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Abstract: Underground space development has significantly increased the depth, scale,
and complexity of foundation pit engineering. However, monitoring systems lack me-
chanical analysis models and fail to predict and control construction risks. Additionally,
the foundation pit model could not be updated based on on-site observed data, leading
to inaccurate predictions. This study proposes a DT modeling framework for foundation
pits, which is used to simulate, predict, and control the risks associated with the entire
excavation process. Consequently, based on the DT modeling framework, a DT foundation
pit model (DTFPM) was established using modeling and updating algorithms. This study
summarizes and identifies the key modeling parameters of foundation pits. A parametric
modeling algorithm based on ABAQUS (v2020) was developed to drive the excavation pit
modeling process within seconds. Furthermore, an inverse analysis optimization algorithm
based on genetic algorithms (GA) and real-time observed deformation was employed to
update the elastic modulus of the soil. The algorithm supports parallel computing and can
converge within 10 generations. The prediction error of the model after inverse analysis can
be reduced to within 10%. Finally, the authors applied DTFPM to establish an intelligent
monitoring system. The focus is on real-time and predictive warnings based on the mon-
itoring deformation of the current construction step and the updated model. This study
analyzes a Beijing project case to verify the effectiveness of the system, demonstrating the
practical application of the proposed method. The results showed that the DTFPM could
accurately simulate the deformation behavior of the foundation pit. The system could
provide more timely and accurate safety warnings. The proposed method can potentially
contribute to the intelligent construction of foundation pits in the future, both theoretically
and practically.

Keywords: digital twin; deep foundation pit; intelligent monitoring system; inverse analysis

1. Introduction
China has made considerable progress in the development and utilization of under-

ground space. The construction of large urban transport hubs and commercial projects
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has significantly increased the size and depth of deep foundation pits. Excavation projects
rapidly evolve towards deeper, larger, and more complex undertakings [1]. The complexity
of geological conditions and the uncertainty of theoretical analyses pose significant chal-
lenges [2]. However, the monitoring of foundation pits commonly relies on manual data
collection and processing, leading to limited data analysis and risk warning capabilities. In
recent years, China has witnessed many excavation accidents, which caused significant ca-
sualties and property damage. For instance, one notable excavation accident in Hangzhou
resulted in many deaths and the destruction of numerous vehicles [3]. The displacement of
the excavation pit poses a serious threat to both the structure and human life. Therefore,
accurate monitoring and predicting of displacement during the early stages of construction
are crucial for preventing potential risks.

In recent years, with the rapid development of computer technology, numerical simu-
lation methods have become an effective means for the design and analysis of foundation
pit engineering. However, theoretical and practical challenges exist. Numerical analysis
is an essential tool for predicting the deformation of deep excavations. The numerical
simulation methods encompass the finite element method (FEM), finite difference method
(FDM), boundary element method (BEM), and other similar techniques. In recent years,
numerous scholars have employed numerical methods to simulate the deformation of exca-
vation pits and compared the outcomes with field observed data. These have demonstrated
numerical analysis methods’ high accuracy and reliability in simulating complex geological
conditions, different construction stages, and various support structures [4–7]. However,
due to the inherent uncertainty of soil properties, selecting soil constitutive models and
determining parameters present significant challenges. The establishment of numerical
models of excavation pits often necessitates the incorporation of numerous empirical pa-
rameters, and only through the calibration of the model with field-observed data can the
model’s accuracy be guaranteed. Inverse analysis theory [8] can identify soil parameters
to fit the field monitoring deformation, such as wall displacement or ground settlement.
Typically, in geotechnical inverse analysis problems, due to the uncertainty of soil layer
parameters and field measurements, there are multiple approximate solutions rather than a
single exact solution. Inverse analysis optimization algorithms can objectively determine
soil parameters, such as the gradient method (GM), differential evolution algorithm (DEA),
particle swarm optimization algorithm (PSO), genetic algorithm (GA), and others, which
have been successfully applied in geotechnical engineering [9–12]. Professor Holland
proposed genetic algorithms at the University of Michigan in 1975 [13]. Many studies
have demonstrated that genetic algorithms can identify multiple approximate solutions
for inverse analysis problems [14–16]. Additionally, many researchers have combined
artificial intelligence techniques, such as neural networks and machine learning, to predict
the deformation of excavation pits. These methods have significant advantages in handling
large amounts of observed data, identifying deformation patterns, and establishing predic-
tion models [17–19]. Nevertheless, numerical analysis of excavation pits is predominantly
employed for pre-excavation deformation prediction. In addition, numerical modeling
of pit excavations usually relies on commercial software such as PLAXIS 2D (v2022) and
ABAQUS (v2020). For engineers and technicians, modeling pit excavation can be very
challenging due to operational difficulty and cost. Moreover, inverse analysis is frequently
conducted after the excavation without the dynamic updating of the model based on
field observed data during the excavation process. Consequently, numerical analysis of
excavation pits can often fail to predict the actual deformation of the pit in a timely and
precise fashion.

On-site monitoring represents the most effective means of observing the deformation
of excavation pits. Traditional manual monitoring and management methodologies are
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no longer adequate to guarantee the safety of large-scale excavation construction. In-
stead, automated monitoring technologies and intelligent early warning systems are being
extensively investigated and implemented. Various monitoring technologies, including
automated total stations [20] and three-dimensional laser scanning (3DLS) [21], are com-
monly employed in pit monitoring. Concurrently, the advent of information technology
based on the Internet of Things (IoT) has facilitated the automation of pit monitoring, with
online early warning systems evolving from information management [22] to intelligent
risk warnings [23]. In the context of construction monitoring of excavation projects, various
data collection technologies, such as Global Positioning System (GPS), automated total
stations, 3DLS, intelligent sensor networks, etc., produce information typically utilized in
isolation. There are a few cases where multiple monitoring and numerical simulation tech-
nologies have been applied. The challenge lies in that few systems can manage multi-source
heterogeneous data. DT technology can efficiently integrate and utilize these technologies
to ensure adequate construction monitoring and risk warning [24–26].

The term “digital twin” was first defined in the 2010 NASA report [27], wherein it
was described as “multi-physics, multi-scale, probabilistic simulation”. However, the
concept of DT was first proposed by Professor Michael Grieves in 2003, who defined it as
an “Information Mirroring Model” that includes physical products, virtual products, and
the connections between them [28]. In recent years, Tao, F, and others have established a
five-dimensional model based on Grieves’ three-dimensional model with the expansion of
related theoretical technologies and upgrading application requirements. The model con-
sists of five parts: physical part, virtual part, connections, data, and services [29]. DT tech-
nology has been extensively researched and developed in construction engineering [30,31].
Its seamless integration distinguishes DT between the cyber and physical spaces [29,32,33].
At the construction stage, the physical components of the target project have not yet been
completed. Consequently, a DT can be created for other related existing projects, related
environments, related surroundings, and partially completed target projects to facilitate
construction monitoring and management, encompassing aspects such as construction
progress, quality, safety, workers, machinery, and materials monitoring and management.
However, most current research is focused on monitoring and managing construction
progress and quality [34,35]. The development of DT technology in construction safety
monitoring and management is still in its infancy [36]. Zijian Ye et al. have proposed a
DT-based multi-information intelligent early warning and safety management platform for
tunnel construction safety risks. This platform collects and manages multi-source dynamic
observed data but does not integrate physical analysis models [37]. Zhe Sun et al. have
integrated physical models and on-site observed data, proposing a DT-based framework
for intelligent risk prognosis and control of deep excavation [38]. However, this method
does not integrate intelligent inverse analysis algorithms and instead requires experienced
technical personnel to modify model parameters for model updates. Moreover, a universal
safety early warning management platform has yet to be established.

The above research significantly contributed to developing intelligent monitoring and
early warning systems for deep foundation pits. However, several challenges need to be
addressed. First, the dynamic nature of excavation and the variability of support structures
and soil properties make numerical modeling of deep foundation pits highly complex.
Currently, there is a lack of standards for numerical modeling of deep foundation pits,
which makes it difficult for parametric modeling. Secondly, a significant discrepancy is often
observed between the results of numerical simulations and actual observation. However,
most inverse analyses of model parameters are conducted following the completion of
construction, and the models are not updated in real time based on on-site observed
data. Consequently, the current safety monitoring and early warning systems for deep
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foundation pits do not integrate numerical models, which impedes the ability to provide
precise safety warnings in real time. Moreover, the utilization of DT technology in the
monitoring and management of deep foundation pit construction is still in its early stages.
There is a pressing necessity to establish a safety warning system based on DT technology
to enhance the efficacy of construction safety monitoring and management.

To address the gaps mentioned above, the specific objectives of this study are as
follows: (1) to propose a DT-based architectural framework for deep foundation pit mod-
eling; (2) to investigate a parametric modeling method for pits with complex geological
environments and multiple support structures, as well as a capability for dynamic construc-
tion simulation; (3) to investigate an intelligent inverse analysis optimization algorithm
to update the pit model in real-time based on field monitoring data; (4) to explore the
effectiveness of intelligent monitoring system using DT technology in deep foundation pit
excavation projects.

The structure of this paper is as follows: Section 2 provides an overview of the
DT-based deep foundation pit modeling framework; Section 3 describes the parametric
modeling of deep foundation pits and the inverse analysis algorithm for model updating;
Section 4 outlines the architecture of the DT-based deep foundation pits monitoring system;
Section 5 presents a case study of a deep foundation pit construction project; Section 6
provides a summary of the conclusions and outlines future work.

2. Digital Twin Framework for Deep Foundation Pit Modeling
The application of DT technology is initiated by the construction of a model repre-

senting the application object. This study references Tao’s five-dimensional model [29]
to establish the architecture of a DT for deep foundation pits, as shown in Figure 1. The
model is divided into five parts: (1) the physical space of deep foundation pits construction;
(2) the virtual space of finite element simulation; (3) DT data; (4) intelligent early warning
web services; and (5) connections between the parts. The following section will provide a
detailed introduction to each part.

2.1. The Physical Space

The excavation is a dynamic process, and the multi-source information present in the
physical space must be collected and transmitted to the data center, as illustrated in Figure 2.
Geometric information, personnel information, and equipment information are typically
conveyed by the CAD model, 3D geological model (3DGM), and building information
model (BIM). Those models can be transmitted to the twin database after being converted
using Industry Foundation Classes (IFC). Design information about support structures,
soil, loads, and water levels is subject to change during construction. This information can
be collected in real-time using sensors, automated total stations, and 3D laser scanning
(3DLS) and then transmitted to the twin database after compilation.

2.2. The Virtual Space

In the virtual space, a virtual model of the deep foundation pit is established as a
mapping of the physical entities within the pit, which encompasses the geometric model
(GM), physical model (PM), behavior model (BM), and rule model (RM). The GM contains
information such as the shape and dimensions of the pit, stratigraphic information of the
soil, and the positional relationships of support components, which can be established
using 3D modeling software. The PM includes mechanical information about the soil, loads
on support structures, etc., which can be established using finite element analysis software.
During the excavation process, the geometric shape and mechanical parameters of the
pit will undergo dynamic changes, which will be reflected in the BM. The RM includes
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relevant specifications for pit design, construction, and monitoring, as well as patterns and
experiences based on historical data. These four types of models are integrated and fused
to form a complete simulation model, which is verified and updated through optimization
algorithms to ensure consistency with the physical entity.
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The architecture for deep foundation pit simulation modeling and data updating
based on the DT proposed in this study is shown in Figure 3. However, the major challenge
is establishing multi-dimensional, multi-temporal, and spatial scales and dynamically
evolving numerical models of foundation pits based on engineering requirements while
considering efficiency and accuracy. The objective is to develop a parametric modeling
algorithm that can rapidly establish a FEM of the deep foundation pit with the neces-
sary parameters. In the meantime, an inverse analysis optimization algorithm should be
developed to update the model dynamically in real-time based on observed data. Both
algorithms will be described in detail in Section 3.

2.3. Services

It is necessary to encapsulate numerical models, optimization algorithms, and data
into services to meet the needs of engineering applications. A web-based intelligent
monitoring system is developed, as illustrated in Figure 4, which serves workers, engineers,
and managers. Computing services, web services, and data services are deployed on
different servers, enabling cloud computing and reducing users’ software and hardware
requirements. The web services manage excavation progress, sensors, observed data, and
DT models. The computing services integrate parametric modeling algorithms and inverse
analysis optimization algorithms for DT modeling and model updates. The excavation
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progress, modeling, observed, and risk data are stored and visualized on the web page.
The system will be introduced in detail in Section 4.
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2.4. DT Data and Connection

The DT data, which are the driving force behind DT, are comprised primarily of
observed data, modeling data, simulated data, updated data, empirical data, and risk data.
The dynamic mapping between a physical and a virtual model is achieved by fusing these
twin data. The process of data fusion is illustrated in Figure 3.

Data connections enable the interconnection and intercommunication of the various
parts of the DT model. These connections primarily involve the interaction between the
physical space, virtual space, and web services with the twin database, as shown in Figure 1.

The data connection between the physical and virtual space occurs mainly between
the sensors and the finite element model. Smart collection devices collect observed data
from the site in real time, which are then uploaded to the cloud server through a wireless
gateway. Multi-source and heterogeneous data must be compiled into a standard data for-
mat. Standardized data are more conducive to data interaction. The author has developed
corresponding data interfaces for different hardware, converting the sensor monitoring
results into sequences of time and deformation. The system includes a set of relational
database models, as shown in Figure 5. The sensors are associated with the numerical
model through IDs. The results of the analyses include coordinates of measurement points,
construction stages, and displacements. The engineer needs to manually associate the
sensors with the analysis model before the initial analysis. The basis for data correlation
includes IDs, time, and construction stages.

Different servers interact with each other using the HTTPS protocol. The web server
transmits computational instructions to the computing server, which drives model FNA
analysis and inverse analysis. The computing server then sends the calculation results back
to the web server for the user to view. All data are stored in real time in the data server.



Buildings 2025, 15, 366 8 of 24Buildings 2025, 15, x FOR PEER REVIEW 9 of 26 
 

 

Figure 5. Relational database of system. 

Different servers interact with each other using the HTTPS protocol. The web server 
transmits computational instructions to the computing server, which drives model FNA 
analysis and inverse analysis. The computing server then sends the calculation results 
back to the web server for the user to view. All data are stored in real time in the data 
server. 

3. DT Foundation Pit Modeling in the Virtual Space 
This study developed two algorithms, parametric modeling algorithms, and inverse 

analysis algorithms, to establish the DT foundation pit model (DTFPM). The following 
section will introduce these two algorithms. 

3.1. Parametric Modeling of Foundation Pit 

This study presents a parametric modeling algorithm for excavation pits developed 
based on ABAQUS (v2020). This algorithm can be used to model multiple types of support 
and is well-suited to complex geologic conditions. Through analysis of many engineering 
cases, the deep foundation pit types are categorized into five basic subtypes, along with 
their respective combinations: open-pit excavation, soil nail support, pile–anchor support, 
pile–brace support, and wall–brace support. To ensure the reliability of the ABAQUS 
model, the author compared it with PLAXIS (v2022), a software widely used in 
engineering practice. The author compiled the modeling parameters for the case study 
and established both ABAQUS and PLAXIS models. The displacement contours and key 
measurement point deformations were extracted from both models. By adjusting the 
parameter settings in the ABAQUS model, the analysis results of the two models were 
made to align closely to ensure that the ABAQUS model can be applied to actual 
engineering projects. 

The DTFPM employs the M-C and Hardening Soil (HS) model. The M-C model is 
simple, and most parameters can be found in geological exploration reports, leading to its 
widespread use in geotechnical engineering. However, the M-C model cannot account for 
essential deformation characteristics such as increased soil modulus with stress, which 
may result in less reasonably calculated deformation of deep foundation pits. The HS 

Project data

Project 

+ Id
+ Name
+ Type

User

+ Id
+ Name
+ Type
+ Pro_Id

Section data

Point

+ Id
+ Sec_Id
+ Name
+ Location

Section

+ Id
+ Line_Id
+ Name
+ Location

Line

+ Id
+ Pro_Id
+ Name
+ Location

Model data

Model

+ Id
+ Pro_Id
+ Sec_Id
+ Type
+ Analysis_status
+ Series:Array<T,S>

Sensor data

Record

+ Id
+ Name
+ Pro_Id
+ Sensor_Id
+ Series:Array<T,V>

Sensor

+ Id
+ Type
+ Point_Id
+ Initial_Value
+ Warn _Value
+ Alarm _Value

Geometry

Stage

Physics

Sensor

Soil_Para
meters

Result

+ Id
+ Model_Id
+ Contour
+ Predicted<S,V>
+ Measured<T,V>
+ Inverse<E1,E2…>
+ Status

Risk data

Risk

+ Id
+ Level
+ Point_Id
+ Status

1 * 1 * 1 * 1 

1 

1 

1 
1 

*

*

*
1 

1 
1 

1 

*

1

1 

1 * *

Note:    Indicates multiple tables.*
Figure 5. Relational database of system.

3. DT Foundation Pit Modeling in the Virtual Space
This study developed two algorithms, parametric modeling algorithms, and inverse

analysis algorithms, to establish the DT foundation pit model (DTFPM). The following
section will introduce these two algorithms.

3.1. Parametric Modeling of Foundation Pit

This study presents a parametric modeling algorithm for excavation pits developed
based on ABAQUS (v2020). This algorithm can be used to model multiple types of support
and is well-suited to complex geologic conditions. Through analysis of many engineering
cases, the deep foundation pit types are categorized into five basic subtypes, along with
their respective combinations: open-pit excavation, soil nail support, pile–anchor support,
pile–brace support, and wall–brace support. To ensure the reliability of the ABAQUS
model, the author compared it with PLAXIS (v2022), a software widely used in engineering
practice. The author compiled the modeling parameters for the case study and established
both ABAQUS and PLAXIS models. The displacement contours and key measurement
point deformations were extracted from both models. By adjusting the parameter settings
in the ABAQUS model, the analysis results of the two models were made to align closely to
ensure that the ABAQUS model can be applied to actual engineering projects.

The DTFPM employs the M-C and Hardening Soil (HS) model. The M-C model is
simple, and most parameters can be found in geological exploration reports, leading to its
widespread use in geotechnical engineering. However, the M-C model cannot account for
essential deformation characteristics such as increased soil modulus with stress, which may
result in less reasonably calculated deformation of deep foundation pits. The HS model, on
the other hand, can consider the hardening characteristics of soft clays, and its calculation
results provide a more reasonable estimate of both wall deformation and soil deformation
behind the wall, making it suitable for numerical analysis of deep foundation pits in
sensitive environments. However, the HS model is not built-in in ABAQUS. The authors
have redeveloped the modified HS (MHS) model via the user-defined subroutine UMAT
and embedded it into ABAQUS. The MHS model is presented with several improvements.
These include reforming the yield function, the hardening law, and the rederivation of
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the constitutive equations to ensure the desired stress–strain relation. However, the MHS
model requires more parameters than the M-C model and obtaining a complete set of model
parameters can be challenging. Therefore, this study will conduct an inverse analysis of
soil parameters based on observed data to improve the calculation accuracy of both the
M-C and MHS models.

The parametric modeling algorithm was developed using Python (v2.7.15) based on
the ABAQUS modeling scripts. ABAQUS provides a scripting interface that can directly
communicate with the kernel. The script files comprise a series of pure ASCII format
Python statements, and all modeling operations are recorded in the script, providing a
basis for the development of parametric modeling algorithms. Firstly, many excavation pit
finite element models were established based on ABAQUS, obtaining deep foundation pit
modeling scripts for various types of support and soil layers. Subsequently, a parametric
modeling algorithm was developed based on the modeling scripts. This approach em-
ploys Python’s scripting capabilities to automate the process of creating and manipulating
FEMs in ABAQUS. By using Python, the algorithm can streamline the modeling process,
making it faster and more efficient, especially for complex geotechnical structures such as
foundation pits.

This paper’s foundation pit numerical model integrates the GM, PM, BM, and RM. The
GM includes an analysis of the width, height, and thickness of soil layers, excavation shape,
and size of support structures. The PM encompasses the mechanical parameters of the
soil and support materials. These geometric and physical parameters need to be inputted
by engineers through the webpage. The BM includes construction information such as
excavation procedures and monitoring. During the excavation process, the geometric shape
and mechanical parameters of the pit will undergo dynamic changes, which will be reflected
in the BM. The deformation of the soil and the supporting structures can be visually
displayed on the webpage. However, changes in soil parameters need to be obtained
through inverse analysis. The RM contains specifications for support design, construction,
and monitoring. These specifications are pre-entered into the system. For example, when
users select the safety level, excavation depth, and category of the foundation pit, the
system can provide a recommended safety threshold. An alarm will sound when the
monitored or predicted values exceed this threshold.

The parametric modeling algorithm enables establishing a deep foundation pit FEM by
inputting key modeling parameters and outputting deformation results. The author refines
the key modeling parameters for each support type. The key modeling parameters include
geometric, mechanical, and construction information. These can be obtained from various
sources, including design drawings, geological exploration reports, design specifications,
and construction plans. For example, as illustrated in Figure 6, by inputting the parameters
on the left side of the figure, the FEM on the right side of the figure can be generated within
one second.
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3.2. Inverse Analysis for Model Updating

A key feature of DT is its capability for automatic evolution. During the excavation
of a foundation pit, geometric and mechanical characteristics undergo dynamic changes.
The model parameters must be dynamically updated based on real-time and historical
observed data to accurately predict pit deformation and ensure consistency between the
numerical model and the physical object. This study developed a multi-parameter inverse
analysis optimization algorithm based on genetic algorithms (GA), which automatically
updates model parameters based on field monitoring deformation data.

GA are highly robust and adaptable, but their computational efficiency is low when
dealing with large-scale and complex problems. Therefore, developing GA that can perform
parallel computing is of great importance. Figure 7 illustrates the inverse analysis procedure
based on the parallel GA proposed in this study.
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Many studies have shown that wall deformation and ground movement are key
factors affecting excavation performance [39–41]. In this study, the average difference in
wall deformation between the simulated and observed data are represented by the least
squares’ method. The error function Ferr is defined as follows:

Ferr =

√√√√ 1
N

N

∑
i=1

(
Uo

i − Us
i
)2

where N is the number of measurement points, Uo
i is the value corresponding to the ith

point of observed data and Us
i is the value corresponding to the ith point of simulated data.

In inverse analysis, it is challenging to identify each soil parameter. Many studies
have shown that optimizing E50

ref as an inverse-analysis parameter is effective [15,42,43].
In inverse analysis, the soil modulus is treated as an individual, with each individual
representing a point in the search space. A group of Mj individuals represent the population
of the jth generation. The initial population of these individuals serves as the parameter set
for the parametric modeling program, which then produces numerical simulation results.
These results are compared with the monitoring data to calculate the error function Ferr for
the population. The objective of the inverse analysis is to minimize the value of Ferr. In
genetic algorithms, the fitter the population, the higher its fitness. Therefore, the fitness
function can be taken as the inverse of the error function:

f itness =
1

Ferr
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In this study, parallel computing performs numerical analysis and fitness evaluation,
significantly improving computational efficiency. When a population’s fitness is poor,
the selection, crossover, and mutation processes generate new populations. These new
populations, representing sets of new soil parameters, are then fed back into the parametric
modeling program. This process is repeated until the convergence criteria are met. At this
point, the Pareto solutions are output.

Parameters in the numerical model need to be updated automatically after the inverse
analysis. Figure 8 illustrates the process of updating the model. Before the excavation, an
initial model is quickly created based on the design parameters to predict the deformation
caused by the first excavation of the foundation pit. If the predicted deformation is too
large, a review of the support design is required. Then, after the first excavation, the
displacement of the support structures and the soil is measured. The soil parameters are
inverted based on the GA optimization algorithm, and the model is updated. The updated
model then predicts the excavation deformation of the subsequent construction stage. If
the predicted deformation is outside the specified range, preventative measures, such as
adding temporary supports, must be taken to ensure the safety of the excavation. This
process is repeated throughout excavation, with more observed data being added to the
optimization objectives.
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Meanwhile, each updated model is retained and added to the library of numerical
models. More importantly, a large amount of data is integrated into the twin database.
Prediction results from multiple models are used for on-site risk assessment and engineer-
ing decision-making. In addition, engineers can use extensive measurement data and soil
parameters to optimize the future design of similar excavation projects.

4. Prototype of Developed DT System
Figure 4 shows the overall architecture of the prototype system proposed in this study.

It includes four functional modules: project management, sensor management, model
management, and risk management. Figure 9 shows the prototype system application
process. It is designed for managers, engineers, and workers. The following section will
provide a detailed introduction to the system’s features.
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4.1. Project Management

The system realizes multidimensional and multi-level excavation project management.
Managers can manage multiple company projects in the system, comprehensively control-
ling the risk of excavation at the company level. Engineers can manage a foundation pit
project in the system, enter project information, and conduct foundation pit early warning.
Workers can view risk information and carry out risk disposal.

4.2. Sensor Management

Engineers can oversee the management of sensors and monitoring data within the
system. The specifications of the support design drawings can delineate the pit’s contour
and cross-section. According to the monitoring plan, the measurement points on the
excavation pit plane must be arranged and associated with the cross-sections. The sensors
comprise displacement and internal force sensors related to the measurement points. The
model is built in sections containing measurement point information and associated sensors.
Integrated with a router and 5G network, the data collection box transmits the field-observer
data to the system in real-time. However, due to the hardware limitations of the equipment,
deep displacement and internal force monitoring data must be uploaded manually.
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4.3. Model Management

Modeling information is entered by engineers on the web page, including section
properties, geometric information, mechanical parameters, construction progress, and other
relevant data, to establish a 2D excavation pit model. This model then correlates with
the on-site monitoring data, considering the temporal and spatial relationships between
the two datasets. Finally, inverse analysis algorithms are employed to update the model
automatically. The updated model is then used to generate predictions and warnings for
further analysis.

4.4. Risk Management

A three-stage early warning mechanism has been incorporated into the system. The
early warning workflow is illustrated in Figure 10. The system can compare the observed
and simulated data with the specified limits while simultaneously providing both real-time
and predictive warnings. This system’s predictive warning of future construction steps is a
significant advantage compared to other systems. The alarm point will display a flashing
orange or red light on the plan to alert managers of hazardous locations, which facilitates
the workers’ prompt implementation of appropriate safety measures.
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5. Case Study: A Foundation Pit Excavation Project in Beijing
To verify the effectiveness of the monitoring system proposed in the previous section,

the author chose a pit excavation project in Beijing as a case study to demonstrate its
application. Figure 11 depicts the excavation construction site. Using the proposed DT
modeling architecture, the excavation’s field monitoring data were collected, a virtual
model of the excavation was established, and the model parameters were updated based on
the monitoring data. The updated model more accurately predicts excavation deformation,
thus ensuring safety at every stage of construction on site.
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Figure 11. The excavation construction site of the project.

5.1. Project Overview

The foundation pit of this project measures 178.60 m in length and 69.80 m in width,
with an excavation depth ranging from 4.0 to 7.50 m. The excavation plan is illustrated in
Figure 12. Considering the depth of the excavation and the surrounding environment, the
pit primarily employs a bored pile + anchor support. The J–K sectional view is shown in
Figure 13. The eastern side of the excavation pit exhibits a relatively shallow depth, with
the H–I employing a cantilever pile support.
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5.2. Collecting Data from Physical Spaces

During the construction of the excavation, a range of sensory devices are employed
to collect real-time data on the site, primarily comprising monitoring data and data about
the construction process. The layout of the monitoring points is illustrated in Figure 12.
The primary displacement monitoring contents include pile top displacement, lateral de-
flection, and ground settlement. Taking the pile top displacement as an example. It is
gauged using an automated total station, as shown in Figure 14. The monitoring accuracy
is extremely high, with an error not exceeding 0.3 mm. The internal forces of the anchor
cables are also monitored and uploaded to the system. The accumulated data are auto-
matically transmitted to the DT monitoring system via a 5G base station. The installation
of surveillance cameras at the construction site serves two principal purposes: firstly, to
monitor the progress of the construction in real-time, and secondly, to identify any safety
hazards promptly.
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For example, the main construction schedule for J–K is shown in Table 1. Each excava-
tion is about 2 to 3 m deep. The engineers were responsible for recording the construction
date after each key construction stage. Afterwards, inverse analyses were performed based
on the monitored data to update the finite element model for further prediction.

Table 1. Construction progress.

Stage No. Stage Name Excavation Activities

1 Add1 Piles construction

2 Remove1 Excavated to −2.12 m

3 Remove2 Excavated to −4.12 m

4 Add2 Anchor construction

5 Remove3 Excavated to the bottom

5.3. Modeling in the Virtual Space

The most crucial step in DT is modeling in virtual space. This study uses the para-
metric modeling algorithm to establish a finite element model of the deep foundation
pit in ABAQUS. During the excavation process, inverse analysis algorithms update the
model parameters.
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(1) Modeling and initial analysis

Take the J–K section as an example. The depth of excavation of the J–K section of the
pit is 7.5 m. In this model, the soil is assumed to have dimensions of 30 m × 50 m. The
mesh size of the soil to be analyzed is set at 0.5 m. The number of elements is 12,223. The
GM of the excavation pit can be rapidly constructed, as demonstrated in Figure 15.
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The soil is modeled using plane strain elements. Table 2 shows the input parameters
for the five clay layers. In this analysis, the MHS model is employed, which necessitates
the specification of a series of soil stiffness parameters, including the reference secant
Young’s modulus at the 50% stress level, Eoed

ref, the reference oedometer tangent modulus,
E50

ref, and the reference unloading modulus, Eur
ref. The stiffness parameters correspond

to the reference pressure, pref , usually set equal to 100 stress units, and m is the power for
the stress-level dependency of stiffness. Obtaining these parameters through laboratory
tests is a time-consuming and costly process. The exploration report for this project
provides only the compression modulus, Es1~2. In accordance with the recommendations
set forth in engineering manuals and the related literature, the author initially assumes that
E50

ref = Eoed
ref, Eur

ref = 3E50
ref, Es1~2 = Eoed

ref. Subsequently, these parameters are updated
through inverse analysis. The effective cohesion, c’, effective internal friction angle, φ’,
and unit weight, γ, of the soil can be obtained from the geological exploration report. The
dilatancy angle, Ψ, depends on the volume change characteristics of the soil and is equal to
zero for normally consolidated clays. The remaining MHS model parameters, the at-rest
earth pressure coefficient, K0, and Poisson’s ratio, νur, are taken as recommended values
from engineering manuals.

Piles are modeled using plane strain elements, and anchor cables are represented by
line elements. The anchor cables are modeled with truss sections. One end is embedded in
the pile, and the other end is embedded in the soil. The pre-stressing of the anchor rods is
applied using the method of temperature reduction. The materials for the supporting struc-
ture, which include concrete (C30) and steel strands (S1860), are both modeled with linear
elastic constitutive relationships. The parameters can be obtained from the specification
database. By inputting the mechanical parameters of the soil and the supporting structure,
the PM can be quickly established.
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Table 2. The soil mechanical parameters.

Soil
Layer

Depth
(m)

γ
(kN/m3)

E50
ref

(MPa)
Eoed

ref

(MPa)
Eur

ref

(MPa)
c′

(kPa)
ϕ′

(◦) K0

1 0~3 19.8 3700 3700 11,100 14 8 0.72

2 3~6 20.0 4600 4600 13,800 22 30 0.13

3 6~12 19.8 5900 5900 17,700 37 11 0.63

4 12~17 20.1 7000 7000 21,000 32 12 0.59

5 17~30 18.6 9100 9100 27,300 35 12 0.59

Notes: pref = 100; m = 0.5; νur = 0.2; Ψ = 0; values not changed.

Based on the construction plan delineated in Table 1, the input of construction data
enables establishing a finite element model that simulates the entire excavation process.
Before the commencement of construction, a preliminary risk analysis is undertaken to
predict potential construction risks. The horizontal displacement of each stage, as illustrated
in Figure 16, indicates that the maximum deformation occurs at the top of the supporting
piles. The system can automatically extract the displacement of the measuring points,
which can then be used to evaluate the risk of excavation. Currently, the system does not
support the output of internal forces in the supporting structure, and further improvements
need to be made in future research.
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Figure 16. Predicted horizontal displacement of J–K.

Figure 17 presents the horizontal displacement of the piles on top of each section. As
shown in Figure 17, the initial predicted value of stage 5 exceeded the warning limit, and
the system should have issued a prediction warning. Based on engineering experience, the
analysis results were considered conservative and inaccurate, and the models needed to be
updated based on the measured data once the excavation was carried out.
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Figure 17. Horizontal displacement predicted by the initial model.

During the foundation pit excavation, an automated total station monitored the de-
formation of the pile top. Some monitoring points (including V21, V27, and V33) were
selected to analyze the deformation pattern of horizontal displacement of the pile top in
each section. Monitoring data are lacking for Stage 1, the piling phase, due to the absence
of monitoring points. After construction, the top deformation was minimal, leading us to
assume a measured value of zero for stage 1. As shown in Figure 18, the horizontal dis-
placements at all stages did not exceed the specified limits. Compared with Figure 18, it is
clear that the model used in the preliminary analysis is inaccurate and needs to be updated.
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Figure 18. Measured horizontal displacement.

(2) Inverse analysis and model updating

Taking the J–K section as an example, the horizontal displacement at measuring point
V27 was employed as the target value, with engineers utilizing a dynamic updating process,
as illustrated in Figure 8, to ensure the model reflects the most up-to-date data.

The elastic modulus (E50
ref) of the five soil layers was employed as the parameter for

inverse analysis. The first inverse analysis employed the measured horizontal displacement
at stage 2 as the target value. The second inverse analysis utilized the measured horizontal
displacement at stage 2 and stage 3 as the target values. Finally, the third inverse analysis
employed the measured horizontal displacement at stage 2, stage 3, and stage 4 as the target
value. The initial parameters were adopted from the geological survey report. After each
inverse analysis, the models were updated with the optimal parameter solution. Figure 19
illustrates the trends of soil parameters and fitness during the three iterations of inverse
analysis. It shows that as the number of generations increases, the soil parameters of
each layer gradually converge, and the fitness continuously improves. The calculation
demonstrates convergence after approximately seven generations, suggesting that the
algorithm possesses effective convergence capabilities.
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Figure 19. Evolutions of the soil parameter and the objective function fitness.

(3) Prediction with the updated model

The initial analysis indicated a significant error between the predicted and measured
horizontal displacement values at the pile top. As shown in Figure 20, as the excava-
tion depth increases, this error also gradually increases. The maximum error reached
40.3 mm, far exceeding the limit allowed by the engineering project. The reason is that
significant changes occurred in the soil parameters during the excavation process. It is
difficult to accurately predict the deformation of the foundation pit using the original
geological exploration parameters. Therefore, it is very necessary to dynamically update
the model parameters through inverse analysis. After three iterations of back analysis, the
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error between the predicted and measured values continuously decreased. As shown in
Figure 20b, the maximum value of the mean error decreases from 12.46 to 1.32 mm, meeting
the precision requirements for engineering applications. Figure 20b demonstrates that the
model’s predictive capability continuously enhances as the inverse analysis progresses.

Buildings 2025, 15, x FOR PEER REVIEW 21 of 26 
 

depth increases, this error also gradually increases. The maximum error reached 40.3 mm, 
far exceeding the limit allowed by the engineering project. The reason is that significant 
changes occurred in the soil parameters during the excavation process. It is difficult to 
accurately predict the deformation of the foundation pit using the original geological 
exploration parameters. Therefore, it is very necessary to dynamically update the model 
parameters through inverse analysis. After three iterations of back analysis, the error 
between the predicted and measured values continuously decreased. As shown in Figure 
20b, the maximum value of the mean error decreases from 12.46 to 1.32 mm, meeting the 
precision requirements for engineering applications. Figure 20b demonstrates that the 
model’s predictive capability continuously enhances as the inverse analysis progresses. 

 
(a) Error of initial analysis in each stage 

 
(b) Mean error after inverse analysis 

Figure 20. The error between the predicted and measured horizontal displacement. 

Taking V27 as an example, Figure 21 illustrates the predictive outcomes following 
three iterations of the inversion process within the model during the excavation. It 
demonstrates that the predicted values converge towards the measured values as the 
model undergoes continual updates. 

1 2 3 4 5
0

10

20

30

40

50

Ab
so

lu
te

 e
rro

r /
m

m

Stage

 V33
 V21
 V27

1 2 3 4
0

3

6

9

12

15 3rd
inverse

analysis

2nd
inverse

analysis

1st 
inverse 
analysis

Initial
analysis

Av
er

ag
e 

of
 A

bs
ol

ut
e 

Er
ro

rs
 /m

m

Analysis Count

 V33
 V21
 V27

Figure 20. The error between the predicted and measured horizontal displacement.

Taking V27 as an example, Figure 21 illustrates the predictive outcomes following three
iterations of the inversion process within the model during the excavation. It demonstrates
that the predicted values converge towards the measured values as the model undergoes
continual updates.

During the construction process, we focus on the error between the predicted values
and the measured values for the current construction step. When the error is less than
10%, we consider the model’s predictions to be reliable. Table 3 shows the statistics of the
percentage error between the predicted and measured values of the horizontal displacement
of V27 for each construction stage. The following can be seen from the table:

(1) In stage 2, the first inverse analysis was carried out after 2 m of excavation. The
prediction error for stage 2 was approximately 20% for the initial model and 1% for
the updated model, which indicates that the updated model is closer to the actual site.
The prediction error of the updated model for the deformation in stage 3 is about 40%.

(2) In stage 3, after the second update, the model’s prediction error for stage 3 was less
than 1%, and for stage 4, it was approximately 16%.

(3) In stage 4, the model was updated for the third time. The updated model predicted
the deformation of the final construction stage with an error of about 19%, which was
slightly larger than the first and second updates.
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Figure 21. Horizontal displacement predicted by the updated model.

Table 3. The percentage error between the predicted and measured values.

Stage No.
Analysis Measured

Value
Initial

Analysis
1st Inverse
Analysis

2nd Inverse
Analysis

3rd Inverse
Analysis

Stage1 0 N/A N/A N/A N/A

Stage2 −2.22 −20% −1% −25% −8%

Stage3 −4.22 −127% −40% −3% −13%

Stage4 −4.44 −98% −15% −16% −9%

Stage5 −12.75 −73% −8% −17% −19%

In summary, the updated model provides more accurate predictions for the current
construction stages. It shows that the twin model is closer to the actual state of the project.
The mapping of the virtual model and physical entities to each other was achieved. In
addition, the results of the multi-model analysis show that the predictions derived from
DTFPM show higher accuracy. It meets the requirements for engineering use.

6. Conclusions and Future Work
This study applies DT technology to foundation pit engineering and develops an

intelligent monitoring system. The system uses automated monitoring equipment and
5G transmission technology to obtain monitoring data from the site. More importantly,
the system integrates a DTFPM to predict and manage safety risks during excavation.
A parametric modeling algorithm is used to drive the rapid establishment of the model.
Furthermore, an inverse analysis optimization algorithm based on GA is used for real-time
model updates. The updated model, which is closer to the physical entity, is used to assess
the risks of foundation pit excavation and guide on-site construction. The conclusions of
this study are as follows:

(1) A DT-based modeling and application framework for foundation pits is proposed.
The comprehensive framework, which includes the physical space, finite element
model, digital twin data, intelligent early warning web services, and their connections,
has the potential to significantly enhance the safety monitoring and management
of excavation in the construction industry. Additionally, a safety risk management
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scheme for foundation pit construction based on DTFPM is also proposed, which could
promote the application of digital twin technology in construction safety monitoring,
thereby improving overall safety standards.

(2) The authors summarize the five basic support types and refines the key modeling
parameters for each support type. A method for generating simulation models based
on ABAQUS is formed by sorting out the relationships between different parameters.
A parametric modeling algorithm based on ABAQUS is developed. This algorithm
supports various types of support and uses multiple soil constitutive models, such as
M-C and MHS, which are suitable for numerical simulations under complex geological
conditions. This method can generate a FEM within one second, reducing the difficulty
of modeling foundation pits and allowing numerical simulations to be used in more
engineering applications.

(3) This study focuses on the deformation of the support structures and the changes in
soil elastic modulus during the excavation of foundation pits. A parallel computing-
based inverse analysis algorithm using GA is developed. Analysis shows that the
algorithm has high computational efficiency and strong convergence, able to converge
to the optimal solution within 10 generations. It enables real-time updating of model
parameters based on field monitoring deformation data, which enhances DTFPM’s
predictive capabilities and ensures accurate predictions. Case analysis shows that
the prediction error of the updated model for the current construction stage can be
reduced to within 10%. The average error was reduced from 12.46 mm to 1.32 mm after
model updating. Additionally, the algorithm supports multi-task parallel computing,
exhibiting excellent analysis efficiency and convergence.

(4) An intelligent safety early warning system based on DTFPM is established, and its
practicality is validated in engineering practice. Intelligent sensing devices were
employed for the collection and transmission of monitoring data. The author devel-
oped multiple data interfaces and a relational database, facilitating the establishment
and updating of the DTFPM model with multi-source and heterogeneous data. A
three-stage early warning mechanism is integrated into the system, offering advanced
warning services for the risks of foundation pit excavation. This system ensures
construction safety by providing timely and accurate warnings.

This study validates the effectiveness and feasibility of DTFPM through a real-project
application. It can be applied to large-scale underground projects, guiding the modeling
and updating of foundation pits, data perception, risk prediction, and safety management
during excavation. However, the proposed method still has some limitations. Integrating
such a large amount of field information is challenging. Data perception and transmission
capabilities need to be further enhanced. And the impact of observation errors on model
updates needs to be explored.
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