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Abstract: Fabrication drawings are essential for design evaluation, lean manufacturing, and
quality detection of precast concrete (PC) components. Due to the complicated shape of PC
components, the fabrication drawing needs to be customized to determine manufacturing
dimensions and relevant assembly connections. However, the traditional manual drawing
method is time-consuming, labor-intensive, and error-prone. This paper presents a BIM-
based framework to automatically generate the readable drawing of PC components using
building information modeling (BIM) and multi-agent reinforcement learning (MARL).
Firstly, an automated generation method is developed to transform BIM model to view
block. Secondly, a graph-based representation method is used to create the relationship
between blocks, and a reward mechanism is established according to the drawing readabil-
ity criterion. Subsequently, the block layout is modeled as a layout optimization problem,
and the internal spacing and position of functional category blocks are regarded as agents.
Finally, the agents collaborate and interact with the environment to find the optimal layout
with the guidance of a reward mechanism. Two different algorithms are utilized to validate
the efficiency of the proposed method (MADQN). The proposed framework is applied to
PC stairs and a double-sided shear wall to demonstrate its practicability.

Keywords: precast concrete (PC) component; fabrication drawing; layout optimiza-
tion problem; multi-agent reinforcement learning (MARL); building information mod-
eling (BIM)

1. Introduction
Prefabricated concrete (PC) structures are widely used in various kinds of practical

projects, including residential structures, business buildings, manufacturing plants, and
infrastructure constructions. Prefabricated construction is an industrialized construction
method in which precast components are produced in a factory setting and then trans-
ported to the construction site for assembly [1]. Industrialization has put forward new
demands for design, requiring designers to consider not only building function but also
manufacturing requirements. PC component fabrication cannot be completed by simply
using architectural and structural drawings. The generation of fabrication drawings is the
key process link to the design and production of PC components. However, due to the need
for high precision and the integration of complex and multidisciplinary systems, producing
fabrication drawings for PC components is challenging. Additionally, designers must navi-
gate manufacturing constraints, adhere to strict standards and quality control requirements,
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and manage frequent design revisions. The generation of fabrication drawings is the critical
and last step in the detailed design of prefabricated components. Effective collaboration
and well-organized, three-dimensional (3D) visualizations are essential to ensure accurate,
compliant, and manufacturable drawings [2]. Building information modeling (BIM) is an
integrated digital tool utilized for the design, construction, and management of buildings.
BIM provides collaboration and communication for different stakeholders by developing
and managing digital representations of building projects. With the aid of BIM technology,
the automated generation of fabrication drawings has become possible by converting the
3D model into two-dimensional (2D) views [3].

In PC components, in addition to concrete and reinforcement bars, there are numerous
reserved holes and embedded parts designed to facilitate stacking, hoisting, installation,
and connection to the building. In practical projects, the detailed design proposals are
presented in the form of 2D fabrication drawings, which contain the instructions and
information necessary for the accurate manufacturing and installation of PC components.
The detail level of the fabrication drawings affects the quality and efficiency of component
production. Therefore, the generation of fabrication drawings is of crucial importance, as
PC components possess complex shapes requiring customized designs to accurately convey
the design intent.

Currently, designers predominantly utilized prior knowledge and trial-and-error ap-
proach to produce the fabrication drawing with the aid of CAD. To clearly and precisely
represent the design detail, numerous section views must be drafted, resulting in significant
time spent on repeated revisions and reviews of drawing characteristics. The determi-
nation of view contents and quantities is largely based on designers’ existing expertise,
while the annotation of graphical elements (including dimensions and text) heavily de-
pends on human-computer interactions. Additionally, the block layout within the drawing
space is governed by rule-based methods, which can limit flexibility and efficiency. More-
over, despite advancements in CAD 2020 software, the drafting drawing process remains
labor-intensive and susceptible to human error, particularly in complex projects involving
intricate geometries and extensive detail requirements. In addition, although existing
software can automatically generate the fabrication drawing of a simple PC component,
the drawing of a complicated component still requires customized design. The integration
of BIM with CAD has shown promise in enhancing data consistency and collaboration, yet
challenges persist in fully automating the transition from 3D models to comprehensive 2D
fabrication drawings. Therefore, it is imperative that it needs to develop more intelligent
and efficient methods for the generation of fabrication drawings.

As a technology used in the digital representation of building physics and functional
characteristics, BIM has been widely used in the generation of fabrication drawings in
architecture-, construction-, and manufacturing-related fields due to advanced 3D modeling
techniques. Industry Foundation Classes (IFC) is an international standard developed by
the buildingSMART organization with the aim of promoting openBIM. It serves as a neutral
file format that enables data exchange between BIM and CAD systems without any loss of
information. Due to these characteristics, IFC is widely utilized in architecture, engineering,
and construction (AEC). Therefore, this paper proposed a novel BIM-based method for
the intelligent and efficient generation of fabrication drawings for PC components. This
framework encompasses four key modules: design information extraction, automatic
generation of graphical element, automated annotation, and block layout. In this paper, the
design information of the components is extracted from the BIM model to create its topology
model based on the Open CASCADE [4] framework. The plane data are generated using
computer graphic algorithms (projection and cutting operations), and the graphical element
and potential annotation are automatically generated. The automated transformation of 3D
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models into 2D view blocks has been successfully achieved. Subsequently, a graph-based
representation method is utilized to describe the relationships between blocks, including
adjacency, relative position, and alignment. The position and internal spacing of functional
category block (FCB) are regarded as different agents. According to the drawing readability
criteria, a series of reward mechanisms are created to guide the agent to find the optimal
layout solution. Based on these characteristics, an efficient and intelligent framework for
the fabrication drawing of PC components is formed to produce a lot of readable drawing
layouts while providing high-quality and high-accuracy manufacturing information.

This paper is organized as follows: In Section 2, the related works are reviewed.
Section 3 proposes a BIM-based framework for the fabrication drawing generation of
PC components, including four major parts: (1) information extraction, (2) automatic
generation of drawing views, (3) automatic annotation layout, and (4) intelligent block
layout. The proposed multi-agent reinforcement learning algorithm for solving the block
layout is discussed in Section 4. Two illustrative examples are given in Section 5 to verify
the practicability and feasibility of the framework. Conclusions are included in Section 6.

2. Literature Review
Section 2.1 introduces the research background about the fabrication drawing genera-

tion, and Section 2.2 describes the introduction of reinforcement learning.

2.1. Fabrication Drawing Generation

To improve the drafting efficiency, various researchers in the past have tried to solve
the problem of the drawing generation for mechanical products with the aid of CAD soft-
ware. A semi-automated method for the fabrication drawing of mechanical elements was
designed using Solid Edge, which provided a modification interface of model parameters
for users. The user can quickly generate the manufacturing drawing by only inputting
the parameters [5]. Chen et al. [6] utilized computer graphics and expert knowledge to
automatically transform a 3D model of mechanical products into a 2D assembly drawing.
Shah [7] designed a method combining Excel spreadsheets with Autodesk Inventor to pro-
duce the drawing. Users need to input specific parameters into the Excel spreadsheet, and
the relevant 3D model can be updated immediately. In addition to the previous research,
some existing CAD software, such as FreeCAD [8] and SolidWorks [9], can also generate
the fabrication drawing by selecting specific mechanical elements.

In recent years, BIM has been widely used in the automatic generation of fabrication
drawings [10–13]. The 3D models of buildings were created and shared for collaborative
design, construction, and operations. Compared with the traditional CAD method, a
number of advantages in the fabrication drawings generation were provided, such as
accuracy, efficiency, and collaboration. Gankhuyag and Han [14] designed an automatic
approach to generate the 2D floorplan drawing using 3D point clouds. The planes of
structural component were extracted from point clouds data, and the Manhattan-World
assumption was utilized to classify the point clouds data according to the character of
component. Industry Foundation Classes (IFC) standard is utilized to create a 3D BIM
model, and the line detection algorithm is used to produce a 2D floorplan drawing. Kong
et al. [15] introduced an efficient method to rapidly generate the engineering drawings for
large-scale old buildings using 3D point cloud reconstruction. The Lidar laser scanner was
utilized to obtain the point cloud data of building. Some computer vision and computer
graph algorithms are proposed to complete the extraction of wall lines and doors. However,
these studies have a limitation on the simple geometric features, lacking generality.

The drawing generation for PC components in a manual way is labor-intensive and
time-consuming. Since the design information required for component manufacturing
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must be integrated into a single drawing, the various elements that need to be composed,
dimensioned, and annotated should be clearly identified [16]. More importantly, the
dimensions of drawing view significantly affect both the readability of drawing and the
accuracy of information extraction in the automated generation process [17,18]. Some
scholars begin to focus on the automatic dimensioning for drawing views based on the
design constraints and the drawing template of the company [19,20]. Automated or
intelligent dimensions require us to solve two problems: the annotation object must be
determined based on the geometric feature [21], and the dimensioned position of the
annotation object must be identified using an effective method. Yuen et al. [22] adapted an
automated processing of the linear dimensions in the view from boundary representation
of the solid models. Deng et al. [23] developed an automatic framework for façade building
components to generate the fabrication drawing, and special characteristics, including holes
and notches, are considered. A rule-based strategy is designed to determine the drawing
dimension, and an improved K-means algorithm is used to optimize the zooming factor
of different drawings for maintaining a consistent format. Then, a rule-based method is
introduced to automatically find the drawing layout. Deng et al. [24] proposed an intelligent
framework based on BIM to automatically generate fabrication drawings for facade panels,
and the design information coming from BIM models and other external data sources, both
graphical and non-graphical, is integrated by the framework. The appropriate views were
acquired, and the drawing layouts were improved. However, these methods only focused
on the steel components without considering the characteristics of the PC components,
which consist of multiple elements (such as solid, rebar, embedded part, and reserved
hole). In addition, numerous studies have focused on the automated layout of annotations
(dimension and text) within fabrication drawings; however, the optimization of view block
layout, which significantly impacts the readability of drawing, remains largely unexplored.

Although several studies have made great progress in drawing generation, the fol-
lowing characteristics of the fabrication drawing generation method can be further en-
hanced and used in complex PC components: (1) developing an independent and efficient
framework to automatically generate the fabrication drawing; (2) generating readable
drawing layouts for multiple blocks of different functions using a more efficient and
intelligent method.

2.2. Reinforcement Learning

Reinforcement Learning (RL), a prominent branch of artificial intelligence, has gained
recognition by distinguishing itself from supervised and unsupervised learning through its
unique methodology of making optimal decisions in specific contexts by interacting with
the environment [25]. The inherent adaptability and flexibility of reinforcement learning
enable agents to find effective solutions in complex and dynamic environments through
experimentation and learning [26]. Recently, RL has emerged as a pivotal artificial intelli-
gence methodology widely adopted to address various engineering challenges. Soman and
Molina-Solana [27] used deep RL techniques to help construction professionals efficiently
plan construction activities and generate a conflict-free look-ahead schedule. Yao et al. [28]
proposed an RL model with a valid action sampling mechanism to minimize duration and
runtime for large construction projects. Jeong and Jo [29] proposed an RL framework to
facilitate automated reinforced concrete (RC) beam design in a cost-effective manner while
taking both flexural and shear reinforcement arrangements into consideration. Fu et al. [30]
combined the finite element method with deep reinforcement learning (DRL) to estab-
lish a physics-informed framework for automated steel frame structure design, thereby
identifying the optimal section areas for both beams and columns. The DRL approach
can be used to solve the multi-objective optimization of green building design, enhancing
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performance in terms of energy efficiency, environmental sustainability, and occupant
comfort [31]. In some scenarios with more than one agent, multi-agent versions of the DRL
approach are proposed to address large continuous action space problems [32]. Zhang
et al. [33] used the multi-agent deep deterministic policy gradient (MADDPG) algorithm to
achieve automated architectural space composition under established built environment
conditions, addressing the extensive demands of old building renovation. Inspired by the
aforementioned research, this study employs a multi-agent deep reinforcement learning
(MADRL) approach to provide a more efficient and intelligent solution for generating the
fabrication drawing of PC components.

3. BIM-Based Framework for the Fabrication Drawing Generation of PC
Components

To efficiently generate the fabrication drawing, a BIM-based framework for the PC
component is proposed. As shown in Figure 1, the proposed framework consists of four
modules: (1) information extraction of digital model, (2) automatic generation of graphical
element, (3) automatic annotation of graphical element, and (4) intelligent layout of view
block. To improve the readability of the drawing view, a reinforcement learning method is
utilized to find the optimal layout within the drawing space.
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3.1. Information Extraction of Digital Model

BIM as a digital management system is widely used in AEC industry. BIM integrates
all the geometric, spatial, physical, and attribute information of the building components.
IFC is a standardized and digital description of the buildings and infrastructure. It is an
open and neutral standard commonly used for data sharing and exchange in different BIM
software. In the PC component, the IFC model stores rich design information, including
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the component’s solid geometry, reinforcement bar details, embedded part specifications,
and locations of reserved holes. To generate the fabrication drawing, corresponding design
information is extracted from the IFC model by querying specific entity types. For instance,
the IfcElement entity is used to obtain the solid component information, including its ge-
ometry, spatial position, and material. The IfcElementAssembly entity is utilized to retrieve
the embedded parts of the PC component, encompassing its hoisting and railing embedded
parts. Reinforcement bar details, such as bar diameter, length, spacing, and location, are
extracted using the IfcReinforcingBar entity. Reserved holes and openings within the PC
component are identified and extracted using the IfcOpeningElement entity, capturing their
size, shape, and location within the component geometry. This granular extraction process,
based on querying and filtering relevant IFC entities, enables the automated extraction
of accurate and detailed design information, directly influencing the detail level of the
topological model in the next stage. This approach ensures consistency between the digital
model and the topological model, minimizing errors and facilitating efficient data exchange
throughout the information extraction process.

3.2. Automatic Generation of Drawing View

To accurately represent the characteristics of the component and the relative positions
of embedded parts, reinforcement bars, and reserved holes, a large number of projection
and section drawings are required. To obtain the view, the topological models of the specific
elements are constructed using the Open CASCADE 7.5.0 (OCC) framework. Subsequently,
plan view data is generated by applying graphics algorithms.

3.2.1. Automatic Generation of OCC Model

OCC is an open-source software development platform for 3D CAD, CAM and CAE,
including parameterized modeling, data structure, and geometric algorithm. Pythonocc
is Python library which is based on the OCC modeling kernel. It provides 3D modeling
and data exchange features, aiming at CAD/PDM/PLM- and BIM-related development.
OCC provides extensive 2D and 3D geometry libraries to create the solid model, such as
BRepPrimAPI_MakeBox, BRepOffsetAPI_MakePipe, BRepPrimAPI_MakePrism, and so
on. Additionally, some boolean operations, including cut and other operations, are used
to create the complicated solid. As shown in Figure 2, two simple solids are modified by
Boolean operations to generate three solids.
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3.2.2. Automatic Generation of View

Projection and section transformation are utilized to generate the plane data of spe-
cific objects from OCC models. In the engineering drawing, the projection direction and
coordinate system are established to realize the projection transformation of the model. Sub-
sequently, an orthogonal projection transformation of the model is conducted to produce
the plane data of three views. Due to the loss of depth information during the projection
transformation, this leads to ambiguity in the graphical representation. Therefore, all
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hidden lines or surfaces should be eliminated. In addition, the section transformation
requires the determination of the cutting position and plane, thereby obtaining the plane
data of the model. When employing the OCC framework for projection transformations,
the origin, x-axis, and projection direction of the projection coordinate system are initially
defined. The y-axis of the projection coordinate system is subsequently determined by
calculating the cross product of the projection direction and the x-axis. Following this,
the hidden line removal algorithms are employed to obtain the plane data. For section
transformations using the OCC framework, it is essential to establish both the cutting
position and the normal direction of the cutting plane, thereby defining the section plane.
The topological model is then subjected to a Boolean intersection operation with the cutting
plane, resulting in the plane data of the model. Algorithm 1 outlines the pseudocode for the
projection algorithm, while Algorithm 2 details the pseudocode for the cutting algorithm.
The functions within these algorithms are invoked from the OCC framework to obtain the
model’s plane data. Figure 3 illustrates the projection and section of the model.

Algorithm 1: Pseudocode of projection algorithm

Input: Topological shape A, Projection origin O, Projection direction Dir, X-axis
of projection coordinate system X
Output: plane_data

1
hlr = HLRBRep_Algo() // Construct an empty framework for the calculation of
visible and hidden lines of a shape in a projection

2 hlr.Add(A) // Add topological shape to the framework
3 ax2 = gp_Ax2(O, Dir, X) // Construct projection coordinate system
4 projector = HLRAlgo_ProjectorProjector(ax2) // Create a projector object
5 hlr.Projector(projector) // Set the projection direction
6 hlr.Update() // Update the outline of shape to be computed
7 hlr.Hide() // Hide the visible and hidden line of shape to be computed

8
hlr_shapes = HLRBRep_HLRToShape(hlr) // Construct a framework for filtering
the results

9 visible_edge = [] // visible edge

10
sharp_edges = hlr_shapes.VCompound() // Extract the visible sharp edges from
the results

11
contour_edges = hlr_shapes.OutLineVCompound() // Extract the visible
contour edges from the results

12 visible_edge.add(sharp_edges)
13 visible_edge.add(contour_edges)
14 plane_data = visible_edge

Algorithm 2: Pseudocode of cutting algorithm

Input: Topological shape A, Cutting position P, Normal direction Dir
Output: plane_data

1 plane = gp_Pln(P, Dir) // Create the cutting plane
2 topology_contour = BRepAlgoAPI_Section(A, plane) // Find the contour of the

intersection of plane and topological model A and obtain the cut trajectory on A
3 contour_edge = TopologyExplorer(topology_contour).edges() // Transform

topological edge to geometric edge
4 plane_data = contour_edge
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3.3. Automatic Annotation Layout in Each View

To ensure efficient and error-free fabrication, the production drawings for the PC com-
ponent must include comprehensive annotations detailing key physical attributes such as
dimensions, text, material specifications, and connection details. In the fabrication drawing,
dimension and text annotation mainly involve annotating the size and characteristics of
the graphical elements. Text annotation primarily describes the design and manufactur-
ing details of the element, such as part number, material, technique requirements, and
special process. Dimension annotations describe the size of an element and are catego-
rized as linear, diameter, radius, angle, and arc length dimensions based on the element’s
geometric characteristics.

The details of dimensioning style are discussed as follows:

(1) Linear dimension

As shown in Figure 4a, linear dimension consists of dimension text, dimension line,
extension line, and dimension starting and ending symbol. Figure 4a–d describe different
types according to the relation of dimension line and graphic element, including horizontal,
vertical, aligned, and rotated dimensioning.
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(2) Diameter dimension

As shown in Figure 5a, the diameter dimension should be placed inside the circle,
and the dimension line should pass through the center of the circle, with arrows drawn
at both ends pointing to the arc. The diameter symbol “ϕ” should be added before the
diameter text.
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(3) Radius dimension

As shown in Figure 5b, the dimension line for the radius starts from the center of the
circle, with an arrow pointing to the arc at the other end. The symbol “R” should be added
before the radius number. For smaller arc radii, leader lines can be used for dimensioning.

(4) Angle dimension

As shown in Figure 5c, the dimension line for an angle should be represented by an
arc, with the center of the arc being the vertex of the angle, and the two sides of the angle
serving as the dimension limits.

(5) Arc dimension

As shown in Figure 5d, when annotating the arc length of a circle, the dimension line
should be represented by an arc line concentric with the circle, and the dimension limits
should point towards the center of the circle.

(6) Simplify dimension

As shown in Figure 5e, when annotating a simplified drawing of reinforcement bars,
the simplified drawing describes the shape and content of the reinforcement bars, and
the dimension text (dimensions or angles) can be directly placed along one side of the
reinforcement bars.

In addition, the text annotation consists of multiple straight lines and text, generally
with two straight lines. The first line connects to the graphical element that needs to be
annotated, and its end connects to the beginning of the second line. The text content is
placed at the top of the second line.

3.4. Intelligent Generation of Block Layout

After completing the annotation of graphical elements in the drawing view, all views
are converted into blocks and placed within a 2D drawing space. The main task of block
layout is to determine the position of given block within the drawing space in order to
ensure the readability. To improve the readability of design drawings, the following princi-
ples should be followed: (1) Function consistency: blocks with the same function should
be placed within the same region; (2) Function priority: more important functional blocks
should be placed in the primary region of the drawing space, while less important blocks
should be placed in the secondary region; (3) Relationship restraint: certain specialized
blocks, such as three views and section views, should be arranged in adjacent positions, ei-
ther horizontally or vertically; (4) Size constraint: blocks should be arranged in a sequential
order based on their sizes, from largest to smallest; (5) Position constraint: there should be
no collisions between blocks; (6) Uniform spacing: the spacing between adjacent blocks
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within each FCB should be uniform; (7) Fullness: the outer contour of each block should
occupy a significant proportion of the drawing space. Due to the large variation in the size
and number of blocks, a graph-based representation method is employed to determine the
layout structure of each FCB in accordance with principles 1–4.

3.4.1. Automatic Generation of Layout Region and Structure for Each Functional Category

In graph theory, a graph is made up of vertices that are connected by edges. The
vertices represent single objects, while the edges represent the specific relationship between
these objects [34]. A graph is a set of vertices and edges, denoted as G = (V, E), where V
represents a set of vertices and E represents a set of edges. A single edge is represented as
eij =

〈
vi, vj

〉
, where vi is the start point of the edge, and vj is the end point. If the edge eij

is equal to eji, the graph is undirected. Conversely, the graph is directed. In the computer
science domain, an adjacency matrix is commonly utilized to store the relationships between
the vertices of the graph.

As shown in Figure 6, the process of block layout are described as follows: (1) Infor-
mation extraction: the rectangular bounding boxes and semantic information of the blocks
are extracted from the drawing; (2) Function classification: multiple functional categories
are identified based on their purposes, each comprising several blocks; (3) Block grouping:
within each functional category, all blocks are divided into multiple groups based on prin-
ciple 3; (4) Size sorting: the groups are organized in accordance with the requirements of
principle 4; (5) Layout structure: considering the compactness, the layout structure can be
determined, and adjacent blocks have a position and alignment relationships; (6) Layout
region: multiple functional categories are placed in the drawing space according to the
function priority.
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Figure 6. Process of block layout.

As shown in Figure 7a–d, there are four alignment relationships between block one
and block two, namely top-align (value set to 1), bottom-align (set to 2), left-align (set to
3), and right-align (set to 4). In addition, two adjacent blocks have four relative positions,
such as right-side (value set to 1), left-side (set to −1), bottom-side (set to −2), and top-side
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(set to 2) position. An illustrative example is depicted in Figure 8 to represent the layout
structure of a block in a single functional category. They can be automatically updated
according to given blocks and easily generalized to present other fabrication drawings of
PC components. To determine the position and internal spacing of each FCB, Section 4
introduces a multi-agent deep reinforcement learning method based on principles 5–7.
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4. Proposed Multi-Agent Reinforcement Learning Algorithm for
Block Layout

Multi-agent reinforcement learning (MARL) integrates multi-agent system (MAS)
with reinforcement learning (RL), whereby agents learn optimal decision-making strategies
through continuous trial and error (select action) and the accumulation of maximum
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rewards. A MAS consists of an environment and multiple decision-making agents, each
of which can observe information about the environment and select actions to achieve
their objectives. As illustrated in Figure 9, a MAS includes two or more agents, with
each agent possessing its own objectives, action sets, and knowledge bases. During the
interaction process, the agents perceive changes in the environment and continuously adjust
their actions to achieve specific goals [35]. RL is a machine learning method designed to
assist agents in selecting actions based on the current state of an environment, with the
objective of maximizing the cumulative reward after a series of actions. RL problems
are typically modeled as Markov Decision Processes (MDP) [36]. MDP serves as the
foundation of RL theory, characterizing the states of the environment in which an agent
selects actions. Each action taken by the agent leads to a transition to a subsequent state,
with the environment providing corresponding rewards. An MDP primarily consists of
four elements M = ⟨S, A, P, R⟩, where S represents the set of available states perceived
by the agent from the environment, A defines the set of actions available for the RL agent,
P denotes the state transition probabilities of the agent, mapping state-action pairs to a
probability distribution over the subsequent states, and R specifies the reward function for
the agent, which indicates the rewards received from the environment.
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In the block layout, the environment for the agent is structured as a 2D grid space.
State S represents the current layout, including the positions and internal spacings of the
FCBs. Action A contains adjustment in the position and internal spacing of the FCBs, and
state transition P signifies the probability of layout changes resulting from each operation.
Reward R is evaluated based on the readability of the drawing in the current state. The
number of agents is related to the types and functions of the FCBs. The position of each
FCB is regarded as an agent, while the internal spacing between blocks in the FCB is also
considered as an agent. The environment evaluates the drawing’s readability based on
the current state. The action represents the changes in the positions and internal spacings
along the x-axis and y-axis directions. Each decision aims to optimize the reward through
the agents’ actions, thereby guiding the overall layout towards improved readability.

4.1. Reward System

In an RL algorithm, rewards are critical for guiding agent learning and achieving a
specific goal. The reward function evaluates the feedback provided by the environment
following the agents’ actions, guiding the agents to make a series of decisions within a
specific environment to achieve the maximum cumulative reward. The quality of block
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layout is primarily assessed through the drawing’s readability, using metrics encompassing
the number of collisions, target area attainment, alignment of edges, uniformity of edge
distances, and overall fullness. Table 1 defines the reward functions and variables used in
the reward calculation formula. The final reward value for each agent, denoted as Rto is
defined as the sum of the rewards contributed by each evaluation metric. Rc(nc) represents
the reward value for collisions between FCBs, where nc is the number of collisions. Rg

(
ng

)
is the reward value for an agent reaching the target area, and ng is the number of agents
that reach the target region. For a single agent, ng is typically 1 if the agent is not in the
target area and 0 if it is. R f (sa) denotes the reward value for the overall fullness of drawing,
where sa is the ratio of the total area occupied by the FCB to the total drawing area, sl is the
ratio of the actual area of all blocks to the total drawing area. Ra(na) is the reward value
for the alignment of edges between FCBs, and na is the number of alignments of edges
between FCBs within the drawing space. Re(ne) represents the reward corresponding
to the uniformity of edge distances between FCB and the drawing edge, where ne is the
cumulative number of the alignment of edges. Rv(nv) is the reward value for the FCBs
exceeding the drawing space, and nv is the number of times beyond the drawing boundary.
Rl(nsl , nvl) represents the reward designed to incentivize agent movement toward the
target. Compared to the previous state, nsl is the number of changes in a better direction,
and nvl is the number of changes in a worse direction. Figure 10 describes the basic
reward functions.
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Table 1. Reward computation formula.

Definition Formula Coefficient Value

Reward for block collision Rc(nc) = c1 · nc # (1) c1 = −30
Reward for reaching the goal region Rg

(
ng

)
= c2 · ng # (2) c2 = −5

Reward for the overall fullness R f (sa) = c3 · (sa − sl) # (3) c3 = 80
Reward for the alignment of edges Ra(na) = c4 · na # (4) c4 = 20

Reward for the uniformity of edge distances Re(ne) = c5 · ne # (5) c5 = 10
Reward for exceeding drawing boundary Rv(nv) = c6 · nv # (6) c6 = −30

Reward for guiding learning Rl(nsl , nvl) = c7 · (nsl − nvl) # (7) c7 = 1

To compute the final reward value of each agent, the corresponding reward compu-
tation formulas of each evaluation metric are presented in Table 1. The overall reward
formula of each agent is described in Equation (8).

Rto = Rc(nc) + Rg
(
ng

)
+ R f (sa) + Ra(na) + Re(ne) + Rv(nv) + Rl(nsl , nvl) (8)

4.2. Environment, States and Actions

As shown in Figure 11, the RL environment for the block layout problem is represented
in a 2D drawing space, which is discretized into a planar grid. The functional requirement of
the block layout problem is to find the optimal position and internal spacing of FCB within
the drawing space. Since each FCB has a defined size, the point closest to the target area is
selected as the reference point for the FCB’s position. Due to the functional requirement of
block layout, two types of agents are constructed: one agent is responsible for finding the
optimal position of each FCB, while the other agent focuses on determining the optimal
internal spacing among all FCBs. In the block layout, the action space A encompasses of
the position and spacing adjustments of the agent within the two-dimensional grid space.
The agent can perform actions a ∈ {sl , sr, su, sd, s0}, corresponding to movements of (−1,
0), (1, 0), (0, 1), (0, −1), and (0, 0), respectively.
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4.3. Multi-Agent Reinforcement Learning for Block

Currently, deep reinforcement learning (DRL) algorithms are utilized to solve the
structure design problem, such as structure optimization [29], rebar layout [37]. While
numerous DRL algorithms have been proposed, some classic algorithms like DQN [38],
DDPG [39], and PPO [40] continue to be widely adopted in finding optimal strategies
through interaction with environments. The deep Q-network (DQN) algorithm is a great
advancement in reinforcement learning, integrating deep learning with Q-learning by
employing a neural network as a function approximator for the Q-function. This approach
is particularly effective in solving the discrete action space problem. The deep deterministic
policy gradient (DDPG) algorithm is a deep reinforcement learning approach operating
within the actor–critic framework. It utilizes two distinct neural networks: an actor network
for policy representation and a critic network for action–value function approximation.
These networks are updated independently according to their respective gradient-based
update rules, with the overall objective of maximizing expected cumulative reward. The
DDPG algorithm is more suitable for solving the continuous control and high-dimensional
observation space problems. The proximal policy optimization (PPO) is a significant ad-
vancement in policy gradient methods, offering a more practical and efficient alternative to
trust region policy optimization (TRPO). By constraining the policy updates within a de-
fined trust region, the PPO algorithm mitigates the risk of performance collapse associated
with large policy changes. This constraint is achieved through a novel surrogate objective
function that effectively approximates the theoretically justified constraints of TRPO while
maintaining computational tractability. The PPO algorithm exhibits strong stability and
simplifies the process of hyperparameter adjustment. In summary, the DQN algorithm is
a good choice for addressing the discrete action space problem due to its simplicity; the
DDPG algorithm is more suitable for handling the continuous action space problem but
can be challenging to adjust the hyperparameters and may require careful consideration of
exploration strategies; the PPO algorithm is more appropriate for solving both continuous
and discrete action space with good stability and sample efficiency, requiring the expen-
sive computation cost per update. Therefore, the DQN algorithm is selected to solve the
drawing block layout problem.

Figure 12 illustrates a block layout algorithm using the multi-agent deep Q-network
(MADQN) algorithm. The first step is to obtain the layout structures and regions of each
FCB from Section 3.4.1, and grid the two-dimensional drawing space. In the second step,
the outer bounding boxes of FCB are computed, and one type of agent is utilized to find
the optimal position of FCB (agent 1–4). In addition, the other type of agent (agent 5) is
employed to dynamically adjust the spacing between blocks within each FCB. Therefore,
the five agents work collaboratively to achieve the block layout. In the initial stage, the FCBs
are randomly placed close to the target area and do not collide with each other. The state
values of block spacing agents are set to 3 and 2. If the spacing value is set to 0, the blocks
within each FCB will collide. Conversely, if the value is set to a larger value, the initial
state of all FCBs in drawing space will result in collisions. Subsequently, each agent selects
an action based on its strategy, and the environment provides a corresponding reward.
The tuple (st, at, st+1, rt) in each history step is stored in the experience replay buffer for
subsequent neural network training. The third step is in the training phase; a batch of
experience is randomly sampled from the experience replay buffer to update the parameter
ω of the Q-network. In the network update process, the gradient descent algorithm is
used to reduce the loss value. After training N steps, the parameters of the Q-network are
assigned to the target network to update its parameters. In the execution process, each agent
follows an epsilon-greedy policy, selecting actions based on its current observation. With
probability 1 − ε, the trained network is used to determine the optimal action (exploitation);
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otherwise, a random action is chosen (exploration). The agents collaborate throughout the
process to complete the block layout task, receiving an identical reward.
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Algorithm 3 presents the pseudocode for MADQN-based block layout algorithm,
block information, FCB layout structure and region, and drawing space are used as input.
At each time step, the agents select actions concurrently and share information to enhance
cooperation. The environment aggregates the individual rewards of each agent and divides
the total by the number of agents to calculate the average reward. In each episode, the
current state and corresponding reward are recorded at every time step. Upon completion
of all episodes, the state that yields the maximum reward is identified as the optimal
solution. Finally, the position of the corresponding block is determined based on this
optimal state.

Algorithm 3: Pseudocode for MADQN-based block layout algorithm

Input: Block information; FCB layout structure and region; Drawing space
Output: Block position
1 Initialize replay buffer D to capacity P
2 for agent i = 1 to N do
3 Initialize action-value function Qi with random weight ωi

4 Initialize target action-value function Q̂i with weight ωi
− = ωi

5 end for
6 for episode = 1 to M do
7 Initialize state st for each agent
8 for t = 1 to T do
9 for agent i = 1 to N do
10 With probability ε select a random action at

i

11 Otherwise select at
i = argmaxaQi

(
at

i, a; ω
)

12 end for
13 Execute action at, observe next state st+1, and receive reward rt

14 Record st and rt

15 Store transition (st, at, st+1, rt) in D
16 Set st+1 = st

17 Sample random batch of transitions
(
sj, aj, sj+1, rj

)
from D

18 for agent i = 1 to N do

19 Set yj =

{
rj, if episode terminates at step j + 1

rj + γmaxa′ Q̂
(
sj+1, a′; ω−), otherwise

20 Perform a gradient descent step on
(
yj − Q

(
sj, aj; ω

))2 with respect to
the network parameter ω

21 After C steps, update Q̂i = Qi for agent i
22 end for
23 end for
24 end for
25 Compute the maximum reward, and determine the optimal state st

∗

26 Update the block position

5. Illustrative Examples
In this section, three different MARL algorithms are employed to address the pro-

posed intelligent view block layout problem, thereby demonstrating the feasibility and
efficiency of MADQN. Moreover, two different PC components are chosen to validate the
generalization ability of the proposed drawing generation framework.
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5.1. Evaluative Metric

In this experiment, the feasibility and efficiency of the proposed MADQN are evaluated
through comparison with MADDPG and MAPPO. Multiple agents operate in a fully
cooperative setting, where all agents share the same reward and pursue a common goal.
The Gumbel-Softmax method is utilized in MADDPG to solve the discrete action space
problem [41]. To compare the performance of three MARL algorithms in block layout, the
computation time and maximum reward are adopted as the evaluative metrics.

5.2. Experimental Config

To ensure the reproducibility and performance, the experiment was conducted on a
personal computer. The machine is equipped with a 12th Gen Intel® CoreTM i5-12600KF
3.70 GHz processor and has 32 GB of RAM. In the three MADRL algorithms, each network
is a multi-layer perceptron, in which the number of hidden layers is set as one and the
number of neurons in a single layer is 128. The maximum episode is 10,000, and a maximum
step per episode of 30. The capacity of the experience replay buffer |D| is equal to 10,000,
and a discount factor γ is 0.99. The target network update frequency N is determined by
dividing the total training steps by an update interval of 200. The Adam optimizer with a
learning rate of 0.0015 is employed for training the network. The other hyperparameter
settings are listed in Table 2.

Table 2. Parameter setting.

Algorithm Hyperparameter

MADQN Exploration rate linearly reduces from 0.8 to 0.01;
The batch size is 512.

MADDPG Soft target update coefficient τ is 0.001, The batch size is 512; The
Gaussian noise standard deviation σ is 0.1.

MAPPO GAE parameter λ is 0.95; The minimum batch size is 128; The maximum
Batch size is 2048; The clipping parameter ϵ is 0.2; The No. epochs is 10.

5.3. Example 1—PC Concrete Stairs
5.3.1. Case Description

Figure 13 illustrates a BIM model of PC stairs, the geometric dimensions of which
are listed in Table 3. The proposed framework can complete the automatic generation of
24 graphical blocks. Each block contains graphical elements and annotation data; however,
the position for block placement within the layout space is not determined. Table 4 provides
a comprehensive list of the dimensions, function, and name associated with each individual
block. According to design specifications and engineering requirements, all blocks are
classified into four categories: formwork drawing (m), reinforcement drawing (r), material
list (t), and detailed drawing (d). Formwork drawing provides a visual representation of
PC stair’s geometry, including the quantity and position of embedded parts and reserved
holes. Engineers can utilize this information to complete the design and manufacturing
of the mold. Reinforcement drawing provides a detailed representation of the intercon-
nectivity and relative positioning of the reinforcing bars, thereby facilitating the accurate
assembly of the reinforcement cage. Material lists provide comprehensive information on
the design specifications of individual reinforcing bars, including diameter, quantity, shape,
dimensions, and steel grade. Additionally, these material lists also include concrete grade,
quantities of materials such as rebar and concrete volume, and details on the configuration
of embedded parts, such as their shape, dimensions, and quantity. Engineers can use these
lists to procure all necessary materials and complete the cutting and fabrication of the
rebar. Detailed drawings illustrate the connection openings and joints within the stairs
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assembly, as well as the details of construction joints and precise dimensional information
for embedded parts, guiding the PC stairs installation. According to the drawing require-
ments of PC components, each block in a single layout space maintains a consistent scale.
Consequently, the dimensions of all blocks remain constant in the layout process. In this
paper, we select drawing space A1 (841 mm × 594 mm size, 1:20 scale) with margins of
36 mm (left), 113.45 mm (right), and 14.15 mm (top/bottom), yielding a usable area of
691.55 mm × 565.7 mm. The block layout environment consists of five agents: four agents
are assigned to control the positions of blocks, while the fifth agent represents the internal
spacing between these blocks within FCBs. The layout structures for each FCB are deter-
mined based on the design specifications and the methodology detailed in Section 3.4.1, as
shown in Figure 14. In addition, the layout region for each FCB is determined according to
principle 2. Three different MARL algorithms are employed to conduct the block layout
optimization task; the experimental results obtained from these optimization procedures
are presented and discussed in Section 5.3.2.
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Table 3. Geometrical dimensions of PC stairs (unit: mm).
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Table 4. Information of drawing blocks for PC stair (unit: mm).

Name Size (w×h) Type Name Size (w×h) Type Name Size (w×h) Type

m1 6848 × 1979 m m2 6334 × 1979 m m3 6298 × 3779 m
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(c) reinforcement drawing; (d) detailed drawing.

5.3.2. Experimental Analysis

Under the fully cooperative paradigm adopted by the multi-agent system, all agents
demonstrate congruent learning curves. Figure 15 depicts the reward curves of different
algorithms. The x-axis represents the training episode, and the y-axis represents the
average reward per step. The reward is calculated over a 20-episode sliding window and
further averaged over 10 independent runs. Shaded regions indicate the 95% confidence
interval. Figure 15 illustrates that the reward values for the three MARL algorithms
gradually increase towards 0 as the number of training episodes increases, suggesting
that the agents learn to find the layout strategy. In the MADQN algorithm, the reward
increases rapidly with significant fluctuations during the initial training phase. As it
approaches 8000 episodes, the reward increases slowly and gradually stabilizes. The
MADDPG algorithm exhibits the fastest initial growth in the learning curve, followed by
substantial fluctuations in the intermediate phase and eventual convergence in the later
stages. For the MAPPO algorithm, the reward increases slowly in the initial training phase,
then rapidly ascends around 3000 episodes and begins to converge after 8000 episodes,
exhibiting small fluctuations in the later stages. Therefore, the MADQN and MADDPG
algorithms demonstrate rapid early learning, and their training processes are unstable
overall. Although the initial performance of the MAPPO algorithm is less impressive, it
exhibits a rapid increase in the intermediate phase and maintains a more stable learning
curve throughout the training process.

Figure 16a depicts the computation time of the three MARL algorithms, averaged
over 10 independent runs. MADQN demonstrates the lowest time, followed by MAPPO,
with the MADDPG algorithm incurring the highest time. Moreover, MADQN exhibits
minimum variance in computation time, while both MAPPO and MADDPG demonstrate
substantially greater variance. Figure 16b shows the maximum reward (optimal joint state)
achieved by each algorithm over 10 independent runs, and the optimal reward is 54.7.
MADQN finds this optimal solution in 90% of the runs, MAPPO in 50%, and MADDPG
in 0%.
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Considering the relatively low number of blocks necessary for the representation of the 
shear wall, an A3 drawing space extended by 1/4 along its width ((420 + 105) mm × 297 
mm size; 1:20 scale) is selected. Margins of 10.5 mm are applied to the top-side and right-
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Figure 16. Performance curves for each algorithm across 10 independent runs: (a) computation time;
(b) maximum reward.

In conclusion, the MADQN algorithm is more suitable for solving block layout opti-
mization problems in terms of computation efficiency and quality. The block layout results
for the fabrication drawing of PC stairs are shown in Figure 17. The optimal positions of
the four FCBs (m, r, d, and t) are respectively (345.77, 10,936.77), (345.77, 461.03), (13,485.03,
9051.12), and (13,485.03, 1508.52), and the optimal internal spacing between blocks is
(461.03, 251.42). As depicted in Figure 17, the right-side edges of different FCBs (r, d, and t)
in the drawing are aligned, and the contour area of FCBs occupy a larger drawing space,
showing the good readability of layout result.
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5.4. Example 2—PC Doubled-Sided Shear Wall

In this section, a PC double-sided shear wall is selected as an illustrative example to val-
idate the generalizability of the proposed framework. A BIM model of a shear wall is shown
in Figure 18, and its geometric dimensions are listed in Table 5. A total of 12 blocks are
generated automatically through the implementation of the proposed framework. Details
regarding the dimensions and categories of each block are summarized in Table 6. Con-
sidering the relatively low number of blocks necessary for the representation of the shear
wall, an A3 drawing space extended by 1/4 along its width ((420 + 105) mm × 297 mm
size; 1:20 scale) is selected. Margins of 10.5 mm are applied to the top-side and right-side
edges, 40.4 mm to the bottom-side edge, and 25.5 mm to the left-side edge, resulting in a
usable drawing space of 489 mm × 246.1 mm. The layout structure of different FCBs is
illustrated in Figure 19. The specific regions allocated to each FCB are determined based on
principle 2 of readability.
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Table 5. Geometrical dimensions of PC double-sided shear wall (unit: mm).
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Table 6. Information of drawing blocks for PC double-sided shear wall (unit: mm).

Name Size (w×h) Type Name Size (w × h) Type Name Size (w × h) Type

m1 1720 × 3404 m m2 1568 × 695 m m3 535 × 3098 m
r1 1752 × 3404 r r2 1466 × 862 r r3 671 × 3253 r
d1 560 × 1033 d d2 847 × 674 d d3 817 × 636 d
t1 2537 × 1025 t t2 2253 × 750 t t3 1154 × 280 t
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Figure 19. Layout structure of different FCBs for PC double-sided shear wall: (a) formwork drawing;
(b) reinforcement drawing; (c) detailed drawing; (d) material list.

Figure 20 depicts the learning curve obtained after training the agent for 10,000 episodes.
The reward exhibits a rapid initial increase, followed by convergence towards a maximum
value of approximately 20 around episode 6000. This indicates that the agent successfully
learns the block layout strategy within the environment. The average computation time of
10 independent runs is 12.1 min, and the block layout result for the fabrication drawing
of the PC double-sided shear wall is shown in Figure 21. The optimal positions of four
FCBs (m, r, d, and t) are, respectively, (244.5, 4758.03), (3423.0, 4758.03), (9535.5, 4758.03),
and (9535.5, 164.07), and the optimal internal spacing between blocks is (407.5, 273.45).
As shown in Figure 21, the top-side and right-side edges of the blocks in the drawing
are aligned, and the area of FCBs occupies a larger drawing space, indicating the good
readability of the layout result.
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Figure 21. Block layout result for the fabrication drawing of PC double-sided shear wall: (a) bounding
box layout; (b) block layout.

6. Conclusions
This paper proposed a novel framework for automating the generation of PC com-

ponent fabrication drawings using BIM and multi-agent reinforcement learning. The
developed framework is particularly well suited for PC components characterized by
many view blocks and significant variation in dimensions. In this research, the digital
model is converted to a topological model based on the IFC standard and Open CAS-
CADE geometric kernel. Then, plane data are automatically generated using the computer
graphic methods, including projection, cutting, and geometric algorithms. Finally, a specific
method is employed to create the graphical elements and annotations, thereby achieving
the transformation from a specific 3D model to its corresponding 2D view blocks. To
improve the readability of drawing, a reinforcement learning method is adopted to find the
optimal layout of blocks in the drawing space. The relationships between blocks, including
connectivity, relative positioning, and alignment, are formally represented using graph
structures, which serve as the foundation for determining the relative position of blocks
within each FCB. To efficiently perform the layout optimization task, two types of agents
are designed. One agent learns to find the optimal position of FCB, and the other agent
learns to find the optimal internal spacing of FCB. A reward mechanism related to the
readability criterion is designed to guide the agents to cooperate and interact with the
environment, ultimately finding the layout strategy.

Two different MARL algorithms (MADDPG and MAPPO) are employed to validate the
feasibility and efficiency of the proposed block layout method. PC stairs and double-sided
shear walls are selected as illustrative cases to demonstrate the practicability and generality
of the proposed framework. Based on the results obtained from these experiments, the
following conclusions can be drawn:

• Three algorithms (MADQN, MAPPO, and MADDPG) can solve the block layout
optimization problem and find the layout solution. Compared with the MAPPO
and MADDPG algorithms, the proposed method (MADQN) demonstrates superior
performance in terms of computational efficiency and solution quality.

• A graph-based representation method is utilized to encode the relationship between
blocks. This approach precisely captures inter-block connectivity, relative positioning,
and alignment.

• The proposed BIM-based framework rapidly completes fabrication drawings of PC
stairs and double-sided shear walls, requiring only approximately 60 s.
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This study offers valuable insights into the fabrication drawing generation within the
context of intelligent construction. However, a rule and experience-based method in this
research is difficult to determine the number of necessary views when the PC component is
extremely complicated, such as precast bay window and exterior wall panel. Furthermore,
the annotated style, position, and other information of different graphical elements need to
be automatically determined in the annotation process. Intelligent generation of annotations
based on graph neural networks can be studied in the future. In addition, current research
utilizes an engineer’s experience to determine the FCB layout structure and region, ignoring
the potential optimal layout solution. Future research should aim to expand the scope of
investigation by combining graph neural networks with multi-agent reinforcement learning
to complete the block layout optimization.
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