods for stiffness investigation:
resilient modulus, complex modulus from compressive haversine loading, and complex
modulus from impact resonance tests. Based on the results, the following is concluded:

• The addition of RAP to the mixture impacted the mechanical and viscoelastic proper-
ties of the investigated mixture, as it was observed that the mixture with RAP showed
reduced elasticity and increased viscosity compared to the reference mixture. This
suggests an influence of the oxidized binder of RAP on the increase in mixture stiffness,
as indicated in the literature.

• The mixture with RAP exhibited higher stiffness at all analyzed temperatures, con-
firming the influence of RAP on improving mechanical properties, despite its lower
elasticity compared to the reference mixture.

• Analogous behaviors regarding the stiffness of the investigated mixtures were obtained
from traditional compressive tests and from impact resonance tests, indicating the
possibility of applying an alternative methodology based on vibrational mechanics
for the characterization of porous asphalt mixtures. This was not observed for the
RM test, which may lack more fundamental aspects of the characterization of asphalt
mixtures and also be disturbed by the reduced specimen size.

These findings contribute to the field of asphalt mixtures and pavement structural
design by providing a more detailed understanding of the increase in stiffness enhancement
induced by the RAP inclusion in porous asphalt mixtures. Additionally, it allows the devel-
opment of new approaches for characterizing the viscoelasticity of porous asphalt mixtures.

Some suggestions for future developments of this research could include investigating
the stiffness of mixtures with different RAP contents beyond 10%. In addition, other ND
techniques could be incorporated, such as the use of ultrasonic wave propagation tests.
For the impact resonance test, more temperatures could be checked for a master curve
with more points. Additionally, it is suggested to increase the specimen size and conduct a
statistical analysis for a more in-depth discussion.
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