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Abstract: In order to encourage digital transformation in the traditional construction industry, the
Chinese government has promoted 24 pilot cities to develop intelligent construction. The practices
of intelligent construction are disparate in all 24 pilot cities. Given this context, it is important to
effectively and comprehensively evaluate the level of intelligent construction in these pilot cities.
This study thus evaluates the development of intelligent construction in different pilot cities. By
conducting an in-depth analysis of the existing literature and policies, an evaluation system consisting
of five dimensions and a total of 30 indicators is established. The entropy method and the Technique
for Order Preference by Similarity to Ideal Solution (TOPSIS) are used to evaluate the development
of intelligent construction in 23 pilot cities. The research findings indicate that the development of
intelligent construction in different pilot cities is uneven, with clear gaps between first-tier cities
and Western cities. The development of industries, the cultivation of talent, and economic growth
are relatively satisfactory, while technological innovation and digital infrastructure are insufficient.
Several suggestions are proposed to promote the development of intelligent construction, including
expediting the construction of intelligent infrastructure, enhancing digital transformation, promoting
technological innovation, and implementing talent cultivation strategies.

Keywords: intelligent construction; pilot cities; China; entropy method; TOPSIS

1. Introduction

The construction industry, as a key driver of economic growth, is facing a range
of challenges, including poor productivity, cost overruns, widespread safety risks, an
increasingly acute shortage of labor, and energy-extensive consumption [1]. With the
development of modern science and technology, the traditional construction industry is
undergoing profound changes. The global construction industry is transforming into
so-called intelligent construction, which integrates modern information technologies into
construction industry processes, encompassing cyber–physical systems, robotics, artificial
intelligence (AI), the Internet of Things (IoT), digital twin (DT), and big data [2–4]. The
development of intelligent construction not only effectively improves project efficiency at
various stages, such as the design, construction, and operation stages, but also demonstrates
enormous potential in quality control, resource management, and risk prediction [5].

In order to promote the development of intelligent construction, many countries have
put forward a series of supporting policies. For example, Construction 2025 proposed by
the United Kingdom sets out a roadmap for digital innovation in the construction industry
through the integration of construction processes, structural data, and AI [6]. The UK
government set a goal to reduce 33% of lifecycle costs and 50% of carbon emissions in the
construction industry, as well as increasing construction export production by 50%. In
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Germany, the government has issued a roadmap for digital design and construction, en-
couraging the application of BIM in construction project processes [7]. An “i-Construction”
strategy has been proposed by Japan in order to realize the digital transformation of the
construction industry and increase production efficiency by 20% before 2025 [8]. In the
Fourteenth Five-Year Plan and outline of vision goals for 2035 published by China, the
development of intelligent construction through the application of 5G, AI, the IoT, and
other information technologies is proposed [9].

In order to develop intelligent construction, a total of 24 pilot cities in China have been
announced by the Ministry of Housing and Urban–Rural Development [10]. These pilot
cities have published city-level implementation plans on smart construction and relevant
standards. However, there is currently no unified framework or common paradigm for
evaluating the development of intelligent construction across these cities. Despite the
enormous potential demonstrated by smart building technology, its implementation still
faces numerous challenges. Traditional construction companies often encounter difficulties
in integrating intelligent technologies such as the IoT and AI into their existing processes,
especially for small and medium-sized enterprises. These companies struggle with insuffi-
cient technological adaptability and face significant barriers to digitalization due to high
infrastructure investment costs and the need for technological upgrades [5]. Additionally,
the adoption rate of smart building technology is relatively slow in economically under-
developed regions, primarily due to inadequate digital infrastructure and insufficient
training for technical personnel [11]. Each pilot city has adopted a different approach to
promoting intelligent construction, resulting in varying degrees of progress. Despite the
importance of these initiatives, comprehensive assessments of intelligent construction de-
velopment at the city level remain scarce. Existing studies have often focused on individual
aspects of intelligent construction, such as specific technologies or policy impacts, without
providing an evaluation of overall progress across cities. Therefore, this article aims to
employ an entropy weight evaluation model to assess the developmental status of intelli-
gent construction in different pilot cities. This approach allows for a multi-dimensional
comparison of intelligent construction across different regions, providing a framework
for evaluating progress and identifying key factors driving development. The findings
are expected to aid the identification of influential factors for intelligent construction in
these pilot cities, while formulating corresponding strategies to foster the advancement of
intelligent construction and address any imbalances during the development stage.

2. Literature Review

Although the application of intelligent construction is flourishing, researchers have
not reached a consensus regarding the definition of intelligent construction. Intelligent con-
struction serves as a key driving force for the high-quality development of the construction
industry, not only promoting its digital transformation and achieving improvements in
efficiency but also fostering green and sustainable development [12]. Intelligent construc-
tion has accelerated the integration of the construction industry and the digital economy,
providing a new impetus for overcoming development bottlenecks and enhancing core
competitiveness in the field of architecture [13]. Several scholars have pointed out that
intelligent construction integrates technologies such as smart computers and information
communication into physical construction projects, enabling the management and con-
trol of the personnel, machinery, equipment, and facilities involved in the construction
process [14]. Davila Delgado et al. [15] argue that intelligent construction transforms the
construction industry through new technologies such as robotics, reducing excessive re-
liance on manual labor to improve precision in construction, reduce resource waste, and
achieve higher efficiency in building projects.

With the increasing demand for intelligent construction technology in complex projects,
there has been close integration of intelligent construction technology and engineering
practices. For example, an IoT-based BIM platform has been developed to collect and
analyze real-time data during the on-site assembly process of prefabricated components,
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thereby providing on-site assembly services for modular construction and improving site
management efficiency [16]. In one study, an intelligent cloud platform was proposed for
managing on-site operations in large-scale engineering projects [17]. Also, another cloud
computing platform has been proposed in order to achieve intelligent control and provide
services on construction sites [18]. The implementation of digital technology can enhance
the efficiency of constructing intelligent buildings and mitigate energy consumption [2].
An intelligent framework has also been proposed to monitor personnel, machinery, and
other risks on construction sites in real time [19].

Many researchers and practitioners have attempted to apply one or more information
technologies in construction projects, including construction robots, AI, the IoT, and BIM.
Robots have been adopted to drive transformation in the construction industry, reducing
the reliance on scarce labor while improving accuracy, minimizing waste, and lowering
project costs [15]. BIM technology combined with 3D laser scanning has been applied
to inspect the appearance and quality of prefabricated components [20]. An unmanned
driving compactor has been developed to improve the compaction quality of soil and rock
dams [21]. By using artificial intelligence, control theory, and adaptive system technology,
an intelligent observation platform framework has been developed to acquire real-time
data from construction sites [22]. Further, an intrusion monitoring system based on IoT
technology has been used to monitor construction sites in real time and prevent accidents
related to building safety [23]. An AI-based computer vision technology has been proposed
to improve the quality of construction projects [24]. An innovative BIM management model
has also been developed to optimize the management of personnel, materials, machinery,
and resource allocation with timely decisions [25]. Kochovski et al. [26] have also developed
an Internet of Things application program to support high-quality service environments in
smart buildings.

With these increasing applications, it is necessary to evaluate the performance of
intelligent construction. There are several studies that have already evaluated the perfor-
mance of intelligent construction techniques applied in construction projects, companies,
and the whole industry. Zhang et al. [27] adopted diffusion of innovations (DOI) and
technology–organization–environment framework (TOE framework) theories to identify
influencing factors in the digital transformation of the construction industry and to evalu-
ate different policies for supporting digital transformation. In terms of the evaluation of
specific intelligent construction technologies, Oke et al. [28] assessed the application areas
of IoT technology in the construction industry. Cong et al. [29] established specific evalua-
tion indicators to evaluate the performance of blockchain technology. Meanwhile, several
studies have shifted their focus to evaluating the application of intelligent construction
technology at the project or enterprise level. Succar et al. [30] developed an evaluation
model with twelve indicators (e.g., market, industry, and project team) and five levels of
maturity for application in intelligent construction. However, none of the aforementioned
technological research has been discussed in conjunction with the implementation of in-
telligent construction at the city level, and specific evaluation systems have not yet been
established for this concept.

The construction sector plays an increasingly important role in bolstering the econ-
omy and stabilizing employment. Intelligent construction can bring new momentum to
the development of the construction industry [31]. Hence, the development of intelli-
gent construction tends to push the construction sector onto greener, smarter, and safer
paths [32].

Intelligent construction leads to profound changes in the construction industry, in-
cluding in regard to projects, employment opportunities, and construction enterprises [33].
The construction industry mainly provides pilot projects for intelligent construction. Intel-
ligent construction not only introduces new requirements for construction professionals
and employees but also increases the total profits and number of products of industrial
companies [34].
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Technological innovation also plays a vital role in the transformation of intelligent
construction [35]. In order to promote intelligent construction, construction companies are
encouraged to input research and development funds and employ R&D personnel so as to
develop the systems and technologies required in intelligent construction [36].

Intelligent construction has also reshaped the demand for talent in the construction
industry, resulting in a need for professionals with digital and intelligent skills [37]. Besides
construction professionals, front-line construction personnel are also expected to adapt to
digital transformation trends. Training for construction workers is essential in relation to
operating construction-site robots and intelligent machines [38].

Digital transformation is indispensable for the development of intelligent construction
and leads to advancements in the whole sector [12]. It not only greatly improves the
efficiency and quality of construction, but also leads technological innovation and advance-
ment within the industry. Digital infrastructure mainly involves the generation of new
information and communication technologies, such as 5G, data centers, cloud computing,
artificial intelligence, the IoT, blockchain, and various digital platforms formed based on
these technologies to help people work and live better.

In order to develop intelligent construction, the Chinese government has announced
24 pilot cities, including Beijing, Shenzhen, and Guangzhou. This pilot-city program
is used by the government to promote innovation and industrial transformation at the
city or province level [39]. Yu et al. [40] conducted a comparative evaluation of citizens’
perceptions of benefits in smart cities by combining the Analytic Hierarchy Process (AHP)
method and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
method. Zhang et al. [41] evaluated new first-tier cities in China using the entropy method
and the TOPSIS method. Li et al. [42] assessed the impact of low-carbon pilot-city projects
on residents’ carbon emissions by establishing a difference-in-differences model. Otay
et al. [43] evaluated the sustainable energy system in a smart city using interval-valued
Pythagorean fuzzy (IVPF) sets and conducted comprehensive optimization using the “best
worst” method (BWM), also taking into account multiple experts’ opinions and the TOPSIS
method. Therefore, it is crucial to choose appropriate evaluation methods, with commonly
used methods including the entropy method and the TOPSIS method. These methods
are not influenced by subjective factors, they have simple calculation formulas, and they
lead to accurate, stable, and consistent results. They can also consider the correlations and
interactions between different indicators.

Although there are several investigations evaluating pilot smart cities and low-carbon
communities, it is still rare for research to assess intelligent construction in pilot cities.
There remains a lack of consensus on a standardized definition and a unified framework
for evaluating its progress across different urban contexts. Therefore, in this work, in
order to compare the development of intelligent construction in each pilot city, evalua-
tion indicators are identified and evaluated using the entropy method and the TOPSIS
method. The findings are expected to fill the current research gap in assessing intelligent
construction at the urban level, provide valuable insights for policymakers aiming to accel-
erate intelligent construction development, and enhance the quality and efficiency of the
construction industry.

3. Methodology

This study introduces a research framework with which it is possible to evaluate the
development of intelligent-construction pilot cities, as shown in Figure 1. In this framework,
first, evaluation indicators for the development of intelligent construction in pilot cities are
identified. Second, an evaluation model is constructed using the entropy method and the
TOPSIS method. The entropy method is employed to calculate indicator weights, while
the TOPSIS method is applied to rank the pilot cities based on their performance. Relevant
recommendations can thus be proposed.
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We selected the entropy and TOPSIS methods for their ability to handle multiple
criteria objectively. Entropy minimizes subjectivity by assigning weights based on data
variability, ensuring a fair and unbiased evaluation process. TOPSIS excels at ranking
cities by evaluating their distance from an ideal solution, which is particularly useful for
comparing diverse performance metrics across different cities. While other methods, such as
multi-criteria decision analysis (MCDA) or regression models, could have been considered,
they present certain limitations. MCDA methods often require subjective input to determine
the importance of each criterion, which can introduce bias. Similarly, regression models
assume predefined relationships between variables and are better suited for predictive
analysis rather than ranking alternatives across multiple dimensions. In contrast, entropy
and TOPSIS offer a more objective and comprehensive approach to evaluating intelligent
construction development across regions with varying characteristics.

3.1. Evaluation Indicators

In order to establish a comprehensive and effective evaluation index system for the
development of intelligent-construction pilot cities, we conducted an analysis of relevant
works in the literature and government policies. The research on evaluation indicators is
shown in Table 1. These studies provided a theoretical foundation by highlighting the key
dimensions necessary for evaluating intelligent construction. Considering urban develop-
ment policies and the challenges in data acquisition, a framework for evaluating indicators
was established. Based on the development of Chinese cities, evaluation indicators with
which to assess intelligent-construction pilot cities are illustrated in Table 2. The evaluation
indicators consist of 5 primary indicators—industrial development (A), technical innova-
tion (B), talent cultivation (C), economic growth (D), and digital transformation (E)—and
30 secondary indicators.

The level of development in the intelligent construction industry is evaluated based
on industrial progress, which involves adopting intelligent construction processes in pilot
projects, stimulating employment opportunities, enhancing income levels, and fostering
social stability along with sustainable growth [33]. The corresponding secondary indicators
include the number of pilot projects (A1), the number of large-scale industrial enterprises
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(A2), the number of employees in the construction industry (A3), the total number of
construction companies (A4), the total output value of the construction industry (A5), and
the total profits of large-scale industrial enterprises (A6).

Technical innovation is utilized as a metric to assess the capacity and efficiency of con-
verting technological achievements in the construction industry, which constitutes a pivotal
factor in bolstering national competitiveness and fostering economic development [44].
The corresponding secondary indicators include the number of personnel engaged in R&D
(B1), the total value of transactions for technology contracts (B2), the number of granted
patents (B3), scientific and technological expenditure (B4), and internal R&D funds (B5).

Talent cultivation is adopted to evaluate the effectiveness of pilot cities in fostering
and attracting talent within the field of intelligent construction, because human resources
play an indispensable role in advancing research on, and promoting the application and dis-
semination of, intelligent construction technology. The corresponding secondary indicators
include the number of higher-education institutions (C1), educational expenditure (C2), the
total number of registered professionals (C3), the number of education practitioners (C4),
the number of construction industry practitioners (C5), and the number of undergraduates
and college students (C6).

The development of intelligent construction not only depends on economic growth
and support, but also benefits economic development [31]. The secondary indicators under
economic development include per capita GDP (D1), the proportion of the secondary indus-
try to the GDP (D2), fixed-asset investment (D3), total retail sales of consumer goods (D4),
residents’ annual per capita disposable incomes (D5), completed real estate investments
(D6), and the proportion of tertiary industries to the GDP (D7).

Digital transformation plays a crucial role in evaluating the future potential, compet-
itiveness, and sustainability of pilot cities. The secondary indicators for this parameter
include postal service revenues (E1), telecommunication service revenues (E2), the number
of internet broadband access users (E3), the number of local telephone users at the end of
the year (E4), the number of mobile phone users at the end of the year (E5), information
transmission, and employment in the computer services and software industry (E6).

Table 1. Research on evaluation indicators.

Index
Source Pan et al.,

2023 [45]
Xu et al.,
2018 [46]

Mao et al.,
2023 [47]

Guo et al.,
2022 [48]

Zhang et al.,
2022 [41]

Ding et al.,
2022 [49]

Shen et al.,
2018 [50]

The number of large-scale industrial
enterprises

√

The total output value of the construction
industry

√

The total profits of large-scale industrial
enterprises

√ √

The number of personnel engaged in
research and development (R&D)

√

The number of granted patents
√ √ √

Scientific and technological expenditure
√

Internal research and development (R&D)
funds

√ √ √ √

Educational expenditure
√

The number of education practitioners
√

Per capita GDP
√ √ √ √ √ √

The proportion of secondary industries to
GDP

√

Residents’ annual per capita disposable
incomes

√ √

The proportion of tertiary industries to
GDP

√ √

Postal service revenues
√

The number of internet broadband access
users

√ √ √ √

The number of local telephone users at the
end of the year

√

The number of mobile phone users at the
end of the year

√ √
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Table 2. Evaluation indicators for assessing cities.

First-Level Indicator Second-Level Indicators Sources

Industrial development
(A)

A1: The number of pilot projects (pieces) Discussed in this work
A2: The number of large-scale industrial
enterprises (units) Pan et al. (2023) [45]

A3: The number of employees in the
construction industry (10,000 people) Xu et al. (2018) [46]

A4: The total number of construction
companies (units) Discussed in this work

A5: The total output value of the
construction industry (CNY 100 million) Discussed in this work

A6: The total profits of large-scale
industrial enterprises (CNY 10,000)

Pan et al. (2023) [45]
Ding et al. (2022) [49]

Scientific and technological innovation
(B)

B1: The number of personnel engaged in
research and development (people) Pan et al. (2023) [45]

B2: The total value of transactions for
technology contracts (CNY 100 million) Discussed in this work

B3: The number of granted patents
(pieces)

Pan et al. (2023) [45]
Guo et al. (2022) [48]
Zhang et al. (2022) [41]

B4: Scientific and technological
expenditure (CNY 10,000) Guo et al. (2022) [48]

B5: Internal research and development
funds (CNY 100 million)

Pan et al. (2023) [45]
Zhang et al. (2022) [41]
Ding et al. (2022) [49]
Shen et al. (2018) [50]

Talent cultivation
(C)

C1: The number of higher-education
institutions (pieces) Discussed in this work

C2: Educational expenditure (CNY
10,000) Shen et al. (2018) [50]

C3: Total registered professionals
(10,000 people) Discussed in this work

C4: The number of education
practitioners (10,000 people) Xu et al. (2018) [46]

C5: The number of construction industry
practitioners (10,000 people) Guo et al. (2022) [48]

C6: The number of undergraduates and
college students (people) Discussed in this work

Economic development
(D)

D1: Per capita GDP (CNY)

Pan et al. (2023) [45]
Guo et al. (2022) [48]
Zhang et al. (2022) [41]
Ding et al. (2022) [49]
Shen et al. (2018) [50]
Mao et al. (2023) [47]

D2: The proportion of secondary
industries to GDP (%) Ding et al. (2022) [49]

D3: Fixed-asset investment (CNY 100
million) Discussed in this work

D4: Total retail sales of consumer goods
(CNY 10,000) Discussed in this work

D5: Residents’ annual per capita
disposable incomes (CNY)

Zhang et al. (2022) [41]
Ding et al. (2022) [49]

D6: Completed real estate investment
(CNY 10,000) Discussed in this work

D7: The proportion of tertiary industries
to GDP (%)

Zhang et al. (2022) [41]
Ding et al. (2022) [49]
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Table 2. Cont.

First-Level Indicator Second-Level Indicators Sources

Digital transformation
(E)

E1: Postal service revenues (CNY
100 million) Xu et al. (2018) [46]

E2: Telecommunication service revenues
(CNY 100 million) Discussed in this work

E3: The number of internet broadband
access users (10,000 people)

Pan et al. (2023) [45]
Zhang et al. (2022) [41]
Shen et al. (2018) [50]
Mao et al. (2023) [47]

E4: The number of local telephone users
at the end of the year (10,000 people) Shen et al. (2018) [50]

E5: The number of mobile phone users at
the end of the year (10,000 people)

Zhang et al. (2022) [41]
Shen et al. (2018) [50]

E6: Information transmission and
employment in the computer services
and software industry (10,000 people)

Discussed in this work

3.2. Indicator Data Source

Following the evaluation indicators, relevant data were collected by consulting author-
itative sources such as the China Statistical Yearbook, the China City Statistical Yearbook, and
the China Software Industry Statistical Yearbook. Additionally, annual statistical yearbooks for
provinces and cities, local statistical bulletins, and Government Work Reports were selected
to ensure comprehensive data coverage. Considering the variations in data across different
cities, all the data used were standardized, and the data used are from 2021. When cities
report certain indicators using different units or metrics, they should be converted into a
common unit to ensure data comparability across cities. In cases where data were missing,
interpolation methods were employed. Specifically, missing values were replaced using the
mean of the available data for each indicator. Mean imputation was selected because the
amount of missing data was minimal. Mean imputation provided a straightforward and re-
liable way to maintain dataset integrity without introducing significant variance, making it
an appropriate choice given the scope and goals of our analysis. Additionally, to control for
potential biases in indicator selection, a standardized criterion was followed, prioritizing
indicators relevant to intelligent construction and ensuring their availability across all cities.
The entropy method, which is used to calculate the weights of each indicator, operates
under the assumption that the indicators are independent of one another. The selected
indicators were designed to represent distinct dimensions of intelligent construction. By
ensuring that each indicator reflects a different aspect of development, we were able to
reasonably maintain the independence assumption and preserve the overall reliability
of the method. Due to the difficulty in obtaining relevant data on Xiong’an New Area,
this article only presents evaluations for 23 intelligent-construction pilot cities in China
(Table 3).

Table 3. Data sources for evaluation indicators.

Indicators Data Sources Websites

Industrial
development

(A)

A1
Ministry of Housing and Urban–Rural
Development of the People’s Republic

of China

https://www.mohurd.gov.cn/gongkai/
zhengce/zhengcefilelib/202211/20221109_

768802.html (accessed on 17 June 2024)
A2 China City Statistical Yearbook https://www.zgtjnj.org/navibooklist-n302

3102607-1.html (accessed on 17 June 2024)A3
A4 The statistical yearbook of each city/

local statistical bulletinsA5

A6 China City Statistical Yearbook https://www.zgtjnj.org/navibooklist-n302
3102607-1.html (accessed on 17 June 2024)

https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/202211/20221109_768802.html
https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/202211/20221109_768802.html
https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/202211/20221109_768802.html
https://www.zgtjnj.org/navibooklist-n3023102607-1.html
https://www.zgtjnj.org/navibooklist-n3023102607-1.html
https://www.zgtjnj.org/navibooklist-n3023102607-1.html
https://www.zgtjnj.org/navibooklist-n3023102607-1.html
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Table 3. Cont.

Indicators Data Sources Websites

Scientific and
technological

innovation
(B)

B1 The statistical yearbook of each city/
local statistical bulletinsB2

B3 China City Statistical Yearbook https://www.zgtjnj.org/navibooklist-n302
3102607-1.html (accessed on 17 June 2024)B4

B5 The statistical yearbook of each city

Talent cultivation
(C)

C1 China City Statistical Yearbook https://www.zgtjnj.org/navibooklist-n302
3102607-1.html (accessed on 17 June 2024)C2

C3 The statistical yearbook of each city/
local statistical bulletinsC4

C5 China City Statistical Yearbook https://www.zgtjnj.org/navibooklist-n302
3102607-1.html (accessed on 17 June 2024)C6

Economic
development

(D)

D1

China City Statistical Yearbook https://www.zgtjnj.org/navibooklist-n302
3102607-1.html (accessed on 17 June 2024)

D2
D3
D4
D5
D6
D7

Digital transformation
(E)

E1

China City Statistical Yearbook https://www.zgtjnj.org/navibooklist-n302
3102607-1.html (accessed on 17 June 2024)

E2
E3
E4
E5

E6

China Software Industry Statistical
Yearbook

Government Work Report
China Statistical Yearbook

The statistical yearbook of each city

3.3. Evaluation Model

To enhance the scientific and objective nature of the evaluation system, we established
a multi-criteria evaluation model for intelligent-construction pilot cities using both the
entropy method and the TOPSIS method.

The concept of entropy, originally developed in physics to quantify the level of disorder
in a thermodynamic system, has been adapted in information theory as a measure of
uncertainty [51]. In this study, entropy was used to calculate the weights of evaluation
indicators, which were then applied in the TOPSIS stage. TOPSIS is a multi-criteria decision-
making method that ranks alternatives based on their distance to an ideal solution and a
negative ideal solution [52]. The entropy weights and TOPSIS rankings were calculated
through the following steps.

(1) Establishing an evaluation system:

The characteristic value matrix of the evaluation system for the development of
intelligent-construction pilot cities is shown in Equation (1), which uses n independent
indicators to evaluate m intelligent-construction pilot cities:

R =
(
rij
)

n×m =


r11 r12 · · · r1m
r21 r22 · · · r2m
...

...
. . .

...
rn1 rn2 · · · rnm


n×m

(1)
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where rij represents the score of city j for the evaluation indicator i, and a higher score
indicates a greater development level of intelligent construction for that city in regard to
this evaluation indicator.

(2) Standardization of data:

The characteristic values were standardized to eliminate differences caused by varying
indicator dimensions, as shown in Equations (2) and (3):

xij =
rij − Mini

{
rij
}

Maxi
{

rij
}
− Mini

{
rij
} (2)

xij =
Maxi

{
rij
}
− rij

Maxi
{

rij
}
− Mini

{
rij
} (3)

where Maxi
{

rij
}

and Mini
{

rij
}

represent the maximum and minimum values under the
same indicator i. xij is the value of the city i under the indicator i after unification, ranging
from 0 to 1. With regard to the positive indicator in Equation (2), a higher value for this
indicator corresponds to a better evaluation result. Conversely, for the negative indicator in
Equation (3), a lower value for this indicator indicates a more favorable evaluation outcome.

(3) Determination of the entropy value of indicators:

The entropy weights of each indicator were calculated based on the matrix of standard-
ized feature values. First, the entropy for each indicator was measured using Equation (4) [49].
Then, the entropy weights were calculated using Equation (5) [51]:

ei = −k ∑m
j=1 pij· ln pij (4)

Among these variables, pij =
xij

∑m
j=1 xij

, k = 1
ln m , when pij = 0, pij· ln pij = 0.

wi =
1 − ei

∑n
i=1 (1 − ei)

(5)

(4) Ideal solution and negative ideal solution:

The TOPSIS method was used to determine the ranking of the studied intelligent-
construction pilot cities. First, the ideal solution and negative ideal solution were deter-
mined. Second, the distances between objective values and both the ideal solution and
negative ideal solution in the objective space were measured [53]. Then, the value closest to
the ideal solution was identified, while being furthest from the negative ideal solution, as
the optimal solution. Finally, rankings were assigned based on distances to both the ideal
and negative ideal solutions. The closer the distance to the ideal solution and the further
the distance from the negative ideal solution, the higher the ranking [54].

According to the standardized characteristic values of the intelligent-construction
pilot cities based on the evaluation indicators, the ideal solution and negative ideal solution
were determined via Equations (6) and (7).

Ideal solution: A+ =
(
v+1 , v+2 , · · · , v+n

)
v+i =

{
Maxi

{
vij

}
, i ∈ J

Mini
{

vij
}

, i ∈ J′
(6)

Negative ideal solution: A− =
(
v−1 , v−2 , · · · , v−n

)
v−i =

{
Maxi

{
vij

}
, i ∈ J

Mini
{

vij
}

, i ∈ J′
(7)
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The expressions Maxi
{

vij
}

and Mini
{

vij
}

indicate the respective maximum value
and minimum value under indicator i. j represents the set of positive indicators, while j’
represents the set of negative indicators.

(5) Distance calculation:

The distance from pilot city j to the ideal point and negative ideal point was determined
according to Equations (8) and (9).

θ+j =
√

∑n
i=1

(
v+i − vij

)2 (8)

θ−j =
√

∑n
i=1

(
v−i − vij

)2 (9)

In these equations, θ+j represents the distance from city j to the positive ideal solution,

while θ−j represents the distance from city j to the negative ideal solution.

(6) Ranking the development performance of pilot cities:

We calculated the proximity coefficient θj for each pilot city and ranked the develop-
ment performance of each intelligent-construction pilot city. The higher the value of θj,
the higher the ranking of the city, indicating a greater level of development of intelligent
construction within these pilot cities, as shown in Equation (10).

θj =
θ−j

θ+j + θ−j
(10)

4. Results

The traditional construction industry can no longer meet developmental needs and
urgently requires transformation toward intelligence and informatization. To expedite
this process, 24 pilot cities for intelligent construction have been unveiled, with the aim
of driving transformative development in the building industry through technological
innovation. Due to data collection difficulties in regard to Xiong’an New Area, an eval-
uation of 23 intelligent-construction pilot cities was conducted in this study, including
Beijing, Tianjin, Baoding, Shenyang, Harbin, Nanjing, Suzhou, Wenzhou, Jiaxing, Taizhou,
Hefei, Xiamen, Qingdao, Zhengzhou, Wuhan, Changsha, Guangzhou, Shenzhen, Foshan,
Chongqing, Chengdu, Xi’an, and Urumqi. The geographical locations of the 23 pilot cities
are shown in Figure 2.
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By employing the entropy method to analyze data from 30 indicators across 23 cities,
evaluation weights for each indicator were determined and are presented in Table 4. By
employing the TOPSIS method, the weighted data were processed to obtain the final evalu-
ation results. Among the 23 intelligent-construction pilot cities, the proximity coefficients of
the indicators were calculated, and these are ranked in Table 5. The proximity coefficients of
the five primary indicators (industrial development, scientific and technological innovation,
talent cultivation, economic development, and digital transformation) are denoted as θA

j ,

θB
j , θC

j , θD
j , and θE

j . The cumulative proximity coefficient is represented as θT
j , which was

calculated by summing up the coefficients of the five primary indicators.

Table 4. Weights of indicators.

Evaluation
Goal First-Level Indicator Weight Second-Level Indicators Weight

Evaluation of the
development of

intelligent-construction
pilot cities

(T)

Industrial development
(A) 0.1802

A1 0.0207
A2 0.0236
A3 0.0450
A4 0.0223
A5 0.0348
A6 0.0338

Scientific and
technological

innovation
(B)

0.2105

B1 0.0342
B2 0.0602
B3 0.0285
B4 0.0420
B5 0.0455

Talent cultivation
(C) 0.1713

C1 0.0232
C2 0.0342
C3 0.0248
C4 0.0326
C5 0.0295
C6 0.0269

Economic development
(D) 0.1118

D1 0.0121
D2 0.0099
D3 0.0192
D4 0.0250
D5 0.0123
D6 0.0208
D7 0.0124

Digital transformation
(E) 0.3262

E1 0.0629
E2 0.0428
E3 0.0516
E4 0.0436
E5 0.0530
E6 0.0724

The TOPSIS ranking not only showcases the relative positions of cities in terms of smart
building development but also directly reflects the disparities in their performance across
different dimensions. For example, Beijing ranks highly due to its significant advantages
in technological innovation and digital infrastructure construction, while Urumqi ranks
relatively low due to insufficient resources and infrastructure in these areas. These rankings
effectively demonstrate the variations among pilot cities in smart building development
and highlight the key factors influencing these differences.

The performance of the 23 pilot cities in terms of industrial development is shown in
Figure 3. Most cities have relatively low levels of industrial development, with proximity
coefficients under 0.5. Beijing performs the best among these cities, with a proximity
coefficient of 0.734, followed by Shenzhen, with a proximity coefficient of 0.6304, and
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Guangzhou, with a proximity coefficient of 0.5419. Several pilot cities, including Harbin,
Shenyang, Jiaxing, Xiamen, and Urumqi, perform poorly, with proximity coefficients
below 0.2.

Table 5. Proximity coefficients and ranking results for the 23 studied cities.

City θA
j Rank θB

j Rank θC
j Rank θD

j Rank θE
j Rank θT

j
Overall
Rank

Beijing 0.7340 1 0.9179 1 0.6824 2 0.6885 2 0.6865 1 3.7093 1
Shenzhen 0.6304 2 0.5647 2 0.4553 5 0.6128 4 0.4710 3 2.7342 2

Guangzhou 0.5419 3 0.3866 3 0.5269 4 0.6213 3 0.4809 2 2.5576 3
Chongqing 0.4982 4 0.1696 10 0.7725 1 0.6898 1 0.3279 6 2.4580 4
Chengdu 0.4212 5 0.2403 6 0.5643 3 0.5375 7 0.3995 5 2.1628 5

Tianjin 0.3373 8 0.2345 7 0.3521 8 0.4603 9 0.4035 4 1.7877 6
Wuhan 0.4211 6 0.2181 8 0.4301 6 0.4860 8 0.1544 10 1.7097 7
Suzhou 0.4089 7 0.3501 4 0.2160 14 0.5403 6 0.1223 11 1.6376 8
Foshan 0.2772 10 0.1516 12 0.0800 22 0.3872 13 0.2991 7 1.1951 13

Xian 0.2467 13 0.2470 5 0.3506 9 0.3734 14 0.1939 8 1.4116 10
Nanjing 0.2822 9 0.1599 11 0.3155 11 0.5519 5 0.1552 9 1.4647 9

Zhengzhou 0.2528 12 0.1366 13 0.4005 7 0.4328 11 0.1002 13 1.3229 11
Hefei 0.2653 11 0.1836 9 0.3490 10 0.3445 15 0.0743 17 1.2167 12

Changsha 0.2357 14 0.1107 15 0.2961 12 0.4004 12 0.0862 14 1.1291 14
Qingdao 0.2215 16 0.1364 14 0.2021 15 0.4358 10 0.0744 16 1.0702 15
Wenzhou 0.1873 17 0.0814 17 0.1536 17 0.3042 16 0.0515 21 0.7780 16
Shenyang 0.1825 18 0.0445 21 0.1975 16 0.2422 19 0.0636 20 0.7303 18
Xiamen 0.1577 21 0.0873 16 0.1182 19 0.3009 17 0.0767 15 0.7408 17
Harbin 0.1283 22 0.0479 20 0.2380 13 0.1986 22 0.0644 19 0.6772 19

Baoding 0.1709 20 0.0540 19 0.0951 21 0.1490 20 0.0730 18 0.5420 22
Taizhou 0.2265 15 0.0218 22 0.1524 18 0.2420 23 0.0322 22 0.6749 20
Jiaxing 0.1749 19 0.0752 18 0.0376 23 0.2970 18 0.0234 23 0.6081 21
Urumqi 0.0311 23 0.0000 23 0.0962 20 0.2219 21 0.1067 12 0.4559 23
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The evaluation results regarding technical innovation indicate that the development
level of intelligent construction technologies is unbalanced. Beijing has the highest per-
formance, with a proximity coefficient exceeding 0.9, while most pilot cities demonstrate
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relatively low levels of technological innovation, with proximity coefficients under 0.2
(Figure 4).
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Figure 4. Performance of pilot cities in regard to scientific and technological innovation.

The performance of the 23 pilot cities in terms of talent cultivation is shown in Figure 5.
These results reflect that megacities (e.g., Chongqing, Beijing, Guangzhou, Shenzhen, and
Zhengzhou) with total populations greater than 12 million people perform significantly
better in regard to talent cultivation than second-tier and third-tier cities, such as Baoding,
Foshan, and Jiaxin. Chongqing has the highest performance among all cities, with a
proximity coefficient of 0.77. This performance might be attributed to the high presence of
both construction employees and universities in Chongqing.
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The evaluation results regarding economic development in the 23 pilot cities are pre-
sented in Figure 6. The coefficients for different pilot cities were affected by economic
development in different cities. The cities with a relatively strong performance include
Chongqing, Beijing, Guangzhou, and Shenzhen, with each of their per capita GDP exceed-
ing CNY 150,000. The remaining cities demonstrate proximity coefficients below 0.5, with
Taizhou, Urumqi, and Harbin exhibiting the poorest performance in this respect.
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Only Beijing obtained a coefficient for digital infrastructure higher than 0.6, with all of
the other cities achieving coefficients under 0.5 (Figure 7). These scores may reflect the ways
in which current digital infrastructure is still not sufficient for the development of intelligent
construction. More than 10 pilot cities even had coefficients for digital infrastructure under
0.1, which indicates an extremely poor performance.

Overall, as shown in Figure 8, Beijing performs the best among the pilot cities, followed
by Shenzhen and Guangzhou. Urumqi, Baoding, and Jiaxing demonstrate a relatively poor
performance. Not only does this reveal the relative strengths and weaknesses of each city
in the development of smart buildings, but it also provides crucial evidence for studying
our initial objective, which was to identify and quantify differences between cities in
their development of smart buildings. In terms of the average performance across all five
dimensions, as illustrated in Figure 9, relatively weaker levels of performance are seen in
digital transformation and technological innovation, whereas economic development shows
relatively stronger levels of performance. The performance in industrial development
and talent cultivation is moderate. The average results not only evaluate the overall
development performance of each city but also identify gaps between different dimensions,
revealing distinct priorities and needs for smart building development in each city. Through
these averages, this study is able to effectively identify key challenges that drive smart
building development and provide more targeted guidance for future policy-making
and practices.
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5. Discussion

According to the evaluation results, Beijing, Shenzhen, and Guangzhou are the most
developed cities overall. These three cities, as examples of China’s top-tier metropolises,
not only have large populations and high levels of economic strength but also possess
well-developed infrastructure and educational resources [55]. These cities have continu-
ously invested in the field of technological innovation, constructing numerous 5G base
stations as well as digital infrastructure, such as data centers and cloud computing plat-
forms. Therefore, Beijing, Shenzhen, and Guangzhou have laid a solid foundation for the
construction of smart cities and intelligent construction. Additionally, due to the presence
of many large construction companies in these three megacities (e.g., the China Construc-
tion Second Engineering Bureau in Beijing, the China Construction Fourth Engineering
Bureau in Guangzhou, and the China Construction Science & Industry Corporation LTD
in Shenzhen), there has been an increase in mega-infrastructure, such as Beijing Daxing
Airport, the Guangzhou International Financial Center, the Shenzhen Ping An International
Finance Center, and Huaqiang’s Fantawild Tower, in these cities. These projects provide
abundant application scenarios for intelligent construction. In terms of higher education,
many universities in Beijing, Shenzhen, and Guangzhou offer programs specializing in
intelligent construction, which aim to cultivate a significant number of professionals in this
field and promote its rapid development.

Urumqi obtained the lowest evaluation coefficient, which indicates a relatively poor
performance among all of the intelligent-construction pilot cities. Urumqi faces challenges
in regard to its undeveloped economy, incomplete digital infrastructure, and small popu-
lation, which is in line with studies on regional imbalances in China [56]. Entry into the
Urumqi market is quite difficult, because of the relatively poor industrial development
and high logistical costs caused by the city’s remote geographical location. Moreover, this
city has a single-industry structure, with slow growth in high-tech industries and services.
Therefore, the development of intelligent construction in Urumqi has been relatively slow.

Among the 23 pilot cities, Baoding and Jiaxing also displayed an unsatisfactory perfor-
mance in regard to intelligent construction. Baoding relies heavily on traditional industries
and lacks strong emerging sectors. In addition, Baoding is geographically adjacent to
Beijing and Shijiazhuang, as well as Xiong’an New Area. This has led to a “siphon effect”
from these major cities, where resources are easily attracted away, limiting Baoding’s own
development [57]. Similarly, Jiaxing is located in the economically active Yangtze River
Delta region and is also affected by the siphon effect from other big cities such as Shanghai
and Hangzhou. More talents tend to seek better opportunities in these cities. Moreover,
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Baoding currently relies primarily on traditional energy-intensive industries such as chemi-
cal engineering, textiles, clothing, and synthetic fibers, with a low proportion of high-tech
industries, thus limiting employment attractiveness.

Apart from the aforementioned first-tier cities, there are some second-tier cities ex-
celling in different respects. In terms of the cultivation of talent, Chongqing and Chengdu
stand out. Both Chongqing and Chengdu possess abundant educational resources, with
numerous universities offering programs in intelligent construction aiming to cultivate
professional talents for the future of the construction industry. Additionally, due to their
mountainous terrain, both of these cities often face greater challenges in construction that
require project teams to possess higher levels of professional skills and innovation capabili-
ties. The large scale of the construction industry also provides important support for local
economic development and creates numerous job opportunities. As a result, there have
been many remarkable construction projects in these areas, such as Chongqing’s Land–Sea
International Center and Chengdu’s Tianfu International Airport. In terms of economic
development, Chongqing’s performance has increased rapidly due to the construction of
the Chengdu–Chongqing dual-city economic circle, where cooperation between Chongqing
and Chengdu mutually drives regional development [58].

Apart from the overall poor performance of these three cities (Urumqi, Baoding, and
Jiaxing), there are also other cities that exhibit relatively weak performance across certain
dimensions. Shenyang and Harbin, as traditional industrial cities in Northeast China, have
a large proportion of traditional industries, which make it difficult for emerging high-tech
industries to obtain sufficient development space and resource support. Many traditional
industrial enterprises face challenges in regard to transformation, resulting in reduced
employment opportunities and population outflow. Furthermore, Harbin is China’s largest
agricultural city and places a strong emphasis on agricultural development. However, due
to the impact of transformation, its economic growth has been slow and there is a lack
of funding for construction projects. In Shenyang, many research achievements are con-
centrated in traditional advantageous fields, while the proportion of awards for emerging
industries is low, which hampers the development momentum of intelligent construction.

Xiamen’s poor performance is mainly due to its economy being dominated by the
service and tourism industries, which have high environmental requirements. Construction
is not the major industry in Xiamen’s economy, so it may not receive as many resources
and policy support for construction compared to the service and tourism sectors, resulting
in insufficient development of the construction industry. In order to achieve sustainable
development and ecological construction goals, Xiamen encourages the use of advanced
methods, such as smart construction, in project contracting. Although this construction
method helps improve efficiency and quality, it may require more initial investment,
research, and development costs, thereby affecting short-term profits in the construction
industry and overall economic growth to some extent.

Across the five dimensions of intelligent construction development, technology in-
novation and digital infrastructure lag behind the other three primary factors. Regarding
technology innovation, China’s research focuses more on applying intelligence and au-
tomation in the design stage and emphasizes domain knowledge usage. In comparison,
developed countries have conducted more extensive research on embodied intelligence,
such as digital twins, artificial intelligence (AI), information integration, robotics, building
information modeling (BIM), the Internet of Things (IoT), and virtual reality (VR) [59].
Technologies such as digital twins, AI, and the IoT enable real-time monitoring, predictive
analytics, and automation, optimizing resource management and improving safety on
construction sites [60]. BIM and information integration enhance design accuracy and col-
laboration, reducing errors and streamlining processes [61]. Robotics and VR further boost
productivity and efficiency by automating tasks and providing immersive simulations for
better planning and decision-making [62]. Digital infrastructure requires significant invest-
ment, and regional development imbalances are clearly evident. Economically advanced
cities such as Guangzhou and Shenzhen are leading the way in technology innovation and
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the deployment of digital infrastructure, benefiting from stronger financial resources and
more established industrial bases. In contrast, economically less developed cities such as
Urumqi face significant gaps in both funding and infrastructure, which limit their ability to
fully integrate and utilize digital technologies. In areas with weaker industrial foundations,
the limited capacity to implement digital infrastructure restricts the level of intelligent con-
struction application. As the scale of digital infrastructure expands, the amount of critical
equipment that needs protection also increases; however, there may be vulnerabilities in
software and hardware products related to digitization construction, which further raises
network security risks. Ensuring security protection requires more financial support but
funding shortages may further affect the development of digital infrastructure.

Intelligent construction technologies, such as AI, BIM, the IoT, and robotics, play a
crucial role in modern building types like green buildings, energy-saving buildings, passive
buildings, and prefabricated buildings. Green buildings utilize AI and IoT technologies
to monitor energy consumption and resource usage in real time, combined with BIM to
optimize lifecycle management, thereby minimizing carbon emissions and enhancing re-
source efficiency [63]. Energy-saving buildings employ automated control systems and
Energy Management Systems (EMSs) to intelligently regulate lighting, Heating Ventilation
Air Conditioning (HVAC) systems, and other equipment, reducing energy consumption
and costs [64]. Passive buildings rely on smart shading systems and environmental con-
trol systems to optimize the use of natural light and ventilation through AI and sensor
technologies, further decreasing the reliance on external energy sources [65]. Prefabricated
buildings leverage robotic manufacturing technology and IoT-integrated design to ensure
precise production and efficient assembly of modular components, significantly shortening
the construction time and improving quality control [66]. The integration of these intelli-
gent technologies not only makes buildings more efficient and environmentally friendly
but also provides a pathway toward a more automated and sustainable future for the
construction industry.

6. Recommendations

Due to significant regional development imbalances, pilot cities focusing on intelligent
construction should formulate policies that align with their local characteristics. This will
enable the creation of replicable and scalable models for intelligent construction, potentially
serving as a reference for other countries that face similar urbanization challenges. Simulta-
neously, it is suggested that cities should establish a unique intelligent construction system
with distinct local features by leveraging natural resources, talent reserves, or technological
advantages available in the region, in order to foster an intelligent construction industry
that reflects the city’s specific characteristics. These locally tailored approaches may also
offer valuable lessons for other countries seeking to implement intelligent construction
technologies.

The construction of digital infrastructure in cities is crucial to enhancing the level
of urban intelligent development. Therefore, it is recommended that cities increase their
investment in digital infrastructure and promote the construction of new types of infras-
tructure, such as 5G base stations, data centers, artificial intelligence platforms, and the
industrial internet. Emphasis should be placed on fundamental research and strengthening
the application of key technologies such as artificial intelligence, big data, and the IoT in
the construction field.

The development of intelligent construction in different pilot cities was evaluated in
this study. However, there are also some limitations. Due to limitations in data collection
channels, the evaluation indicator system we used may not be comprehensive. In the future,
data collection methods can be optimized through web scraping and other means to obtain
more effective data that reflect the efficiency of intelligence development. Additionally, with
the integration and application of emerging technologies such as 5G, big data, and cloud
computing, researchers can update and improve our evaluation indicator system in future
studies. Currently, these 23 smart-construction pilot cities represent, to some extent, the
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direction of China’s urban intelligent technology development. However, with economic
growth, more cities are expected to become important platforms for smart construction
and provide new cases for future research. Therefore, we suggest expanding the scope of
research in future studies to include other cities, which would enable researchers to examine
the development of intelligent buildings in different regions using innovative research
methods such as a difference-in-differences (DID) methods. Moreover, the research methods
used here are simple and can be improved upon in future evaluations. Future research could
consider using more advanced methods, such as MCDA or regression models, to better
capture the interrelated factors influencing smart construction development. Considering
regional imbalances in development, it is recommended that future researchers use spatial
economics to analyze and evaluate different pilot cities and to compare them with other
cities worldwide.

7. Conclusions

With the emergence of intelligent construction, the transformation toward intelligence
and informatization in the construction industry is an inevitable trend. However, imple-
menting intelligent construction is a complex and challenging process that involves various
elements, such as technological innovation, talent development, policy regulations, and
data security. Therefore, it is particularly important to conduct a comprehensive evaluation
of the level of intelligent construction in regard to urban development in China. The
current research evaluates the performance of intelligent construction in 23 pilot cities with
an evaluation index system that encompasses five dimensions: industrial development,
scientific and technological innovation, talent cultivation, economic development, and
digital transformation. The entropy method and the TOPSIS method were used to com-
prehensively assess these 23 pilot cities in regard to intelligent construction in China. The
research findings indicate that the development of intelligent construction in different pilot
cities is uneven. Three first-tier cities—Beijing, Shenzhen, and Guangzhou—performed
relatively better than the remaining cities. Western cities performed poorly among all pilot
cities. Across the five dimensions, the development of industries, talent cultivation, and
economic growth are relatively satisfactory, while there is huge potential for improvements
in technological innovation and digital infrastructure. This study offers an approach to
understanding these disparities, enabling policymakers to tailor interventions that address
specific regional challenges and promote balanced development.

According to the results of this study, it is recommended that pilot cities tailor their
policies based on their own circumstances and establish replicable and scalable construction
models. It is suggested that cities increase their investment in digital infrastructure and
promote the development of new types of infrastructure. Additionally, accelerating techno-
logical research, strengthening basic research, and applying key technologies in the field of
construction are recommended strategies. These strategies may offer valuable guidance
for effectively addressing similar challenges in intelligent construction projects in other
countries. However, there are limitations to the present research. First, the data collection
from limited sources in this current study could be optimized through web scraping in
future studies, although obtaining the most up-to-date data remains challenging due to the
varying availability of data across different cities. Second, the number of cities evaluated in
this work is small; therefore, expanding the scale in further research using a larger sample
size would be beneficial. Future studies could explore how other countries are advancing
in intelligent construction and learn from their experiences. Furthermore, this study did
not fully account for other factors that could have influenced the results, such as differences
in local policies or recent economic changes. Moreover, the research method used here is
simple and could be improved upon in subsequent evaluations. Space economics could
also be used to study and analyze the problem of unbalanced regional development. Finally,
future studies could also focus on comparing China’s intelligent construction development
with approaches used by other countries.
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