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Abstract: Dynamic characteristics are of significant interest to researchers in the field of
damage detection. Among these, natural frequencies stand out due to their high accuracy
and resistance to noise. However, relying solely on natural frequencies is often insufficient
for determining the depth and location of damage. To address this limitation, additional
masses can be strategically placed at different locations on structural elements, altering
the natural frequencies. Each mass placement creates a distinct dynamic scenario with
a unique frequency profile, enabling a more comprehensive analysis. In this study, ad-
ditional masses were introduced at specific elements of the beam structure within the
numerical model which were then strategically placed at various locations along the beam.
The resulting shifts in natural frequencies served as inputs to the Grey Wolf Optimizer
(GWO), which identified elements with stiffness reductions indicative of damage. A cus-
tom MATLAB code was developed to perform finite element analysis on the numerical
model. The results were validated against previously published experimental data, demon-
strating the method’s reliability with a 5% difference. A parametric study involving both
simple and continuous span beams was performed. The procedure effectively detected
damage severities of 10%, 25%, and 50%, with corresponding errors of 4.3%, 0.44%, and
0.02%, respectively.

Keywords: damage detection; numerical modeling; grey wolf; additional masses; structure
dynamics; beams

1. Introduction
Structural systems may degrade over time due to aging or may suffer significant

damage from sudden catastrophic events like earthquakes, explosions, or hurricanes.
Consequently, monitoring the health of these structures is essential for the early detection
of damage, helping to avert potential disasters [1]. Damage detection in structural elements
is a critical aspect of structural health monitoring (SHM), which plays an indispensable
role in ensuring the safety, durability, and longevity of infrastructure such as bridges,
towers, dams, and buildings. As the demand for robust and reliable infrastructure increases
globally, the need for advanced techniques to detect and monitor structural damage has
become more pressing.

Over the past few decades, a variety of non-destructive testing techniques have been
developed, including vibration analysis, ultrasonic testing, and modal analysis. Among
these, dynamic-characteristic-based methods, which rely on modal shapes and natural
frequencies, have shown great potential due to their sensitivity to structural damage [2,3].
The process of detecting damage in structures has been an interesting topic for many
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scientists and researchers. Researchers remain focused on developing new or improved
methods, emphasizing techniques that apply to entire structural elements without causing
collateral damage. To detect the damage, lots of non-destructive testing are used, such
as ultrasonic techniques, visual inspection, eddy current method, radiography methods,
acoustic emission, magnetic methods, and dynamic-characteristics techniques [4–6].

Dynamic-characteristics techniques are effective methods of detecting damage in
different structure types [7–11]. The dynamic techniques depend on one or more of the
dynamic characteristics of the structure. Modal shapes, natural frequencies, and damping
parameters are the dynamic structural characteristics that are affected by damage. These
effects occur due to the change in the local stiffness and energy dissipation characteristics.
By studying one or more of these dynamic characteristics, the damage location and severity
can be detected.

Despite the high sensitivity of damping to damage, its drawback is that its parameters
are difficult to measure and are strongly influenced by environmental factors, loading, and
boundary conditions [12]. The changes in mode shapes also give indications of structural
damage and detect its location and severity. However, the main defect is a high affection
for noise, especially in small damage when the noise level is higher than the changed value
in mode shapes between damaged and undamaged structures.

The covariance-driven stochastic subspace identification method along with silicone
rubber-packaged FBG sensing information were used for identification purposes.

The covariance-driven Stochastic Subspace Identification (SSI) method is utilized to
analyze sensor responses and extract the structure’s modal parameters. Building on this
approach, an improved damage identification index is introduced, designed to reduce the
influence of support and excitation positions on the accuracy of damage detection [13,14].

The structure mode shapes could be combined with wavelet analysis to detect the
damage in beam and plate structures accurately [15,16]. The mode-shape-curvature-based
algorithm was used to detect the location and severity of the damage in plate structures.
This method has an advantage, such as it needs the damage case mode shapes only [17].
The continuous symmetry measure could be used for measuring the symmetry of struc-
tural mode shapes as a feature for damage detection in structural health monitoring [18].
Mode shape curvature and damage locating vector methods were considered for predicting
damage to structures [19]. Output-only data of damaged structures can be used to recon-
struct and identify the modal shapes of the uncracked structure. After that, the curvature
modal shapes were used to locate the damage as a damage-sensitive feature [20,21]. Using
operational deflection shapes (ODS) has demonstrated improved sensitivity in detect-
ing and localizing beam damage. ODS, which captures deformation responses across a
wide frequency range, offers superior detection capabilities compared to traditional modal
analysis [22].

The mode-shapes method requires accurate acceleration or displacement measure-
ments on the surfaces of damaged and undamaged structures with a good distribution of
the sensors and a sufficient number of measurement points [23]. This makes the natural-
frequencies method the best and easiest of the dynamic-characteristics techniques because
it is less affected by noise, its high accuracy in detecting damage, and its severity with easy
practice in the field [24–26].

To find the damage location in a cantilever beam, a natural-frequency method was
proposed [27]. In this method, the cantilever beam is discretized into several zones, where
the first four normalized natural frequencies for each zone are classified [27]. Also, the
transverse mode’s first three natural frequencies were evaluated. Based on this, the behavior
of cracked and healthy beams is compared and discussed. It was concluded that the
transverse vibration’s natural frequency could be used to detect a damaged location and
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the severity of the damage on the cantilever shaft beam [28]. The objective function was
the change in the natural frequencies of the structure due to the existence of a crack.
Particle Swarm Optimization was used to locate the damage and its severity in beam-like
structures [3]. Relative natural frequency changes were used to detect single and multiple
cracks in beam structures, and the concept of relative-natural-frequency-change curves for
local damage characterization was presented [29].

The natural frequencies can be used with structure mode shapes to localize the damage
and its severity in different types of structures. The use of the two dynamic characteristics
can improve the result accuracy [30–33].

Adding mass to damaged structures can improve the sensitivity for the detection of
damage [34,35]. The contact-point response of a moving test vehicle is adopted for the
damage detection of bridges [36]. Additionally, moving or parked vehicles can be used as
additional masses in the process of bridge damage detection [9]. Adding virtual masses
to the tank structures can also be used to detect damage. The virtual distortion is used to
deduce the frequency-response function of a structure with additional virtual masses [37].
In another study, a structural parameter identification method for damped structures was
introduced, using additional known masses [38]. The method does not require an initial
guess for system parameters, reduces computational cost, and can detect multiple damages
without compromising accuracy. The algorithm, which identifies mass, stiffness, and
damping coefficients from modal parameters, was validated through numerical simulations
and experiments.

Optimizer algorithms are required to identify the location and severity of the damage.
The Grey Wolf Optimizer (GWO) is a new meta-heuristic method that was inspired by grey
wolves. The GWO algorithm mimics the hunting mechanism and leadership hierarchy of
the grey wolves in nature. The GWO algorithm yields highly competitive results compared
to other established meta-heuristic techniques [39]. An improved Grey Wolf Optimizer
algorithm is developed for the optimal design of structures [40].

Techniques like the gapped-smoothing method (GSM) and the global-fitting method
(GFM), when paired with ODS data, have been experimentally validated on both small-scale
and large-scale beam structures, showing remarkable accuracy in identifying damage with
slight severity [41]. Recent comparative studies have evaluated various damage detection
methods, including the global-deviation method (GDM), the finite-element methods (FEM),
and vibration-based techniques using optimization algorithms like the GWO. These studies
highlight that techniques using ODS outperform others in terms of sensitivity to subtle
damage [42]. Furthermore, FEM paired with machine learning, such as artificial neural
networks (ANN), has been successfully used to predict crack severity in steel beams,
offering another promising approach [42].

Building on the existing literature, the use of additional masses has demonstrated
significant accuracy in identifying dynamic characteristics, such as natural frequencies,
which exhibit reduced sensitivity to noise in damage detection applications. Furthermore,
the GWO has proven to be highly effective in addressing complex optimization problems.
This paper aims to enhance the application of additional masses and natural frequencies to
accurately identify and locate damage in structural systems.

This paper presents a damage detection method that involves strategically adding
additional masses to the structure to assess various dynamic responses. A tailored MAT-
LAB code was created to analyze the data and precisely identify both the location and
severity of damage using a combination of the GWO and finite-element analysis (FEA).
Experimental and numerical validations were performed to confirm the accuracy of the
dynamic parameter computations and the overall effectiveness of the damage detection
approach. Detailed case studies were conducted to validate the procedure, examining three
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types of beam structures: a simply supported beam, a two-span beam, and a three-span
beam, each with different damage severities and locations.

2. Additional Masses and Natural Frequency
Each structural element possesses unique dynamic characteristics, which are influ-

enced by a range of variables. Among these, the natural frequency stands out as a cru-
cial dynamic property, and it is the central focus of this paper. The natural frequency
of a structural element is fundamentally determined by its mass and stiffness, which
directly impacts its vibrational response. To calculate the natural frequencies using finite-
element analysis (FEA), the eigenvalue problem must be solved. This is represented by the
following relation:

K Φ = λ M Φ (1)

where M and K are the global mass matrix and stiffness matrix of the beam, and λ and
Φ are the eigenvalue and the corresponding eigenvector of the beam, respectively. The
natural frequencies are driven from λ.

For a beam structure, the mass and stiffness matrices can be determined as follows:
The beam is discretized into (n) finite elements, and the stiffness and mass matrices for each
element are computed individually, as shown in Equations (2) and (3). These individual
element matrices are then assembled into the global stiffness and mass matrices of the
entire structure.

K =



EA/l 0 0
0 12EI/l3 6EI/l2

0 6EI/l2 4EI/l

−EA/l 0 0
0 −12EI/l3 6EI/l2

0 −6EI/l2 2EI/l
−EA/l 0 0

0 −12EI/l3 −6EI/l2

0 6EI/l2 2EI/l

EA/l 0 0
0 12EI/l3 −6EI/l2

0 −6EI/l2 4EI/l


(2)

M =
ρAl
420



140 0 0
0 156 22l
0 22l 4l2

70 0 0
0 54 −13l
0 13l −3l2

70 0 0
0 54 13l
0 −13l −3l2

140 0 0
0 156 −22l
0 −22l 4l2


(3)

where ρ, E, A, L, and I are density, modulus of elasticity, cross-section area, element length,
and element inertia, respectively.

Structural damage is commonly modeled as a reduction in the stiffness of the affected
elements. The extent of this reduction depends on the type and magnitude of damage
present within the structural member. This reduction in stiffness, in turn, alters the overall
stiffness matrix of the element, leading to changes in the natural frequencies of the damaged
structure. As a result, the natural frequencies of a damaged structure differ from those of an
undamaged (healthy) one. By analyzing the shift in natural frequencies, it becomes possible
to infer the presence of damage, as well as to estimate its location and severity. In addition
to natural frequencies, damage in structures also impacts other dynamic properties, such
as modal shapes and damping characteristics.

While changes in natural frequencies provide valuable information, they are often
insufficient by themselves to pinpoint the exact location and severity of damage [9]. To
address this limitation, a more advanced approach involves introducing additional masses
to the structural elements. The addition of mass modifies the mass matrix, as described
by Equation (3). This modification, in turn, alters the total mass matrix of the structure,
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resulting in changes to the dynamic characteristics, including the natural frequencies, as
governed by Equation (1). The introduction of additional masses increases the sensitivity of
the system, making it possible to observe more noticeable shifts in dynamic properties. By
examining how these changes manifest in the natural frequency values, it is possible to gain
a deeper insight into the structural behavior and improve damage detection capabilities.

In the following example, the effect of adding masses to a structural element will
be demonstrated, illustrating how this adjustment leads to noticeable changes in the
natural frequency values, thus enhancing the accuracy of damage detection and localization.
Figure 1 illustrates the studied 100 cm simple beam, which is divided into ten elements
and analyzed under three distinct cases. In the first case, no additional masses are added
to the beam. The second case introduces a single additional mass, while the third case
incorporates two additional masses at different positions along the beam.

Buildings 2025, 15, x FOR PEER REVIEW 5 of 17 
 

frequencies, as governed by Equation (1). The introduction of additional masses increases 
the sensitivity of the system, making it possible to observe more noticeable shifts in dy-
namic properties. By examining how these changes manifest in the natural frequency val-
ues, it is possible to gain a deeper insight into the structural behavior and improve damage 
detection capabilities. 

In the following example, the effect of adding masses to a structural element will be 
demonstrated, illustrating how this adjustment leads to noticeable changes in the natural 
frequency values, thus enhancing the accuracy of damage detection and localization. Fig-
ure 1 illustrates the studied 100 cm simple beam, which is divided into ten elements and 
analyzed under three distinct cases. In the first case, no additional masses are added to 
the beam. The second case introduces a single additional mass, while the third case incor-
porates two additional masses at different positions along the beam. 

The beam’s key parameters include a modulus of elasticity of 2.2 × 105 kg/cm2 and a 
cross-sectional area of 30 × 50 cm. Table 1 presents the influence of these additional masses 
on the beam’s natural frequencies across the three cases studied. The additional masses 
are equal to three times the element mass and it is applied by multiplying the element 
mass matrix at a targeted location by four. It is evident that the addition of masses leads 
to a decrease in the natural frequencies, particularly in the first four frequencies. The lo-
cation of the added masses plays a crucial role in altering the natural-frequency values. 
These changes provide valuable insights into the structural behavior, as each variation in 
mass placement results in distinct natural-frequency shifts. This enhances the ability to 
detect the damage location and assess its severity more accurately, as further explained in 
the subsequent sections. The precise measurement of these frequency changes allows for 
improved damage detection, making the method more reliable for pinpointing the extent 
and location of damage. 

 

Figure 1. Representation of three different additional mass cases of simply supported beams. 

Table 1. Natural frequencies of simply supported beams with different additional masses cases 
(rad/s). 

Case  1st Freq. 2nd Freq. 3rd Freq. 4th Freq. 
1 42.84 169.73 376.05 651.45 
2 28.36 108.52 253.23 439.16 
3 26.02 100.35 245.31 414.52 

2.1. Grey Wolf Optimizer 

In this paper, the GWO is employed as the optimization technique. The GWO offers 
several key advantages that make it ideal for structural damage detection and optimiza-
tion tasks. Its simplicity and ease of implementation allow for straightforward adaptation 
to complex problems, while its strong global search capability ensures effective explora-
tion of nonlinear and multi-dimensional solution spaces. The algorithm’s adaptability to 
various constraints and its competitive performance compared to other optimization 

Figure 1. Representation of three different additional mass cases of simply supported beams.

The beam’s key parameters include a modulus of elasticity of 2.2 × 105 kg/cm2 and
a cross-sectional area of 30 × 50 cm. Table 1 presents the influence of these additional
masses on the beam’s natural frequencies across the three cases studied. The additional
masses are equal to three times the element mass and it is applied by multiplying the
element mass matrix at a targeted location by four. It is evident that the addition of masses
leads to a decrease in the natural frequencies, particularly in the first four frequencies. The
location of the added masses plays a crucial role in altering the natural-frequency values.
These changes provide valuable insights into the structural behavior, as each variation in
mass placement results in distinct natural-frequency shifts. This enhances the ability to
detect the damage location and assess its severity more accurately, as further explained in
the subsequent sections. The precise measurement of these frequency changes allows for
improved damage detection, making the method more reliable for pinpointing the extent
and location of damage.

Table 1. Natural frequencies of simply supported beams with different additional masses cases
(rad/s).

Case 1st Freq. 2nd Freq. 3rd Freq. 4th Freq.

1 42.84 169.73 376.05 651.45
2 28.36 108.52 253.23 439.16
3 26.02 100.35 245.31 414.52

2.1. Grey Wolf Optimizer

In this paper, the GWO is employed as the optimization technique. The GWO offers
several key advantages that make it ideal for structural damage detection and optimization
tasks. Its simplicity and ease of implementation allow for straightforward adaptation to
complex problems, while its strong global search capability ensures effective exploration of
nonlinear and multi-dimensional solution spaces. The algorithm’s adaptability to various
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constraints and its competitive performance compared to other optimization methods
further highlights its suitability for damage detection in structural health monitoring. The
GWO algorithm simulates the leadership hierarchy of grey wolves, utilizing four types of
wolves—beta, alpha, omega, and delta—to guide the search process. Each wolf type plays
a distinct role in the optimization process, mimicking the social behavior observed in real
wolf packs. The GWO algorithm searches for the optimal solution by simulating the natural
hunting and attacking strategies of grey wolves. To perform the optimization, a MATLAB
(R2024b) code was developed, and three main steps were implemented: hunting, prey
searching, encircling prey, and attacking. These steps mirror the wolves’ behavior in nature,
where the wolves work collectively to track down and capture prey. The optimization
process is designed to find the best match between the calculated and measured dynamic
characteristics, thereby identifying the location and severity of the structural damage [39].

The parameters used in the GWO algorithm, such as the population size, and maxi-
mum iterations, were carefully chosen to balance optimization efficiency and computational
resources. The population size was selected to ensure a sufficiently large search space for
global exploration while maintaining manageable computational costs. The maximum
number of iterations was determined based on convergence criteria, ensuring that the
algorithm had adequate time to reach an optimal solution.

2.2. Additional Masses Procedure

Figure 2 illustrates the damage detection procedure using the additional masses. The
proposed method involves a non-destructive experimental procedure to detect structural
damage. The following steps outline the procedure:

A. Structure data: gather real structural data, including dimensions, materials, and load
conditions, from the damaged structure.

B. Dynamic excitation: select a non-destructive dynamic excitation, such as impact
loading, to induce vibrations in the structure.

C. Data collection: Measure the dynamic response of the damaged members such as
acceleration history. Repeat the previous step with and without additional masses,
while varying the mass locations. Each change in mass location corresponds to a new
case, and the number of cases influences the accuracy of the solution.

D. Dynamic parameters: Use the acceleration data to evaluate the natural frequencies
for every case. SeismoSignal software can be used to do that.

E. Optimization process:

1. Finite-element analysis (FEA): divide the structural member into small elements
based on the required accuracy for detailed modeling.

2. Initial damage index: assume an initial random distribution of damage indices
across the structural elements for optimization initialization.

3. Dynamic analysis: perform dynamic analysis for each of the field-based cases
from step C and evaluate the dynamic characteristics for comparison.

4. Objective function calculation: use Equation (5) to compute the objective func-
tion, which will guide the optimization process.

5. Optimization with GWO: update the damage index using the GWO algorithm,
adjusting the damage estimates iteratively.

6. Iteration for convergence: repeat steps 3–6 to solve the optimization problem,
refining the damage indices.

F. Final damage identification: the optimized damage indices will pinpoint the specific
damaged elements of the structural member, providing an accurate assessment of
the damage location and severity.
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Figure 2. Illustration of the damage detection procedure.

The damage index (DI) is chosen as the relative rigidity between the cracked and
healthy element:

DI =
(EI)d
(EI)h

(4)

where index d refers to the damaged case and index h refers to the healthy case.
The FEA and GWO were executed using MATLAB software to effectively detect

structural damage. FEA is employed to model and simulate the structural behavior, while
the GWO is applied as an optimization technique to search for and locate damage by
comparing the simulated results with measured dynamic characteristics. This integrated
approach leverages the computational power of MATLAB to enhance the accuracy and
efficiency of damage detection in complex structural systems. The objective function of the
optimization problem is:

minJ(DI) =
nm

∑
j=1

ne

∑
i=1

(
λr,i − λf,i

λu,i

)
j

(5)

where J(DI) is the updating parameter, index r denotes the field measurement, f FEA result,
u undamaged case, and nm and ne refer to the number of additional mass cases and
eigenvalues, respectively.

3. Numerical Case Studies
In this study, three distinct cases of a plain concrete beam are utilized to validate

the effectiveness of additional masses and the GWO method. The 16 cases include a sim-
ply supported beam, a two-span continuous beam, and a three-span continuous beam,
each subjected to different loading scenarios. These beam configurations, as illustrated in
Figure 3a–c, represent a variety of real-world structural conditions, allowing for compre-
hensive testing of the proposed method under diverse scenarios. The cases in Figure 3a,b
investigate the effect of the number of divisions on the simply supported beams. The cases
in Figure 3c,d investigate the multispan beams.

The damage in the beam is modeled as a reduction in its flexural stiffness (EI), where
the severity of the damage is represented by a percentage decrease in the EI value for the
affected elements. The level of this reduction is detailed in Table 2, which provides a clear
correlation between the level of damage and the corresponding decrease in flexural stiffness.
This approach allows for a quantifiable representation of damage severity, essential for
accurate damage detection and analysis.
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Figure 3. Three cases of concrete beam for numerical studies; (a) simply supported with 10 elements,
(b) simply supported with 50 elements, (c) two spans, and (d) three spans.

Table 2. Different beam cases and damage scenario numerical studies.

Elements/
Span

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

El
em
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t
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ve

ri
ty

El
em

en
t

Se
ve

ri
ty

El
em

en
t

Se
ve

ri
ty

El
em

en
t

Se
ve

ri
ty

El
em

en
t

Se
ve

ri
ty

El
em

en
t

Se
ve

ri
ty

Simply
support

50 20 50% - - - - - - - - - -

10 4 10% - - - - - - - - - -

10 4 25% 4 50% 4, 7 25% 4, 7 50% - - - -

Two spans 10 4 25% 4 50% 4, 16 25% 4, 16 50% - - - -

Three spans 10 4 25% 4 50% 4, 16 25% 4, 16 50% 4, 16, 23 25% 4, 16, 23 50%

The natural frequencies of the structure are utilized to detect both the location and
severity of cracks in the beam.

Instead of experimental measurements, the damaged structure was built and solved
under impact load using the CSI SAP2000 v21 finite element software for validation pur-
poses. Two distinct cases were considered, one with additional masses added to the
structure and one without. SAP2000 is a widely used general-purpose structural analysis
and design software developed by Computers and Structures, Inc. (CSI). It is used for
analyzing and designing buildings, bridges, dams, towers, and other structural systems.
SAP2000 offers a comprehensive range of analysis types, including static, dynamic, lin-
ear, and nonlinear analysis, making it suitable for both simple and complex structural
systems [43,44].

Two-node frame elements are employed to represent the beam, with each node having
three degrees of freedom. The impact on the beam is introduced through a time-history
case, specifically a half cubic sine function, which serves as the excitation source [45]. The
resulting acceleration response to this impact is captured and can be measured at any node
along the beam within SAP2000.

In experimental testing, measurements are influenced by noise, which varies based
on the complexity and precision of the instruments and devices employed. To assess the
robustness of the damage detection methods, artificial random noise was introduced to the
simulated acceleration data. A Gaussian random number normal distribution with a zero
mean and standard deviation (1) was used to apply the noise level of 2 × 10−3 as a ratio
of the acceleration value [21]. To extract the natural frequencies of the cracked beam from
the acceleration data, SeismoSignal 2022 software is employed. SeismoSignal is a software
tool developed for processing and analyzing earthquake ground motion data [46]. It is
particularly used to analyze accelerometer data, such as acceleration time-history signals,
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and to extract important seismic parameters for structural engineering applications. This
software processes the acceleration response to determine the natural frequencies, which
are then analyzed to detect the presence, location, and severity of the cracks in the beam.
The use of both SAP2000 and SeismoSignal ensures accurate modeling, simulation, and
frequency extraction, facilitating a more reliable assessment of structural integrity.

4. Experimental Validation
The accurate calculation of dynamic parameters is a critical step in the damage de-

tection process. Before analyzing the cases outlined in Figure 3, it is essential to validate
the computed-natural-frequency values against experimental results. This validation en-
sures the reliability and precision of the dynamic parameter calculations, forming a robust
foundation for the subsequent damage detection analysis.

To validate the proposed step, experimental test results were used which were con-
ducted on a steel cantilever beam measuring 750 mm in length, 25 mm in width, and 6 mm
in thickness [29]. A 1 mm deep crack was introduced at a distance of 375 mm from the fixed
end of the beam, simulating structural damage. The beam was excited using an impact
hammer positioned 500 mm from the fixed end, and acceleration responses were recorded
using an accelerometer placed at 700 mm. These measurements were taken for both the
healthy and damaged beam cases. Because of the damage in the middle, the cantilever
beam was divided into eleven elements to have a middle element. The damage was applied
to element number six. The inertia reduction equals the ratio between the cracked and
un-cracked element cross-section inertia.

The natural frequencies for the first four modes of vibration were determined using
Seismo-Signal software, which processed the acceleration data from the beam. These exper-
imental results were compared to the numerical simulations performed using SAP2000 and
MATLAB. The cracked and healthy beam natural frequencies for both the experimental and
numerical models are presented in Table 3. The results show excellent agreement between
the experimental data and the numerical model, with frequency deviations of less than 2%.

Table 3. The first four natural frequencies of the present work and steel cantilever beam (Khatir et al., 2018).

Mode
Undamaged Case Damaged Case

Experimental/Reference Present Work Experimental/Reference Present Work

1 56.75 56.53 56.38 55.34

2 156.39 157.821 156.30 157.8

3 306.19 308.27 305.46 302.4

4 506.15 507.82 506.02 507.4

The maximum error ratio is 1.84%, which may be sourced from the noise in the
experimental results.

5. Case Study Results
In this section, the results of the three cases under investigation will be discussed.

5.1. Simply Supported Beam

To investigate the effect of noise, Figure 4a illustrates a simply supported beam
modeled with 10 elements, subjected to damage severities of 10% with and without a
simulated data noise of 2 × 10−3 as a ratio. It can be seen that at this level of noise, the
procedure was able to predict the damage location and severity with an error of 5% for the
case with noise and 4.3% for the case with no noise.
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Figure 4. Effect of the number of elements for the simply supported beam case.

Figure 4a,b illustrate a comparison for a simply supported beam modeled with
10 elements, subjected to damage severities of 10% and 50% at the same location. In
both scenarios, the proposed procedure accurately identified the damage location. The
error in estimating damage severity was −5% for the 10% damage case and −0.02% for the
50% damage case. These results demonstrate that the procedure effectively detects damage
severity across both low and high damage levels with acceptable accuracy, although, the
accuracy becomes higher by increasing the damage severity.

Figure 4b,c present a comparison between a simply supported beam modeled with
10 elements and one with 50 elements. The actual damage location corresponds to element
number 4 in the 10 elements case and 20 in the 50 elements case, with a damage level of
50%, as specified in Scenario 2. In both cases, the proposed method accurately identified
the damage location, demonstrating its robustness. For the beam divided into 10 elements,
the damage was located at element number 4, while for the beam with 50 elements, it was
pinpointed at element number 20.

Both cases align with a damage location at 40% of the beam’s span, irrespective of the
discretization level. However, the predicted damage severity differed from the actual value
by less than 1% in the 10-element case, compared to a 7% discrepancy in the 50-element
case, see Table 4. This higher variance in the 50-element scenario can be attributed to
the larger search space inherent in finer discretization which affects the accuracy of the
optimization algorithm.

Table 4. The actual and estimated damage severities for all tested scenarios of a simple beam.

Location Damage Severity (%)

Scenario Actual Estimated Actual Estimated Error

1 4 4 25 24.89 −0.44

2 4 4 50 49.99 −0.02

3 4, 7 4, 7 25, 25 25.84, 24.07 3.36, −3.72

4 4, 7 4, 7 50, 50 50.21, 49.75 0.42, −0.5
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Figure 5 provides detailed insights into the detection of damaged elements in a simply
supported beam under varying scenarios. As seen in Figure 5a,b, the analysis reveals that
when only one element is damaged, the proposed technique achieves remarkable accuracy
in pinpointing both the location and severity of the damage, irrespective of the severity
level. The maximum difference of this case was 0.44% for the 10-elements case, Table 4.
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In cases involving two damaged elements, the detection accuracy shows a slight
decline, especially for low-severity damage, where the difference between estimated and
actual severity is approximately 3.72% for 25% damage and 0.5% for 50% damage. This
reduction in accuracy can be attributed to the more complex impact of multiple damaged
elements on the structural stiffness matrix, which can obscure subtle changes in natural
frequencies. However, for cases involving significant damage severity, i.e., the 50% case, the
method consistently provides precise results. The sharp differences in natural frequencies
induced by severe damage create a distinct and identifiable signal that enhances detection
reliability. This observation underscores the robustness of the method in handling both
single and multiple damage scenarios, with an inherent advantage in detecting and quanti-
fying more pronounced damages due to their clearer impact on dynamic characteristics.
Finally, it can be concluded that the proposed procedure was able to predict both the
damage location and severity accurately.

5.2. Two Continuous Spans Beam

Figure 6a–d show the damaged elements of the two continuous spans beam. It can be
shown that the proposed technique was able to estimate the damage location and severity
closely for single or double damages, where the detection error is 7.52% and 1.78% for the
case of scenarios 1 and 2, respectively, see Table 5. While for the case of scenarios 3 and 4,
the detection error is 9.88% and 1.68%, respectively.
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Table 5. The actual and estimated damage severities for all tested scenarios of two-span beams.

Location Damage Severity (%)

Scenario Actual Estimated Actual Estimated Error

1 4 4 25 23.12 −7.52

2 4 4 50 49.11 −1.78

3 4, 16 4, 16 25, 25 22.53, 23.06 −9.88, −7.76

4 4, 16 4, 16 50, 50 49.16, 49.18 −1.68, −1.64

It is also worth noting that some damage was detected in some undamaged locations
with a severity of not more than 5%. That is because increasing the number of damaged
elements has a bigger effect on the structural stiffness matrix than in the case of one
damaged element. But when this damage is large, it causes a sharp difference in natural
frequencies which is difficult to occur in other scenarios and its effect is clear, so it can be
detected more accurately than in the case of the small one. Additionally, in the case of two
continuous spans with more elements, the process of detecting damaged elements is more
complicated than in the case of a single span, due to more scenarios that achieve results
close to actual results.

5.3. Three Continuous Spans Beam

Figure 7a–f shows the damaged elements in three-continuous-span beams. It is shown
that the technique detects approximately the damage location and severity, especially
where multiple damages have occurred. The severity detection error is between 2.54 and
10.77% for the case of scenarios 3 and 4 and between 14.376 and 4.66% for scenarios 1 and
2. For the case of three spans found in scenarios 5 and 6, detection error is between 1.24
and 16.06%, respectively. It is also worth noting that some damage was detected in some
undamaged locations with a severity of not more than 5% similar to the previous scenarios.
That is because increasing the number of damaged elements has a bigger effect on the
stiffness matrix that significantly affects the model shapes.
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Figure 7. Damage detection results for three-continuous-span beams.

On the other hand, when this damage is large, it causes a sharp difference in natural
frequencies which is difficult to occur in other scenarios and its effect is clear, so it can be
detected more accurately than in the case of the small one. Additionally, in the case of
three continuous spans with more elements, the process of detecting damaged elements
is more complicated than in the previous two cases, due to more scenarios that achieve
results close to actual results. It can be concluded that by increasing the damage severity
the detection of the severity becomes easier. Table 6 summarizes the actual and estimated
damage severities for all tested scenarios, alongside the respective estimation errors.

Table 6. The actual and estimated damage severities for all tested scenarios of three-span-beams.

Location Damage Severity (%)

Scenario Actual Estimated Actual Estimated Error

1 4 4 25 21.406 −14.376

2 4 4 50 47.67 −4.66

3 4, 16 4, 16 25, 25 23.01, 22.31 −7.96, −10.77

4 4, 16 4, 16 50, 50 48.73, 48.18 −2.54, −3.64

5 4, 16, 23 4, 16, 23 25, 25, 25 21.15, 23.46, 20.98 −15.4, −6.18, −16.06

6 4, 16, 23 4, 16, 23 50, 50, 50 48.49, 49.38, 47.55 −3.02, −1.24, −4.89

5.4. Statistical Analysis

To provide a more comprehensive evaluation of the Grey Wolf Optimizer (GWO)
method’s accuracy, we computed statistical metrics including the Mean Absolute Error
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(MAE) and the Root Mean Square Error (RMSE) for all scenarios, Table 7. These metrics
provide a clearer picture of the model’s performance across different beam structures and
damage scenarios.

Table 7. The MAE and RMSE for all tested scenarios.

Scenario MAE (%) RMSE (%)

1 1.25 1.41

2 3.50 4.12

3 2.85 3.57

4 3.15 3.78

5 4.30 5.10

The MAE is defined as:
MAE =

1
n∑n

i=1|yi − ŷi| (6)

where yi is the actual damage severity, ŷi is the estimated severity, and n is the number of
elements analyzed [39]. The RMSE provides a similar measure but gives more weight to
larger errors:

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (7)

The RMSE provides a more sensitive measure to outliers, giving greater weight to
larger deviations from the true value [31,40].

The results show that the MAE is below 5% for all scenarios, indicating that the GWO
method performs well in predicting damage severity across different cases. The RMSE,
which penalizes larger errors, remains within acceptable limits, showing that outlier errors
do not heavily affect the overall prediction accuracy.

6. Conclusions
This paper presents a damage detection method that uses strategically placed ad-

ditional masses using natural frequencies. Key conclusions are provided based on
these findings.

• The developed FEA algorithm demonstrated high precision in detecting natural fre-
quencies, with a difference of less than 2%, making it well-suited for generating data
for the optimizer. Across 16 studied cases, the GWO procedure accurately identified
damage locations.

• The procedure effectively detected damage severities of 10%, 25%, and 50%, with
corresponding errors of 4.3%, 0.44%, and 0.02%, respectively. This shows that by
increasing the damage severity, the detection accuracy increases.

• For structures with a small number of elements, such as simply supported beams, the
detection error was minimal, with a maximum of 0.44% for single-element damage
and 3.73% for double-element damage.

• For structures with a small number of elements such as two- and three-span beam
structures, the maximum detection error was between 7.52% and 16.06%.

• The work contributed to the health monitoring of the structure by introducing a highly
efficient damage detection procedure using additional masses.
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