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Abstract: The importance of phase change heat storage (PCHS) in solar thermal applications
is limited by the low thermal conductivity of phase change materials (PCMs) and the uneven
temperature distribution during heat transfer. This study proposes to use composite fins
for heat exchange in the PCHS module and integrate them into a hot-water production
system (HWPS) for building heating. The effectiveness of the novel fin structure is assessed
through thorough numerical simulations and experimental validation. An examination of
melting fractions, temperature distribution, and flow characteristics of the molten PCMs
across various fin structures indicates that increasing the lengths and quantities of the
cross fins can alleviate the challenge of incomplete melting at the end of the charging
process. Notably, expanding the surface area of the cross fins results in a 7.37-fold increase
in the average thermal storage rate and a 781.25% enhancement in the average temperature
response compared to the original design. These findings show that the new composite
fin design greatly improves the heat storage performance of an HWPS, which is of great
significance for building energy conservation.

Keywords: energy storage; melting rate; cross fin; enhancement of heat transfer; numerical
simulation

1. Introduction
With the rapid growth of global energy demand and the increasingly severe climate

change, the development of sustainable energy systems has become the primary focus
of all countries [1,2]. In this context, building energy storage is an important part of the
distributed energy system [3,4], and its development is closely related to the change in the
global energy pattern [5,6].

Thermal energy storage, an advanced technology in energy storage and management,
plays a crucial role in building heating applications, particularly in enhancing energy
efficiency [7,8], ensuring consistent heating quality, and advancing the use of renewable
energy sources [9,10]. Phase change materials (PCMs) are essential components in thermal
energy storage systems, serving as adaptable heat storage mediums that can be seamlessly
incorporated into various energy systems [11–13] and showcasing extensive possibilities
for applications [14,15]. In order to improve the speed of the phase change energy storage
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process, strategies such as adding fins [16,17] and metal foam [18,19], altering packaging
methods [20–22], and introducing nanomaterials [23,24] can be adopted.

Fins are widely used in various heat exchangers to enlarge heat transfer areas, as well
as to promote fluid mixing, thus improving heat transfer efficiency [25,26]. Earlier research
has demonstrated that fins are capable of enhancing the thermal efficiency of PCMs [27].
Guo et al. [28] put forward a curved structure derived from a straight fin. The non-uniform
arrangement of fins has led to an improved melting performance, ranging from 24.5% to
9.2% compared with the uniform arrangement. Xu et al. [29] demonstrated that the use
of an intelligent fin for PCMs in a cavity results in a 28.6% reduction in the melting time.
In the work of Boujelbene et al. [30], both the melting and solidification features of PCMs
in a horizontal double-tube unit with twisted fins are investigated, demonstrating a 10%
and 14% increase in charge and discharge rates, respectively. Mills et al. [31] explored
the enhancement of the melting process using a naturally inspired tree structure, which
resulted in a 17% reduction in heater temperature when heated from the side.

Unnikrishnan et al. [32] investigate the performance of the internal corrugated struc-
ture using simulations and experimentations. The increase in the convective heat transfer
rate and slope results in improved PV performance. Han et al. [33] conducted experiments
on the application of a copper fin thermochemical reactor in the construction industry.
The copper fin reactor demonstrates a faster temperature rise during loading owing to
enhanced heat transfer. Specifically, the outlet air temperature of the copper fin reactor
reached 158.7 ◦C in 2.88 h, signifying a 25.9% increase. Guedri et al. [34] employed different
spiral fins with varying fin numbers and lengths to create equal heat transfer surfaces under
different conditions. The double fin and triple fin showed the best performance, shortening
the solidification process by 15.87% and 30.43%. In a study conducted by Liu et al. [35], a
new bionic spider web fin was designed. The full melting time for the accumulator with
the new web fin is only 48 s, in contrast to 140 s for the radial fin, signifying a significantly
longer duration.

Yang et al. [36] explored the impact of variable-speed rotation on TES devices. They
noted that a variable speed for rotation resulted in better melting performance. In compari-
son with constant velocity, phase change time is reduced by 17.37%, while the mean heat
charging rate increases significantly, by 22.72%. Mao et al. [37] analyze the potential of a
truncated cone structure for enhancing the melting process. They argue that the truncated
cone structure performs best during the melting procedure. Kirincic et al. [38] explore the
installation of longitudinal fins upon tubes to enhance heat storage performance compared
with conventional tube configuration. Their study finds that the overall heat transfer effect
notably improves post-installation of the fin during the thermal loading and unloading
cycle, achieving a 52% and 43% time saving compared to the ordinary tube configuration.
Mudhafar et al. [39] compare the three-way fin shape to the conventional longitudinal fin
shape. They reveal that while the PCM without adding fins melts about 15% after 6 h, the
PCM using three-way fins melts completely after 3.5 h, achieving a 33% time-saving ratio.
Prior research has suggested enhancing energy efficiency or increasing the melting rate of
PCM by altering the fin shape, distribution position, and rotation. There is a gap in the
research concerning fin shape within the context of enhanced heat transfer. While active
enhanced heat transfer can significantly improve the overall heat transfer performance of
the PCHS system, its application is hindered by the substantial requirement for external
electric energy. On the other hand, the metal fin, known for its simple installation and
exceptional performance, plays a crucial role in enhancing heat transfer in the PCHS sys-
tem. Strategies to mitigate the adverse effects of the fin on overall heat charging, while
maintaining a high thermal charging rate, necessitate further exploration and discussion.
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In this paper, we propose to use composite fins for heat exchange in the PCHS module
and integrate them into a building heating and hot-water production system (HWPS). The
research involves the design and evaluation of nine fin configurations to determine the
most effective structure for reducing the non-uniformity of phase change melting. The
contents of the study include (1) theoretical modeling and simulation of thermofluidic
properties using advanced computational fluid dynamics tools (ANSYS FLUENT 2021) to
analyze the impact of geometric parameters on the system; (2) a detailed examination of
fin design to compare melting rates, temperature profiles, and flow patterns at different
locations and heat absorption levels; and (3) a comparative analysis of the properties of
the new cross structure against the conventional design in enhancing the heat transfer
efficiency of the HWPS.

2. Problem Formulation
2.1. Physical Model

Figure 1 shows the schematic diagram of the solar heat storage system used for
building heating. It is composed of a hot-water production system, a phase change heat
storage system (PCHSS), and a building energy system. The PCHSS uses solar energy
for photothermal conversion to provide continuous heating for the building. This study
delves into the PCHSS module outlined in Figure 2. Noteworthy is the overall length of the
tank, measuring 500 mm, comprising various curved fins and a singular ring fin to create
a novel fin structure. The thickness of the tube wall is set at 1 mm, with the inner tube
facilitating the movement of high-temperature fluid powered by solar energy. Because of
the high thermal conductivity of copper, the PCHSS is simplified into a two-dimensional
cross-section for analysis. The inner radii (r1) and outer radii (r2) of the shell are 10 mm
and 50 mm, respectively. Nine innovative ring fins were manufactured, the cross-section of
which is shown in Figure 3. Figure 3a–c depict Cases 1–3, while Figure 3d–f show Cases
4–6. In addition, Figure 3g–i show Cases 7–9, integrating the different annular fin radii and
number of fins, whose respective geometric specifications are listed in Table 1. Furthermore,
thermophysical parameters of the RT50 paraffin employed in the PCHSS are outlined in
Table 2, with the use of RT82 paraffin specified to authenticate the subsequent numerical
model.
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Table 1. Geometric structure classification of Cases 1–9.

Inside Diameter of
Circular Fin (r2)

Outer Diameter of
Circular Fin (r3)

Curvature of the
Curved Fin

Number of Curved
Fins

Case 1 19.5 mm 20.5 mm 30◦ 4
Case 2 29.5 mm 30.5 mm 30◦ 4
Case 3 39.5 mm 40.5 mm 30◦ 4
Case 4 19.5 mm 20.5 mm 30◦ 6
Case 5 29.5 mm 30.5 mm 30◦ 6
Case 6 39.5 mm 40.5 mm 30◦ 6
Case 7 19.5 mm 20.5 mm 30◦ 8
Case 8 29.5 mm 30.5 mm 30◦ 8
Case 9 39.5 mm 40.5 mm 30◦ 8

Table 2. Thermophysical properties of PCMs adapted from [40,41].

Property Paraffin RT50 Paraffin RT82 Cu Unit

Thermal conductivity (k) 0.2 0.2 387.6 W/m·K
Melting temperature (Tm) 321.15 353.15 K
Volumetric coefficient of

thermal expansion (β) 0.0006 0.001 K−1

Solidus temperature (Ts) 318.15 351.15 K
Liquidus temperature (Tl) 324.15 355.15 K
Latent heat of fusion (λ) 168,000 176,000 J/kg
Dynamic viscosity (µ) 0.0048 0.03499 Pa·s

Isobaric specific heat (cp) 2000 2000 381 J/kg·K

Density (ρ) 880 (solid)
760 (liquid)

950 (solid)
770 (liquid) 8978 Kg/m3

2.2. Mathematical Model

To address the transient problem, numerical implementations are made with assump-
tions such as [42]:

(1) PCMs and copper have fixed parameters of conductivity, specific heat, and others.
They are invariant with temperature changes;

(2) All the fluid flow described in this study is incompressible;
(3) A Boussinesq model is utilized to describe the local free convective heat transfer;
(4) The phase transition process does not take into account heat loss and radiation with

the outside world.

Governing equations are [43,44]:
Continuity equation (used to describe the mass conservation of a fluid during a phase

transition) [45]:
∂u
∂x

+
∂v
∂y

= 0 (1)

Momentum equation (describing hydrodynamic properties and natural convection
effects):

∂(ρu)
∂t

+
∂(ρuu)

∂x
+

∂(ρuv)
∂y

= −∂p
∂x

+
∂

∂x

(
µ

∂u
∂x

)
+

∂

∂y

(
µ

∂u
∂y

)
+ Amush

(1 − fm)
2

f 3
m + ε

u (2)

∂(ρv)
∂t + ∂(ρuv)

∂x + ∂(ρvv)
∂y =

− ∂p
∂y + ∂

∂x

(
µ ∂v

∂x

)
+ ∂

∂y

(
µ ∂v

∂y

)
+ Amush

(1− fm)2

f 3
m+ε

v + ρgβ(T − Tm)
(3)
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Energy equation (captures heat transfer and latent heat behavior of phase transitions):

∂ρh
∂t

+∇ · (ρvh) =
∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
(4)

where Amush takes the value of 105 kg/m3 [46]. ε is the numerical constant allowing the
non-zero mathematical operations. fm is the liquid fraction determined by:

fm =


0, T ≤ Ts

T−Ts
Tl−Ts

, Ts < T < Tl

1, T ≥ Tl

(5)

·
fm is melting rate:

·
fm =

∂ f
∂t

(6)

The total enthalpy is h:
h = hsen + hlat (7)

hsen = hre f +
∫ T

Tre f

cpdT (8)

hlat = f λ (9)

The amount of heat absorbed is [44]:

Qs = mcp(Tc − Ti) (10)

Ql = mλ f (11)

Q = Qs + Ql (12)

Instantaneousness and average manipulation yield thermal storage rates by [47]:

·
q =

∂Q
∂t

(13)

q =
∂Qm

∂tm
(14)

2.3. Initial and Boundary Conditions

Initial and boundary conditions:

t = 0, Ti = 300.15 K (15)

r = R1 = 10 mm, T = Tw = 348.15 K (16)

Thermal interface between copper fins and PCMs:

Tf in |Ω = Tpcm |Ω (17)

−λ f in
∂Tf in

∂
→
n

∣∣∣∣
Ω
= −λpcm

∂Tpcm

∂
→
n

∣∣∣∣
Ω

(18)
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3. Numerical Procedure and Validation
3.1. Meshing and Numerical Procedure

The melting process is simulated using ANSYS FLUENT 2021. Aiming to simulate the
actual scenario more accurately, grid partitioning is conducted using ICEM 2021 software,
and fine encryption processing is specifically applied to the fin heat transfer boundary.
The fin and the external PCM are divided into two different areas for the subsequent
setting of physical quantities. A detailed grid diagram of this process is illustrated in
Figure 4, establishing a robust database for subsequent analysis. The discretization em-
ploys the second-order upwind scheme. SIMPLE arithmetic manipulation is utilized to
solve the pressure–velocity coupling problem. The PRESTO! algorithm corrects pressure
updates during each round of iteration, within which 10−9 is the key to the convergence
standard [48,49].
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Figure 4. Representative mesh for two cases with different inner fin radii: (a) meshing for Case 2;
(b) meshing for Case 8.

3.2. Independence of Mesh and Time Step

Verification and analysis of the number of meshes and the time steps in the numerical
procedure were conducted. The maximum limit of global elements is set at 0.2, 0.3, and
0.4, resulting in 52,382, 88,368, and 136,334 grid nodes, respectively. Time steps are chosen
as 0.04 s, 0.05 s, and 0.06 s to explore their impact on the liquid fraction during melting,
as illustrated in Figure 5. The influence of the number of meshes and time steps upon
the melting fraction demonstrates that mesh count surpassing 88,368 results in a 6.04%
deduction in the liquid fraction, while a time step below 0.05 s achieves a 20.14% decrease
(see Figure 5). The subsequent study employs a time step of 0.05 s and mesh count of
88,368.
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3.3. Model Verification

To confirm the validity of this numerical model, we conduct model verification using
the experimental data of Abidi et al. [50]. The operation in the numerical study is consistent
with the experimental scenario in reference [50]. Paraffin RT82 as shown in Table 1 is used
as a phase change material. The initial temperature is 300 K, and the inner wall temperature
is 350 K. Figure 6 describes the comparison of the mean temperature of PCM between these
two approaches. The errors in the numerical calculation are analyzed. Comparative analysis
shows that the deviation between the two is 2.85%, which is caused by the inevitable heat
loss in the experiment. It can be shown that the numerical model has strong feasibility.
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4. Results and Discussion
4.1. Comparative Analysis of Melting Performance

While analyzing the liquid fraction distribution, temperature changes, and fluid flow
characteristics of Cases 1–9, the melting states corresponding to different time points
are examined through a detailed comparison of melting discrepancies. The liquid phase
distribution diagram (Figure 7), temperature variation diagram (Figure 8), and velocity
distribution diagram (Figure 9) are presented individually. From Figures 7 and 8, it is
evident that, during the initial melting phase, the inner tube first heats its adjacent PCM
and fins. Owing to excellent conductivity, cross fins facilitate rapid heat transfer. In
Cases 1–3, the fin number remains unchanged, while the radius of the annular fin varies
from 20 mm to 30 mm and 40 mm, respectively. At t = 780 s and t = 1020 s, the PCM
distribution within the cell becomes more uniform with increasing annular fin diameter,
enhancing internal heat exchange efficiency. As time progresses to late melting at t = 1200 s,
a region forms at the bottom thanks to the influence of buoyancy flow in the upper region.
Nevertheless, with an increase in annular fin radius, these challenging-to-melt regions
decrease. Notably, the low-temperature PCM is substantially reduced in Case 3. At 1500 s,
the challenging-to-melt region in Case 3 exists only at the bottom, while in Case 1 and Case
2, these regions also persist on the left and right of the PCM.
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Subsequently, Cases 4–6 are scrutinized, with an increased number of fins in this case
grouping to reduce the negative influence of the bottom region in three other cases, namely
Cases 1–3. At 780 s, there is still a big portion of solid PCM to be melted on the inner side
(Case 6), whereas the outer PCM has split into smaller regions. Progressing to t = 1200 s,
the temperature distribution of PCM in Case 6 appears relatively uniform, with only the
PCM at the bottom demonstrating a lower temperature. The extended curved fin reaching
the bottom of the PCM accelerates the melting speed of challenging-to-melt areas. By
t = 1500 s, Case 6 completes the melting process, with the increased number of fins exerting
a more pronounced warming effect on the PCM. Finally, Cases 7–9 are examined, indicating
that the fin radius and the fin number in Cases 1–6 significantly affect the melting time.
In this case grouping, Case 9 features a 40 mm radius for annular fins and 8 curved fins.
Compared to the original situation, namely Case 1, the full melting time reduces from



Buildings 2025, 15, 320 10 of 19

9485 s to 1166 s, marking an 87.71% increase in melting rate. Through comparative analysis
of the melting performance across varying cases, it is determined that the manipulation of
the fin number and radius significantly enhances heat exchange efficiency and diminishes
challenging-to-melt areas.
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The velocity field shown in Figure 9 for all cases reveals that the natural convection
generated by the fins primarily concentrates in the upper segments of the fins, resulting in
stronger buoyancy-induced flow in the upper region compared to the lower part across
Cases 1–9. In Case 1, the most intense internal natural convection occurs at t = 780 s,
gradually subsiding as the melting process nears completion at t = 1200 s, where natural
convection mainly concentrates near the solid–liquid phase PCM. At this stage, natural
convection weakens, and the melting of low-temperature PCM primarily relies on solid–
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liquid PCM for heat transfer. In Case 9, the increased number of curved fins and expanded
radius of annular fins at t = 780 s enhance the natural convection impact in the unit’s
lower region, resulting in a stronger heat transfer uniformity than those among the other
eight cases. By t = 1020 s, Case 9 enters the last period of melting, with free convective
flow primarily existing at the top. Upon reaching t = 1200 s, Case 9 completes the melting
process, causing natural convection to nearly approach 0.
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4.2. Melting Fraction and Temperature Field

The analysis presents the melting fraction and the PCM average temperature for all
cases. Examining the liquid phase rate change trend from Figure 10a, the liquid phase rate
of Cases 1–3 initially rose slowly, indicating an inefficient melting process. Particularly for
Case 1, the gradual increase in melting fraction reflects a slow melting speed due to a small
annular fin radius and limited curved fins, resulting in reduced fin heat transfer efficiency.
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Conversely, Cases 4–6, with an increased annular fin radius and additional curved fins,
experience enhanced heat transfer capabilities. Furthermore, Cases 7–9 substantially im-
prove the melting effect on the refractory zone by augmenting the annular fin radius and
the number of curved fins. These design enhancements lead to a faster rate of liquid phase
change in the initial phase, with the retardation of bottom PCM diminishing later in the
melting process compared to Cases 1–3.
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Figure 10. Descriptions of: (a) liquid fraction; (b) melting rate; (c) average temperature; (d) full
melting time for all the cases.

Case 3 originally exhibits the greatest liquid fraction among the others due to its large
annular fin radius, resulting in excellent initial melting performance. In contrast, Case
1, with its small annular fin radius and a limited number of curved fins, presents a slow
increase in melting rate because of the retardation of the bottom PCM. The melting rates of
the other eight cases follow a common trend: an initial peak in melting rate, a rapid decline,
followed by an increase, and ultimately a gradual decrease over time. This phenomenon
is primarily caused by the gradual weakening of natural convection during the melting
process. Comparative analysis reveals that Case 9 reaches the greatest fraction of liquid
PCM among the nine cases. Its melting fraction keeps a high increasing trend without
the extended low melting rate stage observed in the later stage in Case 1 or Case 2, thus
resulting in Case 9 having the shortest melting time. As shown in Figure 10c for the PCM
mean temperature data, the change in PCM mean temperature is akin to the liquid phase
rate trend. In the early period, Case 2 experiences the most rapid mean temperature change
in PCM. At the mid-to-late stages of melting, the average temperature change rate of PCM
decreases for Cases 1–6. Meanwhile, Case 9 exhibits a relatively stable temperature-rising
trend throughout the entire process. During the middle/later stages of melting, Cases 1–6
mainly heat the challenging-to-melt PCM region, whereas Case 9 achieves a homogenized
temperature distribution, allowing for a prolonged temperature-rising trend.
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Comparing the melting times of Cases 1–9 as shown in Figure 10d, when the annular
fin radius doubles, namely increasing from 20 mm to 40 mm, there is not a significant
change in melting time in Cases 1–3. However, the comparison between Case 6 and Case 3
reveals that an increase in the number of fins leads to a 26.61% reduction in melting time.
Likewise, in Case 9 compared to Case 3, the cross fins led to a 25.06% reduction in melting
time. Notably, in the case of increasing the number of fins from four to eight, i.e., Case
9 compared to Case 3, there is a significant 41.22% reduction in melting time. Therefore,
across different conditions of Cases 1–9, Case 9 exhibits the best melting efficiency. These
findings indicate that increasing the fin number is beneficial for significantly reducing
the melting time of PCHSS units, while further expanding the annular fins optimizes the
melting performance.

4.3. Thermal Storage and Temperature Response

The changes in sensible heat and latent heat storage are examined in Figure 11a,b.
Sensible heat denotes the heat absorbed as a substance’s temperature increases without
undergoing a phase transition, indicating a change in the average temperature. On the
other hand, latent heat involves heat absorption during a phase transition, keeping the
substance’s temperature constant until the transition is complete, and is associated with
the liquid ratio of PCM in the PCHSS. The variation in sensible heat storage correlates with
the mean temperature change in PCM as depicted in Figure 10c. Adjusting the position
and increasing the number of fins leads to a modification in PCM volume, thereby affecting
the trends in latent heat absorption, reflecting the liquid proportion. The total latent
heat absorption differs among various cases, with Case 4 demonstrating the highest total
sensible heat storage due to the higher internal PCM temperature, while Case 1 exhibits
the highest total latent heat storage owing to the lowest fin mass. Although Case 9’s total
energy storage is slightly lower than that of Case 1, this minor energy loss is deemed
acceptable as it significantly extends the melting time. Moreover, the progression of total
thermal energy over time is depicted in Figure 11c, indicating that sensible heat storage
contributes to around 50% of the total absorption, suggesting that changes in total latent
heat are primarily influenced by latent heat storage, as highlighted in Figure 11e.

Figure 11d,f illustrates the instantaneous and average heat storage rates across different
scenarios. In all nine instances, the instantaneous heat storage rate peaks initially before
gradually declining. At approximately 250 s, six cases show an upsurge in heat storage
due to the combined effect of the annular fin and curved fin, enhancing heat absorption.
Case 3 and Case 4 exhibit significant heat absorption rates during the initial melting phase,
while Case 9 demonstrates the highest rate in the middle and late stages, persisting until
the end of the melting process. Compared to Case 2, Case 3 and Case 5 experience a 37.85%
and 50.89% increase in average heat absorption rates, respectively, while Case 4 shows a
35.91% increase from Case 3. Case 9, with the most effective melting performance, records
an 88.06% increase in mean heat storage compared to Case 1, showcasing a remarkable
improvement in heat absorption efficiency.

In addition to parameters such as rates of liquid phase and heat storage, this study
also delves into temperature response to further investigate the thermal storage capabilities.
It encompasses the use of instantaneous manipulations on response rates of temperature

(
·

RR) and average temperature (RR), taking the form of [51]:

·
RR =

∫ ·
tm

0

1
·

tm

T(ti)− T(ti−1)

ti − ti−1
dt (19)
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RR =
∫ tm

0

1
tm

T(ti)− T(ti−1)

ti − ti−1
dt (20)

where tm denotes the full melting time, T(ti) and T(ti−1) represent the temperatures at ti

and ti−1, respectively.
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Figure 11. Descriptions of: (a) sensible heat storage; (b) latent heat storage; (c) total heat storage;
(d) heat storage rate; (e) ending heat storage; (f) average heat storage rate for all the cases.

In Figure 12a, a plot of the instantaneous temperature changes occurring over time for
nine different scenarios is displayed. The figure reveals that the instantaneous temperature
response in all cases experiences a rapid rise from zero to a peak initially, followed by a grad-
ual decline. During this period, Case 2 and Case 3 exhibit higher instantaneous temperature
responses, while in the middle and late phases of melting, Case 9 demonstrates the highest
response, persisting until the conclusion of the melting procedure. Figure 12b facilitates
quantitative comparisons of the mean temperature response for different scenarios. Upon
comparison, it is found that the average temperature responses of Case 2 and Case 3 exceed
that of the base case (Case 1) by 6.86% and 66.28%, respectively. Furthermore, the increment
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in fin number, from Case 7 to Case 9, led to a 54% increase in the average temperature
response. Additionally, expanding the annular fins, as in the transition from Case 5 to Case
6, resulted in a 30.3% augmentation in the average temperature response. Across all cases,
Case 9 exhibited the most effective melting performance, with its average temperature
response increasing by 87.84% compared with Case 1, highlighting its substantial impact
on improving temperature response.
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4.4. Dynamic Temperature Study

In this section, the internal position temperature monitoring of Case 1 and Case 9 is
used to prove the melting performance improvement effect of Case 9. Figure 13 shows the
internal location selection for Case 1 and Case 9.
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Figure 13. Comparison of: (a) Case 1 system internal point settings; (b) Case 9 system internal point
settings.

As the location point moves away from the heat source, the temperature gradually
decreases, as shown in Figure 14a,b. The configuration of the ring and curved fins in Case
9 brings the heat transfer section closer to all points, resulting in a higher temperature than
in Case 1. Conversely, points 4, 5, and 6 in the horizontal position within the PCM show
higher temperatures compared to points in the vertical position. In Case 9, due to the short
melting period and uniform temperature distribution at all points, at t = 1000 s, the melting
process enters the final stage. Therefore, the increase in the radius and number of annular
fins increases the refractory area, improves the heat transfer efficiency, and shortens the
melting time.
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5. Conclusions 
To integrate phase change heat storage into building heating and hot-water produc-

tion systems, this paper adopts a composite fin design combining a circular fin and rec-
tangular fins to improve overall heat storage performance. The main conclusions are as 
follows: 

(1) The presence of a refractory zone at the bottom of the terminal unit will significantly 
reduce the heat transfer rate and extend the time required for complete melting; 
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(4) In future research, the radius of the annular fin can be further optimized and the 
bending degree of the curved fin can be considered under the premise of consider-
ing the feasibility of engineering application. 
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5. Conclusions
To integrate phase change heat storage into building heating and hot-water production

systems, this paper adopts a composite fin design combining a circular fin and rectangular
fins to improve overall heat storage performance. The main conclusions are as follows:

(1) The presence of a refractory zone at the bottom of the terminal unit will significantly
reduce the heat transfer rate and extend the time required for complete melting;

(2) The increase in the radius of circular fins and the number of curved fins at the same
time is conducive to natural convection. Compared with the initial structure design
(four curved fins and 20 mm radius round fins), the structural design Case 9 (eight
curved fins and 40 mm radius round fins) can greatly improve the heat storage rate;

(3) The dynamic temperature response analysis shows that the area of the refractory zone
can be reduced by increasing the radius and number of annular fins, and the average
temperature response of Case 9 is increased by 781.25% compared with the initial
structure;

(4) In future research, the radius of the annular fin can be further optimized and the
bending degree of the curved fin can be considered under the premise of considering
the feasibility of engineering application.
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Symbols
Amush Velocity momentum in the paste region
k Thermal conductivity (W/m·K)
ρ Density (kg/m3)
cp Isobaric specific heat (J/kg·K)
Tm Melting temperature (K)
λ Latent heat of fusion (J/kg)
β Volumetric coefficient of thermal expansion (K−1)
Ts Solidus temperature (K)
Tl Liquidus temperature (K)
fm Liquid fraction
·

fm Melting rate
h Total enthalpy (J)
Qs Sensible heat energy (J)
Ql Latent heat energy (J)
Q Total heat energy (J)
·
q Instantaneous heat absorption rate (W)
q Average heat absorption rate (W)
·

RR Instantaneous temperature response rate
RR Average temperature response rate
Subscripts
w wall
s solid phase
l liquid phase
Ω heat transfer area
re f reference state
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