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Abstract: The flexural behavior of geogrid-reinforced foamed lightweight soil (GRFL soil) is
investigated in this study using unconfined compressive and four-point bending tests. The
effects of wet density and reinforcement layers on flexural performance are analyzed using
load–displacement curves, damage patterns, load characteristics, unconfined compressive
strength, and flexural strength. A variance study demonstrates that increasing the wet
density significantly increases unconfined compressive strength. Bond stress mechanisms
enable geogrid integration, efficiently reroute stresses internally, and greatly increase flexu-
ral strength. With a maximum unconfined compressive strength of 3.16 MPa and a peak
flexural strength increase of 166%, this reinforcement increases both strength and ductility
by changing the damage pattern from brittle to ductile. The principal load is initially sup-
ported by the foamed lightweight soil, and in later phases, geogrids take over load-bearing
responsibilities. Additionally, the work correlates the ratio of unconfined compressive to
flexural strength with wet density and informs the development of predictive models for
unconfined compressive strength as a function of reinforcing layers and wet density.

Keywords: road engineering; geogrid-reinforced foamed lightweight soil; flexural
performance testing; foamed lightweight soil; ductility; analysis of variance

1. Introduction
With its many closed air pores, foamed lightweight soil is a lightweight material with

high fluidity [1], light weight, and high strength [2], and has the properties of thermal
insulation [3,4], fire resistance [5], sound insulation [6,7], seismic resistance, and durabil-
ity [8–10]. It is frequently used for abutment backfill [11,12], subgrade filling [13,14], and
wall filling [15], and has a wide range of potential applications in the engineering field.
While conventional backfill can withstand certain pressure and shear force in real-world
applications such as subgrade widening [16], road reconstruction and expansion, and
sloping areas, it is challenging to meet higher criteria in terms of bearing capacity. Foamed
lightweight soil backfill exhibits lower toughness and poorer flexural performance during
the stress process, is prone to brittle damage under the ultimate load, and has a significantly
reduced bearing capacity because of the articulation difference between the new and old
subgrade, the material’s own compression difference, and terrain space limitations [17].
Foamed lightweight soil is susceptible to stress concentration, excessive strain, and dis-
placement when subjected to the repeated impacts of pavement structure static stresses and
vehicle dynamic loads. These circumstances have the potential to cause shearing, tensile
failure, and crushing, among other forms of damage [18]. As a result, there may be serious
problems such as stepped or staircase cracking, uneven subgrade settlement, and overall
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sliding. These elements may shorten the road’s service life and jeopardize its structural
soundness. Therefore, to fulfill the increasingly demanding requirements of engineering
applications, the ductility and flexural capabilities of foamed lightweight soil can be greatly
improved by adding appropriate geosynthetics as part of its modification treatment.

Fibrous materials including glass fibers [19], basalt fibers [20], carbon fibers, and
polypropylene fibers [21] have been added by numerous researchers to foamed lightweight
soils to increase their strength, toughness, stiffness, and ductility—all of which can lower
the likelihood of brittle breakage. However, because the size and distribution of the fibrous
material restrict its capacity to enhance overall performance, brittle degradation may still
occur under excessive pressure or adverse building conditions. To efficiently increase the
bearing capacity and improve the overall stability in engineering applications, cheap and
flexible plastic geogrids are incorporated into foamed lightweight soils. Their special mesh
structure interlocks with the foamed lightweight soils. Furthermore, the plastic geogrid
system is essential in preventing cracks from forming in foamed lightweight soils, greatly
enhancing the material’s durability and resistance to cracks, particularly in the areas of
road construction, slope stability, and foundation reinforcement [22], all of which have a
wide range of potential uses.

While there are fewer studies on the combination of geogrids and cementitious ma-
terials [23], particularly concentrating on materials like glass fiber grids [19], basalt fiber
grids, and carbon fiber grids [24], there are currently more studies on the interfacial in-
teraction with the soil body. However, there are fewer studies on plastic geogrids, which
are more flexible, cost-effective, and efficient. Research on the flexural characteristics and
macroscopic damage mechanisms of foamed lightweight soils with various geogrid layers
is particularly lacking. To close this gap, this work intends to provide a theoretical founda-
tion and technical assistance for engineering practice by examining the impact of varying
numbers of reinforcement layers and wet density on the flexural properties of foamed
lightweight soil.

Thus, the primary goal of this study is to examine the flexural performance of GRFL
soil using the four-point bending test and unconfined compressive strength test. Addition-
ally, the study will examine the material’s macroscopic damage mechanism by analyzing the
load–displacement curves, combining them with the damage morphology, and performing
strength characterization. The findings show that the geogrid’s reinforcing impact greatly
increased the foamed lightweight soil’s flexural strength. This aids in developing novel
lightweight road-building materials with high flexural performance and environmental
and financial protection.

2. Materials and Methods
2.1. Raw Materials

The cement used in this study is ordinary Portland cement P·O 42.5. The foam was
produced via the physical foaming method, using a PM-D50 composite foaming agent with
a dilution ratio of 1:50. The foam had a density of 50 kg/m3 and a bleed water rate of 15.71%.
The typical setting and hardening of the cement were unaffected by the laboratory water
used for mixing. Polypropylene, which is inexpensive and has high tensile strength, was the
primary component of the bi-directional plastic geogrid chosen for the test. Additionally,
this material has great resistance to acids and alkalis, as well as anti-aging and anti-creep
properties [25]. It is possible to overlook how cement slurry affects the plastic geogrid’s
durability [26]. To guarantee complete contact with the top and lower fillers, the geogrid
was cut into 95 mm × 95 mm and 95 mm × 395 mm rectangles [27], as shown in Figure 1.
Its primary performance metrics, as determined by the geogrid tensile test, are listed in
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Table 1. The geogrid has a 33 mm × 33 mm grid, and the smaller the grid, the greater the
reinforcement effect [28].
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Figure 1. Bi-directional plastic geogrid (unit in mm).

Table 1. Basic performance parameters of geogrids.

Model Mesh
Size/mm

Tensile Strength/(kN/m) Elongation at Break/%

Longitudinal Transverse Longitudinal Transverse

TGSG50-50 33 × 33 55.8 60.3 6.3 7.6
Note: The geogrids in the specimens are arranged horizontally.

2.2. Experimental Design

Table 2 displays the mix ratio and fundamental physical characteristics of several
foamed lightweight soils, and all flow values fall between 160 and 200 mm [29]. All
compositions had a water–cement ratio of 0.55. The test used four different geogrid
reinforcement layers: 0, 1, 2, and 3. These were chosen based on the actual engineering
usage and cost performance; the wet density of 600 kg/m3, 700 kg/m3, and 800 kg/m3; and
the economy, effective use of resources, and construction feasibility [30]. This is because
the improvement in the reinforcement effect becomes less evident when the number of
reinforcement layers increases from two to three. The geogrid in the sample side layout is
depicted in Figure 2. Three parallel specimens were made for each of the twelve mixing
ratios that were intended for this test, and a total of seventy-two specimens were tested for
flexural and unconfined compressive strength. When processing the peak load data, the
remaining specimens were averaged for analysis and processing if the error between the
three parallel specimens was more than 10%. If the error was two more than 10%, the data
were discarded and retested.

Table 2. Mix proportions and basic physical properties of GRFL soil.

Serial Number
Target Wet

Density/
(kg/m3)

Number of Re-
inforcement

Layers

Cement
Content/
(kg/m3)

Water Content/
(kg/m3)

Foam Dosage/
(kg/m3)

Measured Wet
Density/
(kg/m3)

Flow Value/
(mm)

600-0

600

0

365 201 34

608 183
600-1 1 592 181
600-2 2 605 184
600-3 3 602 184

700-0

700

0

432 237 31

697 181
700-1 1 705 185
700-2 2 700 183
700-3 3 710 191

800-0

800

0

498 274 28

805 182
800-1 1 800 185
800-2 2 802 190
800-3 3 808 186
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Figure 2. Schematic diagram of reinforcement lateral placement in the specimen (unit in mm).

2.3. Specimen Preparation Method

The process of creating a GRFL soil specimen is depicted in Figure 3. Weighed cement
and water were put into a bucket and mixed quickly with a hand-held mixer for one and a
half minutes. The cement paste was then made as shown in Figure 3a, and the foam made
on-site by a foaming machine, as shown in Figure 3b, was added as shown in Figure 3c.
To meet the target wet density and the flow value requirements, as shown in Figure 3d,
the slurry was then poured into a test mold. As shown in Figure 3e, the vertical insertion
of the geogrid into the test mold filled with slurry at a specific location may effectively
avoid geogrid location deviation, whereas horizontal layering in the test mold at a specified
location before adding the slurry can easily lead to location deviation. Figure 3f shows the
GRFL soil specimen obtained after maintenance for 28 days.
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Figure 3. Specimen preparation process. (a) Cement paste; (b) foaming machine; (c) foam; (d) mea-
surement of target wet density; (e) geogrid positioning; (f) specimen.

2.4. Test Methods

Using a micro-electro-hydraulic servo pressure testing machine, the flexural strength
test uses four-point loading, with a test size of 100 mm × 100 mm × 400 mm and a loading
rate of 0.2 ± 0.05 kN/s [31]. Data are automatically collected once the test has begun. The
unconfined compressive strength test piece size was 100 mm × 100 mm × 100 mm, with a
loading rate of 1 kN/s. GB/T 11969-2020, ’Test Method for Performance of Autoclaved Aer-
ated Concrete’ [31], was the reference for the unconfined compressive strength and flexural
strength calculation method. Although foamed lightweight soil and autoclaved aerated
concrete have different maintenance requirements, the standards for autoclaved aerated
concrete can serve as a useful guide for testing and applying foamed lightweight soil due
to their similar mechanical characteristics, testing procedures, and material composition.
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3. Experimental Results and Discussion
3.1. Flexural Properties of GRFL Soil
3.1.1. Load–Displacement Curves

Figure 4 shows the load–displacement curve of a GRFL soil specimen under a four-
point bending test. Load–displacement curves were plotted for one sample data from two
to three specimen samples. The findings demonstrate that the standard foamed lightweight
soil showed signs of brittle degradation and fell after the load peaked. The load reached its
initial peak value after adding the geogrid, and then briefly decreased before continuing to
rise as the displacement increased. The load also increased more quickly as the number of
reinforced layers increased, exhibiting elastic–plastic damage characteristics. This is because
more displacement is needed to reach the peak load in relatively foamed lightweight soil
with a lower wet density, whereas a smaller displacement is needed to reach the peak load
in foamed lightweight soil with a higher wet density, resulting in fewer deformations. The
upper and lower geogrids may efficiently share the vertical pressure load and the bottom
tensile load, thereby increasing the bearing capacity, even though the reinforced two-layer
foamed lightweight soil with a wet density of 700 kg/m3 and 800 kg/m3 has a greater
load. The addition of geogrids can enhance flexural characteristics and ductility while also
considerably raising the peak load of foamed lightweight soils.
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A linear elastic phase (OA), a hardening phase (AB), a softening–hardening cyclic
phase (BC), and a failure phase (CD) comprise the typical load–displacement curve of GRFL
soil (depicted in Figure 5), as follows:

1. During the linear phase (OA), loads are low and grow linearly with displacement
due to the cementite crystals between discrete pores bearing the load, which exhibit
linear behavior.

2. The hardening phase (AB) is reached when the loads are slightly reduced relative to
linearly increasing loads. The load–displacement curve shifts from linear to nonlinear,
the internal self-structure’s microcracks start to develop new cracks, and the load
continues to rise until it reaches the initial cracking load. The initial cracking load
in this study is the load that corresponds to the first inflection point in the load–
displacement curve’s rising portion.

3. The vertical load increases after a slight dip in the softening–hardening cycle phase
(BC), which primarily affects foamed lightweight soils with wet densities of 600 kg/m3

and 700 kg/m3. The peak load is reached after multiple cycles, whereas the foamed
lightweight soil with a wet density of 800 kg/m3 only goes through one cycle.

4. The specimen enters the failure phase (CD) after achieving the peak load. When
the vertical load drops linearly, the foamed lightweight soil becomes incapable of
withstanding the load, and the specimen is destroyed.
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3.1.2. Damage Patterns

A schematic diagram of the typical destruction process of standard foamed lightweight
soil is shown in Figure 6. This type of standard foamed lightweight soil experiences brittle
destruction similar to that of cement concrete, with cracks spreading quickly from the
bottom to the top surface and the specimen instantly breaking at the cross-sectional point
of the maximum bending moment [32].

The foamed lightweight soil exhibited brittle destruction before the addition of the
geogrid, but clearly exhibited elastic–plastic destruction after the addition of the geogrid.
Figure 7 illustrates the usual process of GRFL soil damage using one layer of reinforcement
as an example. In Figure 7, the geogrid is indicated by the red dashed line, and the foamed
lightweight soil is indicated by the black solid line. The two main types of damage processes
are a wet density of 600 kg/m3 and wet densities of 700 kg/m3 and 800 kg/m3. When
combined with Figure 4, it can be seen that the damage process is further broken down into
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four stages: linear elastic (OA), hardening (AB), softening–hardening cycle (BC), and failure
(CD). The foamed lightweight soil in the linear elastic phase (OA) retains its linear elastic
behavior without cracking. As the load increases, the specimen moves into the hardening
phase (AB), where cracks start to form at the bottom once the initial cracking load is reached.
It then moves into the softening–hardening cycle phase (BC), where the width and number
of cracks increase as the load increases. The displacement from the new cracks at the
bottom also increases, which raises the load. As the load increases, the number of cracks
also increases. The new cracks that form at the bottom cause displacement to increase,
which causes a sudden drop in load and the sample exhibits transient brittle destruction
characteristics. Meanwhile, the geogrid effectively prevents crack extension, allowing the
load to increase. In a study on the three-dimensional modeling of foamed lightweight soil
using X-CT scanning technology, Liu Jiemin et al. [33] discovered that as the wet density
of foamed lightweight soil increased, the foam volume decreased, the amount of cement
paste between the pores increased relatively, and the pore size distribution became more
uniform. These findings demonstrate the strengthening of the bond between the foamed
lightweight soil and the geogrid and the increase in its overall strength. The wet density
of 600 kg/m3 foamed lightweight soil was low during the failure phase (CD), causing
concave deformation and crack expansion on the top side of the compression zone, the
geogrid surrounding the transverse shear crack, the separation of the bond between the
geogrid and foamed lightweight soil, and, finally, specimen deformation and damage
failure. With wet densities of 700 kg/m3 and 800 kg/m3, the foamed lightweight soil
was stronger; only minor fractures emerged at the bottom, with very little deformation
at the top of the compression zone. The width and quantity of fractures in the foamed
lightweight soil were successfully decreased by the geogrid as the number of reinforced
layers increased. When two layers of reinforcement were used, the lower geogrid bore the
tensile load, lessening the formation of cracks at the bottom and increasing the structural
load-bearing capacity. The upper geogrid shared the vertical pressure load, resulting in
only a slight concave deformation at the top of the foamed lightweight soil. The three-layer
reinforcement successfully prevented cracks from forming at the top while controlling
the formation of cracks at the bottom, particularly in foamed lightweight soil with a high
wet density.
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Figure 7. Process sketch of GRFL soil damage using one-layer reinforcement as an example.

Figure 8 displays the force schematic of the specimen at one layer of reinforcement.
The solid line shows the specimen’s shape before force deformation, and the dotted line
shows the specimen’s shape following deformation. The specimen developed cracks as a
result of the tensile stress created at the foamed lightweight soil’s bottom after the load was
applied. The geogrid successfully stops the bottom of the cracks in the foamed lightweight
soil from extending upward. Transferring a portion of the load to the surrounding foamed
lightweight soil through mechanical bite and bonding force also improves the synergy
between the two [23]. The geogrid and the foamed lightweight soil deform when the load
surpasses a certain threshold because the bond between the two materials cannot sustain
the principal stress at the specimen’s bottom. The binding force of the foamed lightweight
soil on the geogrid and the tensile stress of the geogrid also gradually deteriorate, which
lowers the resistance to loading and deformation [19]. The formation of the crack path
illustrates this stress transmission mechanism.

Buildings 2025, 15, x FOR PEER REVIEW 8 of 16 
 

 

lightweight soil. The three-layer reinforcement successfully prevented cracks from form-

ing at the top while controlling the formation of cracks at the bottom, particularly in 

foamed lightweight soil with a high wet density. 

 

Figure 7. Process sketch of GRFL soil damage using one-layer reinforcement as an example. 

Figure 8 displays the force schematic of the specimen at one layer of reinforcement. 

The solid line shows the specimen’s shape before force deformation, and the dotted line 

shows the specimen’s shape following deformation. The specimen developed cracks as a 

result of the tensile stress created at the foamed lightweight soil’s bottom after the load 

was applied. The geogrid successfully stops the bottom of the cracks in the foamed light-

weight soil from extending upward. Transferring a portion of the load to the surrounding 

foamed lightweight soil through mechanical bite and bonding force also improves the 

synergy between the two [23]. The geogrid and the foamed lightweight soil deform when 

the load surpasses a certain threshold because the bond between the two materials cannot 

sustain the principal stress at the specimen’s bottom. The binding force of the foamed 

lightweight soil on the geogrid and the tensile stress of the geogrid also gradually deteri-

orate, which lowers the resistance to loading and deformation [19]. The formation of the 

crack path illustrates this stress transmission mechanism. 

 

Figure 8. Schematic diagram of the test specimen under load when reinforced with one layer. 

3.1.3. Characteristics of Load Changes at Different Stages 

The initial cracking load Fcr and peak load Ff are the vertical loads of the GRFL soil, 

and the related displacements are initial cracking displacement δcr and peak displacement 

δf. These are shown in conjunction with Figure 5. The various stages of load changes were 

analyzed by using a simplified four-point bending test and the various stages of the load 

changes of the GRFL soil were characterized with reference to the specification ASTM 

C1609/C1609M-24 [34]. This paper defines three types of loads, FL/300, FL/150, and FL/100, 

which correspond to displacements of 1 mm, 2 mm, and 3 mm, respectively, and occur in 

Figure 8. Schematic diagram of the test specimen under load when reinforced with one layer.

3.1.3. Characteristics of Load Changes at Different Stages

The initial cracking load Fcr and peak load Ff are the vertical loads of the GRFL soil,
and the related displacements are initial cracking displacement δcr and peak displacement
δf. These are shown in conjunction with Figure 5. The various stages of load changes were
analyzed by using a simplified four-point bending test and the various stages of the load
changes of the GRFL soil were characterized with reference to the specification ASTM
C1609/C1609M-24 [34]. This paper defines three types of loads, FL/300, FL/150, and FL/100,
which correspond to displacements of 1 mm, 2 mm, and 3 mm, respectively, and occur
in the initial peak loads, which are defined as intensified loads in this paper. To make
analysis easier, the loads FL/300, FL/150, and FL/100, as well as initial cracking loads Fcr, are
designated as pre-intermediate loads, and the peak load Ff is defined as the late load.

The computational analysis indicates that the ratio between the initial cracking load Fcr

of the GRFL soil and the peak load Ff of unreinforced foamed lightweight soil is between 0.8
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and 1.17. The initial cracking load in Figure 9a does not change significantly as the number
of reinforced layers increases under the same wet density condition. Looking at Figure 4,
the thickness of the bottom protective layer reduces as the number of reinforced layers
grows, which lowers the load in the load–displacement curve of the softening phase (BC).
All of this suggests that the initial cracking load is mostly borne by the foamed lightweight
soil itself. Figure 9 illustrates how the number of reinforced layers and wet density both
enhance the overall reinforcement load, while the addition of the geogrid and the rise in
wet density work together to improve the center and middle load of the foamed lightweight
soil. Due to the brittle destruction of standard foamed lightweight soil, the initial fracture
load and the peak load are equal. The late load-bearing capacity of the foamed lightweight
soil is significantly boosted since its peak load is significantly greater than both the original
crack load and the reinforcing load.
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layer number; (b) influence of wet density.

Figures 4 and 9b demonstrate that the overall stiffness of the foamed lightweight soil
improved when the wet density increased, resulting in a decrease in the displacements
needed to reach the initial cracking stress and the peak load [35]. Overall, the pattern
of increases in the initial cracking load, peak load, and reinforcing load as the foamed
lightweight soil’s wet density increases supports the idea that wet density plays a significant
role in boosting the foamed lightweight soil’s ability to support vertical loads.

3.2. Strength Characteristics of GRFL Soil
3.2.1. Unconfined Compressive Strength

According to Figure 10a, the compressive strength of various wet-density GRFL soils
rises as the number of reinforced layers increases. This is particularly true when the wet
density is 700 kg/m3, where the compressive strength growth is most pronounced. Using
the interface constraint effect, geogrids can effectively improve the initial brittle destruction
characteristics of unreinforced foamed lightweight soil by limiting the foamed lightweight
soil’s lateral deformation and preventing crack propagation. This delays the failure process
and increases the material’s compressive strength. The compressive strength gradually
increased as the number of reinforced layers increased after the geogrid was added. For
foamed lightweight soil with a wet density of 600 kg/m3, the compressive strength of three
layers of reinforcement seemed to slightly decrease when compared to two layers. The
overall stability of the foamed lightweight soil was impacted because of the inability to
adequately integrate the reinforced layers due to their low strength and excessive number.
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Additionally, Figure 10b demonstrates that the compressive strength of the GRFL soil rises
as the wet density increases. This suggests that the strength of the foamed lightweight soil
itself has a significant impact on the compressive strength of GRFL soil.
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Figure 10. The unconfined compressive strength of GRFL soil. (a) The influence of reinforcement
layer number; (b) the influence of wet density.

Multivariate nonlinear fitting was used to determine the relationship between the
foamed lightweight soil with wet density and the number of reinforced layers and uncon-
fined compressive strength, as in Equation (1).

fcc = −2.924 + 0.211X + 0.00716ρ (1)

where fcc is the unconfined compressive strength of the specimen; X is the number of
reinforced layers (X = 0, 1, 2, 3); and r is the wet density (600 ≤ y ≤ 800).

The sum of the squares of the distances between the points identified by nonlinear
regression and the best-fit curve was used to compute R2. R2 is a metric used to quantify
how well a regression model fits the data; the closer the model is to 1, the better. The fitting
result is good, and the R2 is 0.87. Table 3 displays the comparison between the measured
and fitted values.

Table 3. Measured and calculated from the approximating function values of unconfined compressive
strength for various mix proportions.

Wet Density (kg/m3) Reinforcement Layers Measured Value (MPa) Calculated Value (MPa) Error (%)

600

0 1.22 1.37 12.30
1 1.65 1.58 4.24
2 1.80 1.79 0.56
3 1.73 2.01 16.18

700

0 1.89 2.09 10.58
1 2.54 2.30 9.45
2 2.88 2.51 12.85
3 3.04 2.72 10.53

800

0 2.89 2.80 3.11
1 3.01 3.02 0.33
2 3.07 3.23 5.21
3 3.16 3.44 8.86

Note: The calculated values are derived from the fitted functions.
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3.2.2. Flexural Strength

The flexural strength of the GRFL soil specimens was calculated using Equation (2).

f f =
F · L
b · h2 (2)

where ff is the flexural strength of the specimen; F is the peak load; b is the width of the
specimen, 100 mm; h is the height of the specimen, 100 mm; and L is the spacing of the
support, 300 mm.

The flexural strength of the foamed lightweight soil is greatly increased by the inclusion
of the geogrid, as seen in Figure 11a. The maximum increase in flexural strength for
foamed lightweight soil with a wet density of 600 kg/m3 can be obtained with one layer of
reinforcement. This is primarily because the foamed lightweight soil has a large thickness at
the bottom and a low strength of its own. When a large load is applied, the top compression
zone is depressed and the bottom tensile zone produces more cracks, which increases the
load-carrying capacity by creating larger displacements. Unfortunately, as the number
of reinforced layers increases, the flexural strength diminishes because of the insufficient
bonding force and the decrease in the thickness of the foamed lightweight soil at the
bottom. Because the two layers of reinforcement can efficiently share the vertical load in
both compression and tension zones, the flexural strength of the foamed lightweight soil
with wet densities of 700 kg/m3 and 800 kg/m3 improved the maximum when reinforced
with two layers. As illustrated in Figure 11b, the flexural strength rises along with wet
density. For foamed lightweight soil with a wet density of 600 kg/m3, despite its own low
strength, the application of one layer of reinforcement results in a significant increase in
flexural strength due to the increase in vertical displacement caused by the deformation of
the foamed lightweight soil and the geogrid.
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Figure 11. Flexural strength of GRFL soil. (a) Influence of reinforcement layer number; (b) influence
of wet density.

3.2.3. Relationship Between Unconfined Compressive Strength and Flexural Strength

Using the ratio of unconfined compressive strength and flexural strength as the ver-
tical coordinate and wet density as the horizontal coordinate, a linear fit was used for
unreinforced foamed lightweight soil and a polynomial fit was used for reinforced foamed
lightweight soil. The fitting model was Equation (3).

y = a + bx + cx2, (3)
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where x is the wet density, y is the ratio of unconfined compressive strength and flexural
strength, and a, b, and c are parameters; refer to the formulae in Figure 12. For parameters
a and b, the least squares approach produced the linear model of unreinforced foamed
lightweight soil, while for parameters a, b, and c, the nonlinear least squares method
produced the nonlinear model of the GRFL soil.
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soil at different wet densities.

Figure 12 illustrates the fitting effect. In the 600–800 kg/m3 range of wet density,
the ratio of unconfined compressive strength to flexural strength of standard foamed
lightweight soil rises linearly as the wet density increases, whereas the ratio of GRFL soil
rises initially and then falls as the wet density increases. The toughness of the unreinforced
and reinforced foamed lightweight soil with a wet density of 600 kg/m3 is better when the
ratio of unconfined compressive strength to flexural strength is smaller [36].

By choosing the right wet density and number of reinforced layers, road engineers
can create GRFL soil, which can greatly increase the subgrade’s strength and toughness,
boosting its bearing capacity, decreasing uneven settlement, improving overall stability,
extending its lifespan, and providing economic advantages, among other advantages [37].
It can be used for abutment backfill, and different wet densities and numbers of reinforced
layers are chosen based on the types of bridges and traffic loads to effectively lower costs.
It can also effectively reduce post-work settlement and uneven settlement brought on by
vehicle dynamic loads. Increased durability and driving comfort are achieved by reducing
the thrust of the backfill towards the abutment [11,38]. Road salvage, soft foundation
treatment, local subgrade restoration, the manufacture of lightweight reinforced blocks and
reinforced prefabricated panels, energy conservation, and carbon reduction are just a few
of its many potential uses [39–42].

3.3. Analysis of Variance

Finding the variables that significantly impact the mechanical indicators is the aim
of the analysis of variance. The table below shows the crucial value of significance
F1–0.05(2,9) = 4.26 in an analysis of variance with a confidence level of α = 0.05. The
degree of importance is discriminated as indicated in Table 4 and the value of F1–0.05(2,9)
is used to assess the significance of each factor’s influence when the confidence level is
α = 0.05.
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Table 4. Significance discrimination.

F1–0.05(2,9) Degree of Significance

>4.26 Significant
<4.26 Insignificant

Using SPSS software (v26) for statistical data analysis [43], the unconfined compressive
strength and flexural strength of the GRFL soils were analyzed for variance. The computa-
tions’ outcomes are displayed in Table 5. The unconfined compressive strength and flexural
strength of the GRFL soil are significantly influenced by wet density and the number of
reinforced layers. Wet density contributes more to unconfined compressive strength than
the number of reinforced layers, with values of 89.41% and 10.59%, respectively, and the
number of reinforced layers contributes more to flexural strength than wet density, with
values of 33.84% and 66.16%, respectively. As a result, increasing the foamed lightweight
soil’s wet density improved its compressive strength, whereas reinforcement improved its
flexural strength.

Table 5. Results of variance analysis.

Consideration Index

Item
Influencing Factors

Wet Density Number of Reinforcement Layers

Freedom
df 2 3

Unconfined
Compressive Strength

Sum of Squares 12.813 2.277
Mean Square 6.407 0.759

F1–0.05(2,9) 166.802 19.763
Significance Significant Significant

Contribution Rate 89.41% 10.59%

Flexural Strength

Sum of Squares 1.898 5.566
Mean Square 0.949 1.855

F1–0.05(2,9) 62.283 121.787
Significance Significant Significant

Contribution Rate 33.84% 66.16%

4. Conclusions and Future Work
The flexural properties of GRFL soil were investigated in this study by analyzing the

load–displacement curves, damage patterns, characteristics of load changes at different
stages, unconfined compressive strength, and flexural strength. This was accomplished by
combining a geogrid with foamed lightweight soil and conducting unconfined compressive
strength tests and four-point bending tests. The primary findings were as follows:

1. In order to properly avoid deflection, the geogrid is placed vertically at a predeter-
mined location inside the test mold that is filled with a foamed lightweight soil slurry.
GRFL soil’s load–displacement curve complies with the elastic–plastic deformation
characteristics, which are separated into linear elastic, hardening, softening–hardening
cyclic, and failure phases. After first breaking, the load continues to increase, conse-
quently increasing the material’s ductility.

2. When the wet density of the GRFL soil is 600 kg/m3, bond failure destruction usually
occurs; however, when the wet densities are 700 kg/m3 and 800 kg/m3, the damage
pattern is less noticeable and the stability is improved.

3. The foamed lightweight soil itself bears the majority of the load in the early loading
stage, while the geogrid bears the majority of the load in the late loading stage. The
two share the load through cooperative action.

4. The unconfined compressive strength and flexural strength of the foamed lightweight
soil were considerably increased by the addition of the geogrid. A multiple nonlinear
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regression equation was used to create a prediction model for unconfined compressive
strength based on the wet density and the number of reinforced layers. Wet density
and the ratio of unconfined compressive strength to flexural strength were shown to
be positively correlated.

5. An analysis of variance revealed that the number of reinforced layers had the biggest
impact on the flexural strength, while the wet density had the biggest impact on the
unconfined compressive strength. The strength and ductility of GRFL soil may be
efficiently managed to increase the applicability in road engineering by selecting the
right wet density and number of reinforced layers.

The test results serve as a guide for future study and advocacy regarding the use of
foamed lightweight soils with enhanced flexural qualities. Although the current study
is only a preliminary experimental investigation on a small-scale sample, it is part of a
research program on the static–dynamic properties of GRFL soil. For this new material
to be applied in the construction industry, a more thorough investigation of its engineer-
ing properties is necessary. This investigation should go beyond the simple mechanical
properties and include the simulation of the actual forces under static–dynamic loading,
numerical simulation analysis, physical properties, durability, and large-scale modeling test
studies. These are areas that are not covered in this paper, but are still being investigated
experimentally.
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