Thin Films for Advanced Glazing Applications
Abstract
:1. Introduction
2. Self-Cleaning Glazing Applications
2.1. Fundamental Mechanisms in Self-Cleaning
2.1.1. The Hydrophobic Self-Cleaning Mechanism
2.1.2. The Hydrophilic Self-Cleaning Mechanism
2.2. Hydrophilic Self-Cleaning Glazing Today
2.2.1. Improvements in TiO2 Self-Cleaning Properties
2.2.2. Phase Separated Semiconductors
2.2.3. Doping
2.3. Multifunctional Hydrophilic Self-Cleaning Coatings
Hydrophilic Self-Cleaning Coatings Today
2.4. Conclusion and Outlook for Self-Cleaning Glazing
3. Energy Efficient Glazing Applications
3.1. TCO Materials as Energy Efficient Coatings
3.1.1. Tin-Doped Indium Oxide (ITO)
3.1.2. Fluorine-Doped Tin Oxide (FTO)
3.1.3. Group-III Elementals Doped Zinc Oxide
3.2. Conclusion and Outlook for Energy Efficient Glazing
4. Solar Cell Glazing Application
4.1. Dye-Sensitized Solar Cells (DSSC)
4.2. Organic Photovoltaics (OPVs)
4.3. Recent Emerging Photovoltaics (PV)
4.4. Conclusion and Outlook for Solar Cell Glazing
5. Thermochromic Glazing
5.1. Thermochromic VO2
5.2. Challenges Related to Thermochromic VO2 Glazing
- Principally, thermochromic transition temperature of VO2 is 68 °C. However, a thermochromic window with an energy-efficient benefit should have an ideal transition temperature between 20 and 25 °C with a high visible transmittance and solar modulation ability. Since this critical temperature (Tc) for is too high to be effective to be utilized, efforts need to be made to reduce it to near room temperature [158].
- The second difficulty associated with the VO2 films is the thermochromic efficiency of the transition (Figure 14). In order to mitigate the solar heat gain efficiently, the thermochromic transition should take place quickly; it means that the gradient of the thermochromic transition hysteresis should be steep and that the hysteresis loop width should be as narrow as possible [157]. A smaller hysteresis width is also preferred to acquire larger response to temperature and a higher efficiency [159].
- A further undesirable aspect which has to be improved of VO2 coating is the yellow colour of vanadium dioxide films that disturbs the aesthetic appearance of the windows (Figure 15) and makes the films difficult to market [155]. As a result of this colouration, the luminous transmittance values of the VO2 films are often lower than desired (around 30%–40%) which is a significant obstacle to employ these films for windows coatings applications.
5.2.1. Reducing the Transition Temperature
5.2.2. Improving Thermochromic Efficiency
5.2.3. Improving the Aesthetics of Thermochromic Films
5.2.4. Recent Advances in Thermochromic Glazing
5.3. Conclusion and Outlook for Thermochromic Glazing
6. Building Integration Issues
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Anstock, J.S. Handbook of Glass in Construction; McGraw-Hill Publication: New York, NY, USA, 1997. [Google Scholar]
- Watts, A. Modern Construction Envelopes; Springer: Vienna, Austria; New York, NY, USA, 2010. [Google Scholar]
- Kanu, S.S.; Binions, R. Thin films for solar control. Proc. R. Soc. Math. Phys. Eng. Sci. 2010, 466, 19–44. [Google Scholar] [CrossRef]
- European Comission. Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the Energy Performance of Buildings; European Comission: Brussells, Belgium, 2002. [Google Scholar]
- United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: Bonn, Germany, 1997. [Google Scholar]
- Granqvist, C.G. Smart windows. Adv. Sci. Technol. 2008, 55, 205–212. [Google Scholar] [CrossRef]
- Pilkington Glass Handbook, 2010. Available online: http://www.pilkington.com/resources/glasshandbook2010english.pdf (accessed on 12 September 2016).
- Parkin, I.P.; Palgrave, R.G. Self-cleaning coatings. J. Mater. Chem. 2005, 15, 1689–1695. [Google Scholar] [CrossRef]
- Warwick, M.E.A.; Ridley, I.; Binions, R. The effect of transition gradient in thermochromic glazing systems. Energy Build. 2014, 77, 80–90. [Google Scholar] [CrossRef]
- Stadler, A. Transparent Conducting Oxides—An Up-To-Date Overview. Materials 2012, 5, 661–683. [Google Scholar] [CrossRef]
- Warwick, M.E.A.; Binions, R. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing. J. Solid State Chem. 2014, 214, 53–66. [Google Scholar] [CrossRef]
- O’Keeffe, C.; Gannon, P.; Gilson, P.; Kafizas, A.; Parkin, I.P.; Binions, R. Air purification by heterogeneous photocatalytic oxidation with multi-doped thin film titanium dioxide. Thin Solid Films 2013, 537, 131–136. [Google Scholar] [CrossRef]
- Miyazaki, T.; Akisawa, A.; Kashiwagi, T. Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renew. Energy 2005, 30, 281–304. [Google Scholar] [CrossRef]
- Jelle, B.P.; Hynd, A.; Gustavsen, A.; Arasteh, D.; Goudey, H.; Hart, R. Fenestration of today and tomorrow: A state-of-art review and future research opportunities. Sol. Energy Mater. Sol. Cells 2012, 96, 1–28. [Google Scholar] [CrossRef]
- SGG Bioclean Natura. Available online: http://uk.saint-gobain-glass.com/product/783/sgg-bioclean-natura (accessed on 15 March 2016).
- SGG Bioclean Aqua. Available online: http://uk.saint-gobain-glass.com/product/782/sgg-bioclean-aqua (accessed on 15 March 2016).
- PPG Sunclean. Available online: http://corporate.ppg.com/Businesses/Specialty-Coatings-and-Materials.aspx (accessed on 15 March 2016).
- Viridian Renew. Available online: http://www.viridianglass.com/products/clear-vision/renew (accessed on 15 March 2016).
- Vernardou, D.; Drosos, H.; Fasoulas, J.; Koudoumas, E.; Katsarakis, N. Photocatalytic properties of chemically grown vanadium oxide at 65 °C. Thin Solid Films 2014, 555, 169–172. [Google Scholar] [CrossRef]
- Lim, J.; Monllor-Satoca, D.; Jang, J.S.; Lee, S.; Choi, W. Visible light photocatalysis of fullerol-complexed TiO2 enhanced by Nb doping. Appl. Catal. B Environ. 2014, 152–153, 233–240. [Google Scholar] [CrossRef]
- Srinivasan, S.S.; Wade, J.; Stefanakos, E.K.; Goswami, Y. Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2. J. Alloys Compd. 2006, 424, 322–326. [Google Scholar] [CrossRef]
- Anandan, S.; Narasinga Rao, T.; Sathish, M.; Rangappa, D.; Honma, I.; Miyauchi, M. Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. ACS Appl. Mater. Interfaces 2012, 5, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Faustini, M.; Nicole, L.; Boissière, C.; Innocenzi, P.; Sanchez, C.; Grosso, D. Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chem. Mater. 2010, 22, 4406–4413. [Google Scholar] [CrossRef]
- Mu, Q.; Li, Y.; Zhang, Q. Self organized TiO2 nanorod arrays on glass substrate for self-cleaning antireflection coatings. J. Colloid Interface Sci. 2012, 365, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Midtdal, K.; Jelle, B.P. Self-cleaning glazing products: A state-of-the-art review and future research pathways. Sol. Energy Mater. Sol. Cells 2013, 109, 126–141. [Google Scholar] [CrossRef]
- Cannavale, A.; Fiorito, F.; Manca, M.; Tortorici, G.; Cingolani, R.; Gigli, G. Multifunctional bioinspired sol-gel coatings for architectural glasses. Build. Environ. 2010, 45, 1233–1243. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Marmur, A. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir 2003, 19, 8343–8348. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef]
- Michael, N.; Bhushan, B. Hierarchical roughness makes superhydrophobic states stable. Microelectron. Eng. 2007, 84, 382–386. [Google Scholar] [CrossRef]
- Mills, A.; Hill, G.; Bhopal, S.; Parkin, I.P.; O’Neill, S.A. Thick titanium dioxide films for semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 2003, 160, 185–194. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Liang, J.; Zhu, G.-Q.; Liu, P.; Xu, C. Highly Visible-Light-Responsive Photocatalytic AgCl/BiOCl Hetero-Nanostructures Synthesized by a Chemical Coprecipitation Method. J. Nanosci. Nanotechnol. 2014, 14, 4185–4190. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, B.; Dai, Y.; Qin, X.; Zhang, X.; Wang, P.; Liu, H.; Yu, J. Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method. J. Phys. Chem. C 2009, 113, 4612–4617. [Google Scholar] [CrossRef]
- He, C.; Gu, M. Photocatalytic activity of bismuth germanate Bi12GeO20 powders. Scr. Mater. 2006, 54, 1221–1225. [Google Scholar] [CrossRef]
- Yin, J.; Zou, Z.; Ye, J. Possible Role of Lattice Dynamics in the Photocatalytic Activity of BaM1/3N2/3O3 (M = Ni, Zn; N = Nb, Ta). J. Phys. Chem. B 2004, 108, 8888–8893. [Google Scholar] [CrossRef]
- Romero, L.; Binions, R. Effect of AC electric fields on the aerosol assisted chemical vapour deposition growth of titanium dioxide thin films. Surf. Coat. Technol. 2013, 230, 196–201. [Google Scholar] [CrossRef]
- Romero, L.; Binions, R. On the Influence of DC Electric Fields on the Aerosol Assisted Chemical Vapor Deposition Growth of Photoactive Titanium Dioxide Thin Films. Langmuir 2013, 29, 13542–13550. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Wang, Y.; Zhong, Y.; Ning, J.; Hu, Y. Microwave-assisted deposition of metal sulfide/oxide nanocrystals onto a 3D hierarchical flower-like TiO2 nanostructure with improved photocatalytic activity. J. Mater. Chem. A 2013, 1, 8101–8104. [Google Scholar] [CrossRef]
- Andersson, M.; Birkedal, H.; Franklin, N.R.; Ostomel, T.; Boettcher, S.; Palmqvist, A.E.C.; Stucky, G.D. Ag/AgCl-loaded ordered mesoporous anatase for photocatalysis. Chem. Mater. 2005, 17, 1409–1415. [Google Scholar] [CrossRef]
- Sonawane, R.S.; Dongare, M.K. Sol-gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. J. Mol. Catal. A Chem. 2006, 243, 68–76. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, S.; Fu, X.; Xu, Y.J. Synthesis of M@TiO2 (M = Au, Pd, Pt) Core-Shell Nanocomposites with Tunable Photoreactivity. J. Phys. Chem. C 2011, 115, 9136–9145. [Google Scholar] [CrossRef]
- Tian, G.; Chen, Y.; Zhai, R.; Zhou, J.; Zhou, W.; Wang, R.; Pan, K.; Tian, C.; Fu, H. Hierarchical flake-like Bi2MoO6/TiO2 bilayer films for visible-light-induced self-cleaning applications. J. Mater. Chem. A 2013, 1, 6961–6968. [Google Scholar] [CrossRef]
- Yu, H.; Huang, J.; Zhang, H.; Zhao, Q.; Zhong, X. Nanostructure and charge transfer in Bi2S3-TiO2 heterostructures. Nanotechnology 2014, 25, 215702. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, K.; Yin, H.; Song, C.; Zhang, Z.; Li, S.; Shi, H.; Zhang, Q.; Zhao, B.; Zhang, Y.; et al. Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures. J. Phys. D Appl. Phys. 2013, 46, 175303. [Google Scholar] [CrossRef]
- Gohin, M.; Allain, E.; Chemin, N.; Maurin, I.; Gacoin, T.; Boilot, J.P. Sol–gel nanoparticulate mesoporous films with enhanced self-cleaning properties. J. Photochem. Photobiol. A Chem. 2010, 216, 142–148. [Google Scholar] [CrossRef]
- Tachikawa, T.; Takai, Y.; Tojo, S.; Fujitsuka, M.; Irie, H.; Hashimoto, K.; Majima, T. Visible Light-Induced Degradation of Ethylene Glycol on Nitrogen-Doped TiO2 Powders. J. Phys. Chem. B 2006, 110, 13158–13165. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wellia, D.V.; Sk, M.A.; Lim, K.H.; Loo, J.S.C.; Liao, D.W.; Amal, R.; Tan, T.T.Y. Transparent visible light activated C–N–F-codoped TiO2 films for self-cleaning applications. J. Photochem. Photobiol. A Chem. 2010, 210, 181–187. [Google Scholar] [CrossRef]
- Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-Light-Driven N–F–Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification. Chem. Mater. 2005, 17, 2596–2602. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Q.; Yu, J.; Liu, B. Preparation and properties of chalcogenide glasses in the GeS2–Sb2S3–CdS system. J. Non-Cryst. Solids 2008, 354, 462–467. [Google Scholar] [CrossRef]
- Kesmez, Ö.; Erdem Çamurlu, H.; Burunkaya, E.; Arpaç, E. Sol–gel preparation and characterization of anti-reflective and self-cleaning SiO2–TiO2 double-layer nanometric films. Sol. Energy Mater. Sol. Cells 2009, 93, 1833–1839. [Google Scholar] [CrossRef]
- Prado, R.; Beobide, G.; Marcaide, A.; Goikoetxea, J.; Aranzabe, A. Development of multifunctional sol–gel coatings: Anti-reflection coatings with enhanced self-cleaning capacity. Sol. Energy Mater. Sol. Cells 2010, 94, 1081–1088. [Google Scholar] [CrossRef]
- Askar, K.; Phillips, B.M.; Fang, Y.; Choi, B.; Gozubenli, N.; Jiang, P.; Jiang, B. Self-assembled self-cleaning broadband anti-reflection coatings. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 84–100. [Google Scholar] [CrossRef]
- Verma, L.K.; Sakhuja, M.; Son, J.; Danner, A.J.; Yang, H.; Zeng, H.C.; Bhatia, C.S. Self-cleaning and antireflective packaging glass for solar modules. Renew. Energy 2011, 36, 2489–2493. [Google Scholar] [CrossRef]
- Deubener, J.; Helsch, G.; Moiseev, A.; Bornhöft, H. Glasses for solar energy conversion systems. J. Eur. Ceram. Soc. 2009, 29, 1203–1210. [Google Scholar] [CrossRef]
- Ding, X.; Zhou, S.; Wu, L.; Gu, G.; Yang, J. Formation of supra-amphiphilic self-cleaning surface through sun-illumination of titania-based nanocomposite coatings. Surf. Coat. Technol. 2010, 205, 2554–2561. [Google Scholar] [CrossRef]
- Kapridaki, C.; Maravelaki-Kalaitzaki, P. TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coat. 2013, 76, 400–410. [Google Scholar] [CrossRef]
- Kapridaki, C.; Pinho, L.; Mosquera, M.J.; Maravelaki-Kalaitzaki, P. Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings. Appl. Catal. B Environ. 2014, 156–157, 416–427. [Google Scholar] [CrossRef]
- PPG SunClean. Available online: http://corporate.ppg.com/Businesses/Specialty-Coatings-and-Materials.aspx (accessed on 15 March 2016).
- Wulf, M.; Wehling, A.; Reis, O. Coatings with self-cleaning properties. Macromol. Symp. 2002, 187, 459–468. [Google Scholar] [CrossRef]
- Verho, T.; Bower, C.; Andrew, P.; Franssila, S.; Ikkala, O.; Ras, R.H. Mechanically durable superhydrophobic surfaces. Adv. Mater. 2011, 23, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Warwick, M.E.A.; Binions, R. Advances in thermochromic vanadium dioxide films. J. Mater. Chem. A 2014, 2, 3275–3292. [Google Scholar] [CrossRef]
- Parkin, I.P.; Manning, T.D. Intelligent thermochromic windows. J. Chem. Educ. 2006, 83, 393–400. [Google Scholar] [CrossRef]
- Warwick, M.E.A.; Hyett, G.; Ridley, I.; Laffir, F.R.; Olivero, C.; Chapon, P.; Binions, R. Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing. Sol. Energy Mater. Sol. Cells 2013, 118, 149–156. [Google Scholar] [CrossRef]
- Dowling, R.; McGuirk, P.; Bulkeley, H. Retrofitting cities: Local governance in Sydney, Australia. Cities 2014, 38, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Xu, Z.; Jia, Q.S. Energy-efficient buildings facilitated by microgrid. IEEE Trans. Smart Grid 2010, 1, 243–252. [Google Scholar] [CrossRef]
- Granqvist, C.G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 2007, 91, 1529–1598. [Google Scholar] [CrossRef]
- Jones, A.C.; Hitchman, M.L. Chemical Vapour Deposition: Precursors, Processes and Applications. R. Soc. Chem. Camb. 2009, 48, 7478–7479. [Google Scholar]
- Szczyrbowski, J.; Dietrich, A.; Hartig, K. Bendable silver-based low emissivity coating on glass. Sol. Energy Mater. 1989, 19, 43–53. [Google Scholar] [CrossRef]
- Pasquarelli, R.M.; Ginley, D.S.; O’Hayre, R. Solution processing of transparent conductors: From flask to film. Chem. Soc. Rev. 2011, 40, 5406–5441. [Google Scholar] [CrossRef] [PubMed]
- Hartnagel, H.L.; Dawar, A.L.; Jain, A.K.; Jagadish, H. Semiconducting Transparent Thin Films; Institute of Physics Publishing: Bristol, UK; Philedelphia, PA, USA, 1995. [Google Scholar]
- Banerjee, R.; Ray, S.; Basu, N.; Batabyal, A.K.; Barua, A.K. Degradation studies of Indium Tin Oxide films in hydrogen and argon plasma. J. Appl. Phys. 1987, 62, 912–916. [Google Scholar] [CrossRef]
- Buchanan, M.; Webb, J.B.; Williams, D.F. Preparation of conducting and transparent thin films of tin-doped indium oxide by magnetron sputtering. Appl. Phys. Lett. 1980, 37, 213–215. [Google Scholar] [CrossRef]
- Maki, K.; Komiya, N.; Suzuki, A. Fabrication of thin films of ITO by aerosol CVD. Thin Solid Films 2003, 445, 224–228. [Google Scholar] [CrossRef]
- Rydzek, M.; Reidinger, M.; Arduini-Schuster, M.; Manara, J. Comparative study of sol–gel derived tin-doped indium- and aluminum-doped zinc-oxide coatings for electrical conducting and low-emitting surfaces. Prog. Org. Coat. 2011, 70, 369–375. [Google Scholar] [CrossRef]
- Frank, G.; Kauer, E.; Köstlin, H.; Schmitte, F.J. Transparent heat-reflecting coatings for solar applications based on highly doped tin oxide and indium oxide. Sol. Energy Mater. 1983, 8, 387–398. [Google Scholar] [CrossRef]
- Kim, H.; Horwitz, J.S.; Kushto, G.; Piqué, A.; Kafafi, Z.H.; Gilmore, C.M.; Chrisey, D.B. Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 2000, 88, 6021–6025. [Google Scholar] [CrossRef]
- China Yaohua Glass Group Corporation. Coated Glass Production Line. Available online: http://www.yaohuachina.com/linemore.asp?id=20 (accessed on 1 April 2016).
- Yamada, T.; Makino, H.; Yamamoto, N.; Yamamoto, T. Ingrain and grain boundary scattering effects on electron mobility of transparent conducting polycrystalline Ga-doped ZnO films. J. Appl. Phys. 2010, 107, 123534. [Google Scholar] [CrossRef]
- Noor, N.; Parkin, I.P. Enhanced transparent-conducting fluorine-doped tin oxide films formed by Aerosol-Assisted Chemical Vapour Deposition. J. Mater. Chem. C 2013, 1, 984–996. [Google Scholar] [CrossRef]
- AGC Solar. Coated Glass. Available online: http://www.agc-solar.com/agc-solar-products/coated-glass.html (accessed on 1 April 2016).
- Shanthi, E. Electrical and Optical Properties of Tin Oxide Films Doped with F and (Sb + F). J. Appl. Phys. 1982, 53, 1615–1621. [Google Scholar] [CrossRef]
- Batzill, M.; Diebold, U. The Surface and Materials Science of Tin Oxide. Prog. Surf. Sci. 2005, 79, 47–154. [Google Scholar] [CrossRef]
- Bhachu, D.S.; Waugh, M.R.; Zeissler, K.; Branford, W.R.; Parkin, I.P. Textured Fluorine-Doped Tin Dioxide Films Formed by Chemical Vapour Deposition. Chemistry 2011, 17, 11613–11621. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.Z.; Fang, G.J.; Wang, J.F.; Guan, W.J.; Zhao, X.Z. Effect of Thickness on Structural, Electrical, and Optical Properties of ZnO: Al Films Deposited by Pulsed Laser Deposition. J. Appl. Phys. 2007, 101, 033713. [Google Scholar] [CrossRef]
- Zhu, M.W.; Gong, J.; Sun, C.; Xia, J.H.; Jiang, X. Investigation of Correlation between the Microstructure and Electrical Properties of Sol-Gel Derived ZnO Based Thin Films. J. Appl. Phys. 2008, 104, 073113. [Google Scholar] [CrossRef]
- Hu, J.; Gordon, R.G. Textured Aluminum-Doped Zinc Oxide Thin Films from Atmospheric Pressure Chemical-Vapor Deposition. J. Appl. Phys. 1992, 71, 880–890. [Google Scholar] [CrossRef]
- Hu, J.; Gordon, R.G. Atmospheric Pressure Chemical Vapor Deposition of Gallium Doped Zinc Oxide Thin Films from Diethyl Zinc, Water, and Triethyl Gallium. J. Appl. Phys. 1992, 72, 5381–5392. [Google Scholar] [CrossRef]
- Bhachu, D.S.; Sankar, G.; Parkin, I.P. Aerosol Assisted Chemical Vapor Deposition of Transparent Conductive Zinc Oxide Films. Chem. Mater. 2012, 24, 4704–4710. [Google Scholar] [CrossRef]
- Kim, I.; Lee, K.S.; Lee, T.S.; Jeong, J.; Cheong, B.; Baik, Y.J.; Kim, W.M. Effect of Fluorine Addition on Transparent and Conducting Al Doped ZnO Films. J. Appl. Phys. 2006, 100, 063701. [Google Scholar] [CrossRef]
- Ma, Q.B.; Ye, Z.Z.; He, H.P.; Zhu, L.P.; Huang, J.Y.; Zhang, Y.Z.; Zhao, B.H. Influence of Annealing Temperature on the Properties of Transparent Conductive and near-Infrared Reflective ZnO:Ga Films. Scr. Mater. 2008, 58, 21–24. [Google Scholar] [CrossRef]
- Elleuch, R.; Salhi, R.; Maalej, N.; Deschanvres, J.L.; Maalej, R. Structural and Luminescence Correlation of Annealed Er-ZnO/Si Thin Films Deposited by AACVD Process. Mater. Sci. Eng. B 2013, 178, 1124–1129. [Google Scholar] [CrossRef]
- Waugh, M.R.; Hyett, G.; Parkin, I.P. Zinc Oxide Thin Films Grown by Aerosol Assisted CVD. Chem. Vap. Depos. 2008, 14, 366–372. [Google Scholar] [CrossRef]
- Choy, K.L. Chemical Vapor Deposition. Prog. Mater. Sci. 2001, 48, 57. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). The Changing Atmosphere: Implications for Global Security; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Peng, C.; Huang, Y.; Wu, Z. Building-Integrated Photovoltaics (BIPV) in Architectural Design in China. Energy Build. 2011, 43, 3592–3598. [Google Scholar] [CrossRef]
- Petter Jelle, B.; Breivik, C.; Drolsum Røkenes, H. A State-of-the-Art Review and Future Research Opportunities. Sol. Energy Mater. Sol. Cells 2012, 100, 69–96. [Google Scholar] [CrossRef]
- Eperon, G.E.; Burlakov, V.M.; Goriely, A.; Snaith, H.J. Neutral Color Semitransparent Microstructured Perovskite Solar Cells. ACS Nano 2014, 8, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Krebs, F.C.; Tromholt, T.; Jørgensen, M. Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-Roll Processing. Nanoscale 2010, 2, 873–886. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Nakade, S.; Kanzaki, T.; Kambe, S.; Wada, Y.; Yanagida, S. Investigation of Cation-Induced Degradation of Dye-Sensitized Solar Cells for a New Strategy to Long-Term Stability. Langmuir 2005, 21, 11414–11417. [Google Scholar] [CrossRef] [PubMed]
- Park, N.G.; Van de Lagemaat, J.; Frank, A.J. Comparison of Dye-Sensitized Rutile-and Anatase-Based TiO2 Solar Cells. J. Phys. Chem. 2000, 104, 8989–8994. [Google Scholar] [CrossRef]
- Bozic-Weber, B.; Constable, E.C.; Housecroft, C.E. Light Harvesting with Earth Abundant D-Block Metals: Development of Sensitizers in Dye-Sensitized Solar Cells (DSCs). Coord. Chem. Rev. 2013, 257, 3089–3106. [Google Scholar] [CrossRef]
- Gutiérrez-Tauste, D.; Zumeta, I.; Vigil, E.; Hernández-Fenollosa, M.A.; Domènech, X.; Ayllón, J.A. New Low-Temperature Preparation Method of the TiO2 Porous Photoelectrode for Dye-Sensitized Solar Cells Using UV Irradiation. J. Photochem. Photobiol. A Chem. 2005, 175, 165–171. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.G.; Yeh, C.-Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Kalyanasundaram, K.; Gratzel, M. Applications of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices. Coord. Chem. Rev. 1998, 177, 347–414. [Google Scholar] [CrossRef]
- Tian, H.; Jiang, X.; Yu, Z. Efficient Organic-Dye-Sensitized Solar Cells Based on an Iodine-Free Electrolyte. Angew. Chem. Int. Ed. Engl. 2010, 49, 7328–7231. [Google Scholar] [CrossRef] [PubMed]
- Grätzel, M. Dye-Sensitized Solar Cells. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar Cell Efficiency Tables (Version 38). Prog. Photovolt. Res. Appl. 2011, 19, 565–572. [Google Scholar] [CrossRef]
- Ito, S.; Zakeeruddin, S.M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M.K.; Péchy, P.; Takata, M.; Miura, H.; et al. High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness. Adv. Mater. Adv. Mater. 2006, 18, 1202–1205. [Google Scholar] [CrossRef]
- Bella, F.; Bongiovanni, R. Photoinduced Polymerization: An Innovative, Powerful and Environmentally Friendly Technique for the Preparation of Polymer Electrolytes for Dye-Sensitized Solar Cells. J. Photochem. Photobiol. C Photochem. Rev. 2013, 16, 1–12. [Google Scholar] [CrossRef]
- Tributsch, H. Dye Sensitization Solar Cells: A Critical Assessment of the Learning Curve. Coord. Chem. Rev. 2004, 248, 1511–1530. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Bai, Y.; Li, R.; Zakeeruddin, S.M.; Grätzel, M.; Wang, P. Dye-Sensitized Solar Cells with Solvent-Free Ionic Liquid Electrolytes. J. Phys. Chem. C 2008, 112, 13775–13781. [Google Scholar] [CrossRef]
- Ileperuma, O.A. Gel Polymer Electrolytes for Dye Sensitised Solar Cells: A Review. Mater. Technol. Adv. Perform. Mater. 2013, 28, 65–70. [Google Scholar] [CrossRef]
- Nei de Freitas, J.; Nogueira, A.F.; De Paoli, M.A. New Insights into Dye-Sensitized Solar Cells with Polymer Electrolytes. J. Mater. Chem. 2009, 19, 5279–5294. [Google Scholar] [CrossRef]
- Tennakone, K.; Perera, V.P.S.; Kottegoda, I.R.M.; Kumara, G.R.R.A. Dye-Sensitized Solid State Photovoltaic Cell Based on Composite Zinc Oxide/tin (IV) Oxide Films. J. Phys. D Appl. Phys. 1999, 32, 374–379. [Google Scholar] [CrossRef]
- Cai, N.; Moon, S.J.; Cevey-Ha, L.; Moehl, T.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S.M.; Grätzel, M. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett. 2011, 11, 1452–1456. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, W.; Uchida, S.; Cai, L.; Liu, B.; Ramakrishna, S. An efficient organic-dye-sensitized solar cell with in situ polymerized poly(3,4-ethylenedioxythiophene) as a hole-transporting material. Adv. Mater. 2010, 22, E150–E155. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, H.M.; Senthilarasu, S.; Hsu, M.H.; Kumar, D.K. Recent Progress and the Status of Dye-Sensitised Solar Cell (DSSC) Technology with State-of-the-Art Conversion Efficiencies. Sol. Energy Mater. Sol. Cells 2013, 119, 291–295. [Google Scholar] [CrossRef]
- Hardin, B.E.; Snaith, H.J.; McGehee, M.D. The renaissance of dye-synthesized solar cells. Nat. Photon. 2012, 6, 162–169. [Google Scholar] [CrossRef]
- Norton, B.; Eames, P.C.; Mallick, T.K.; Huang, M.J.; McCormack, S.J.; Mondol, J.D.; Yohanis, Y.G. Enhancing the performance of building integrated photoviltaics. Sol. Energy 2011, 85, 1629–1664. [Google Scholar] [CrossRef]
- Kim, Y.H.; Müller-Meskamp, L.; Zakhidov, A.A.; Sachse, C.; Meiss, J.; Bikova, J.; Cook, A.; Zakhidov, A.A.; Leo, K. Semi transparent small molecule organic solar cells with laminated free-standing carbon nanotube top electrodes. Sol. Energy Mater. Sol. Cells 2012, 96, 244–250. [Google Scholar] [CrossRef]
- Czolk, J.; Puetz, A.; Kutsarov, D. Manuel Reinhard, Uli Lemmer, Alexander Colsmann. Inverted Semi-transparent Polymer Solar Cells with Transparency Color Rendering Indices approaching 100. Adv. Energy Mater. 2013, 3, 386–390. [Google Scholar] [CrossRef]
- Tang, Z.; George, Z.; Ma, Z. Semi-transparent tandem organic solar cells with 90% Internal Quantum Efficiency. Adv. Energy Mater. 2012, 2, 1467–1476. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheun, H.; Choi, S.; Fuentes-Hernandez, C.; Kippelen, B. Optimization of a polymer top electrode for inverted semitransparent organic solar cells. Org. Electron. 2011, 12, 827–831. [Google Scholar] [CrossRef]
- Chueh, C.C.; Chien, S.C.; Yip, H.L.; Salinas, J.F.; Li, C.Z.; Chen, K.S.; Chen, F.C.; Chen, W.C.; Jen, A.K.Y. Toward high-performance semi-transparent polymer solar cells: Optimization of ultra-thin light absorbing layer and transparent cathode architecture. Adv. Energy Mater. 2013, 3, 417–423. [Google Scholar] [CrossRef]
- Hanisch, J.; Ahlswede, E.; Powalla, M. All sputtered contacts for organic solar cells. Thin Solid Films 2008, 516, 7241–7244. [Google Scholar] [CrossRef]
- Park, H.; Chang, S.; Smith, M.; Gradecak, S.; Kong, J. Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics. Sci. Rep. 2013, 3, 1581. [Google Scholar] [CrossRef] [PubMed]
- Krantz, J.; Stubhan, T.; Richter, M.; Spallek, S.; Litzov, I.; Matt, G.J.; Spiecker, E.; Brabec, C.J. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices. Adv. Funct. Mater. 2013, 23, 1711–1717. [Google Scholar] [CrossRef]
- Garnett, E.C.; Cai, W.; Cha, J.J. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Connor, S.T.; Cui, Y.; Peumans, P. Semi-transparent organic photovoltaic cells with laminated top electrode. Nano Lett. 2010, 10, 1276–1279. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Zhu, X.; Forberich, K.; Krantz, J.; Stubhan, T.; Salinas, M.; Halik, M.; Spallek, S.; Butz, B.; Spiecker, E.; et al. ITO-Free and Fully Solution-Processed Semitransparent Organic Solar Cells with High Fill Factors. Adv. Energy Mater. 2013, 3, 1062–1067. [Google Scholar] [CrossRef]
- Reinhard, M.; Eckstein, R.; Slobodskyy, A.; Lemmer, U.; Colsmann, A. Solution-processed polymer-silver nanowire top electrodes for inverted semi-transparent solar cells. Org. Electron. 2013, 14, 273–277. [Google Scholar] [CrossRef]
- Beiley, Z.M.; Christoforo, M.G.; Gratia, P.; Bowring, A.R.; Eberspacher, P.; Margulis, G.Y.; Cabanetos, C.; Beaujuge, P.M.; Salleo, A.; McGehee, M.D. Semi-Transparent Polymer Solar Cells with Excellent Sub-Bandgap Transmission for Third Generation Photovoltaics. Adv. Mater. 2013, 25, 7020–70226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- New Energy Technologies Inc. Solar WindowTM Clearly Electric. Available online: http://www.solarwindow.com (accessed on 22 April 2016).
- National Center for Photovoltaics (NREL). Best Research Cell Efficiencies. Available online: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed on 23 April 2016).
- Jørgensen, M.; Norrman, K.; Gevorgyan, S.A.; Tromholt, T.; Andreasen, B.; Krebs, F.C. Stability of polymer solar cells. Adv. Mater. 2012, 24, 580–612. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.S.; Salinas, J.F.; Yip, H.L.; Huo, L.; Hou, J.; Jen, A.K.Y. Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy Environ. Sci. 2012, 5, 9551–9557. [Google Scholar] [CrossRef]
- Snaith, H.J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Graetzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, B. NREL Unlocking Secrets of New Solar Material. Available online: http://www.nrel.gov/news/features/feature_detail.cfm/feature_id=10333 (accessed on 15 April 2014).
- Kim, H.S.; Lee, C.R.; Im, J.-H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [PubMed]
- Poirazis, H.; Blomsterberg, Å.; Wall, M. Energy simulations for glazed office buildings in Sweden. Energy Build. 2008, 40, 1161–1170. [Google Scholar] [CrossRef]
- Li, D.H.W.; Lam, T.N.T.; Cheung, K.L. Energy and cost studies of semi-transparent photovoltaic skylight. Energy Convers. Manag. 2009, 50, 1981–1990. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Feist, W. Schnieders, Energy efficiency—A key to sustainable housing. Eur. Phys. J. Spec. Top. 2009, 176, 141–153. [Google Scholar] [CrossRef]
- Saeli, M.; Piccirillo, C.; Parkin, I.P.; Binions, R.; Ridley, I. Energy modelling studies of thermochromic glazing. Energy Build. 2010, 42, 1666–1673. [Google Scholar] [CrossRef]
- Hoffmann, S.; Lee, E.S.; Clavero, C. Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications. Sol. Energy Mater. Sol. Cells 2014, 123, 65–80. [Google Scholar] [CrossRef]
- Narayan, J.; Bhosle, V.M. Phase transition and critical issues in structure-property correlations of vanadium oxide. J. Appl. Phys. 2006, 100, 103524–103526. [Google Scholar] [CrossRef]
- Morin, F.J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Batista, C.; Ribeiro, R.M.; Teixeira, V. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows. Nanoscale Res. Lett. 2011, 6, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alie, D.; Gedvilas, L.; Wang, Z.; Tenent, R.; Engtrakul, C.; Yan, Y.; Shaheen, S.E.; Dillon, A.C.; Ban, C. Direct synthesis of thermochromic VO2 through hydrothermal reaction. J. Solid State Chem. 2014, 212, 237–241. [Google Scholar] [CrossRef]
- Long, L.; Ye, H. Discussion of the performance improvement of thermochromic smart glazing applied in passive buildings. Sol. Energy 2014, 107, 236–244. [Google Scholar] [CrossRef]
- Ye, H.; Long, L.; Zhang, H.; Xu, B.; Gao, Y.; Kang, L.; Chen, Z. The demonstration and simulation of the application performance of the vanadium dioxide single glazing. Sol. Energy Mater. Sol. Cells 2013, 117, 168–173. [Google Scholar] [CrossRef]
- Li, S.Y.; Niklasson, G.A.; Granqvist, C.G. Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. J. Appl. Phys. 2010, 108, 063525. [Google Scholar] [CrossRef]
- Saeli, M.; Warwick, M.; Piccirllo, C.; Binions, R. Thermochromic Thin Films: Synthesis, Properties and Energy Consumption Modelling. Formatex Res. Cent. 2013, 736–746. [Google Scholar]
- Warwick, M.E.A.; Binions, R. On the effects of electric fields in aerosol assisted chemical vapour deposition reactions of vanadyl acetylacetonate solutions in ethanol. J. Nanosci. Nanotechnol. 2011, 11, 1–6. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Yan, D.; Xu, X.; Jiang, Y. Tunable hysteresis in metal-insulator transition of nanostructured vanadium oxide thin films deposited by reactive direct current magnetron sputtering. Thin Solid Films 2014, 552, 218–224. [Google Scholar] [CrossRef]
- Livage, J.; Beteille, F.; Roux, C.; Chatry, M.; Davidson, P. Sol-gel synthesis of oxide materials. Acta Mater. 1998, 46, 743–750. [Google Scholar] [CrossRef]
- Burkhardt, W.; Christmann, T.; Meyer, B.K.; Niessner, W.; Schalch, D.; Scharmann, A. W- and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films 1999, 345, 229–235. [Google Scholar] [CrossRef]
- Jin, P.; Tanemura, S. Relationship between Transition Temperature and x in V1−xWxO2 Films Deposited by Dual-Target Magnetron Sputtering. Jpn. Soc. Appl. Phys. 1995, 34, 2459–2460. [Google Scholar] [CrossRef]
- Hanlon, T.J.; Coath, J.A.; Richardson, M.A. Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol–gel method. Thin Solid Films 2003, 436, 269–272. [Google Scholar] [CrossRef]
- Mai, L.Q.; Hu, B.; Hu, T.; Chen, W.; Gu, E.D. Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting–Quenching Sol–Gel Method. J. Phys. Chem. B 2006, 110, 19083–19086. [Google Scholar] [CrossRef] [PubMed]
- Manning, T.; Parkin, I.; Blackman, C.; Qureshi, U. APCVD of thermochromic vanadium dioxide thin films—Solid solutions V2−xMxO2 (M = Mo, Nb) or composites VO2: SnO2. J. Mater. Chem. 2005, 15, 4560–4566. [Google Scholar] [CrossRef]
- Piccirillo, C.; Binions, R.; Parkin, I.P. Nb-Doped VO2 Thin Films Prepared by Aerosol-Assisted Chemical Vapour Deposition. Eur. J. Inorg. Chem. 2007, 2007, 4050–4055. [Google Scholar] [CrossRef]
- Mlyuka, N.R.; Niklasson, G.A.; Granqvist, C.G. Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature. Appl. Phys. Lett. 2009, 95, 171909. [Google Scholar] [CrossRef]
- Song, L.; Zhang, Y.; Huang, W.; Shi, Q.; Li, D.; Zhang, Y.; Xu, Y. Preparation and thermochromic properties of Ce-doped VO2 films. Mater. Res. Bull. 2013, 48, 2268–2271. [Google Scholar] [CrossRef]
- Dai, L.; Chen, S.; Liu, J.; Gao, Y.; Zhou, J.; Chen, Z.; Cao, C.; Luo, H.; Kanehira, M. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Phys. Chem. Chem. Phys. 2013, 15, 11723–11729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gao, Y.; Chen, Z.; Du, J.; Cao, C.; Kang, L.; Luo, H. Thermochromic VO2 Thin Films: Solution-Based Processing, Improved Optical Properties, and Lowered Phase Transformation Temperature. Langmuir 2010, 26, 10738–10744. [Google Scholar] [CrossRef] [PubMed]
- Warwick, M.E.A.; Binions, R. Thermochromic vanadium dioxide thin films from electric field assisted aerosol assisted chemical vapour deposition. Sol. Energy Mater. Sol. Cells 2015, 143, 592–600. [Google Scholar] [CrossRef]
- Wang, B.; Chen, S.; Huang, Z.; Fu, M. Optical nonlinearities of nanostructured VO2 thin films with low phase transition temperature. Appl. Surf. Sci. 2012, 258, 5319–5322. [Google Scholar] [CrossRef]
- Guinneton, F.; Sauques, L.; Valmalette, J.C.; Cros, F.; Gavarri, J.R. Optimized infrared switching properties in thermochromic vanadium dioxide thin films: Role of deposition process and microstructure. Thin Solid Films 2004, 446, 287–295. [Google Scholar] [CrossRef]
- Kang, L.; Gao, Y.; Zhang, Z.; Du, J.; Cao, C.; Chen, Z.; Luo, H. Effects of Annealing Parameters on Optical Properties of Thermochromic VO2 Films Prepared in Aqueous Solution. J. Phys. Chem. C 2010, 114, 1901–1911. [Google Scholar] [CrossRef]
- Zhao, L.; Miao, L.; Tanemura, S.; Zhou, J.; Chen, L.; Xiao, X.; Xu, G. A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process. Thin Solid Films 2013, 543, 157–161. [Google Scholar] [CrossRef]
- Kang, L.; Xie, L.; Chen, Z.; Gao, Y.; Liu, X.; Yang, Y.; Liang, W. Asymmetrically modulating the insulator–metal transition of thermochromic VO2 films upon heating and cooling by mild surface-etching. Appl. Surf. Sci. 2014, 311, 676–683. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Wu, X.; Yang, W.; Jiang, Y. Transversal grain size effect on the phase-transition hysteresis width of vanadium dioxide films comprising spheroidal nanoparticles. Vacuum 2014, 104, 47–50. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, W.; Shi, Q.; Zhang, Y.; Wu, J.; Song, L. Shape-dependent thermochromic phenomenon in porous nano-structured VO2 films. Mater. Res. Bull. 2013, 48, 4146–4149. [Google Scholar] [CrossRef]
- Dai, L.; Cao, C.; Gao, Y.; Luo, H. Synthesis and phase transition behavior of undoped VO2 with a strong nano-size effect. Sol. Energy Mater. Sol. Cells 2011, 95, 712–175. [Google Scholar] [CrossRef]
- Minch, R.; Moonoosawmy, K.R.; Solterbeck, C.-H.; Es-Souni, M. The influence of processing conditions on the morphology and thermochromic properties of vanadium oxide films. Thin Solid Films 2014, 556, 277–284. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, H.; Chai, G.; Sun, Y.; Yang, T.; Cheng, H.; Chen, L.; Miao, L.; Xu, G. A cost-effective process to prepare VO2 (M) powder and films with superior thermochromic properties. Mater. Res. Bull. 2014, 51, 6–12. [Google Scholar] [CrossRef]
- Kang, L.; Gao, Y.; Luo, H.; Chen, Z.; Du, J.; Zhang, Z. Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties. ACS Appl. Mater. Interfaces 2011, 3, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R.; Haynes, T.; Boatner, L.; Feldman, L.; Haglund, R. Size effects in the structural phase transition of VO2 nanoparticles. Phys. Rev. B 2002, 65, 224113. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; He, Q.; Jiang, Y. Preparation and investigation of sputtered vanadium dioxide films with large phase-transition hysteresis loops. Appl. Surf. Sci. 2013, 277, 218–222. [Google Scholar] [CrossRef]
- Ba, C.O.F.; Bah, S.T.; D’Auteuil, M.; Fortin, V.; Ashrit, P.V.; Vallée, R. VO2 thin films based on active and passive thermochromic thermochromic devices for energy management applications. Curr. Appl. Phys. 2014, 14, 1531–1537. [Google Scholar] [CrossRef]
- Balu, R.; Ashrit, P.V. Near-zero IR transmission in the metal-insulator transition of VO2 thin films. Appl. Phys. Lett. 2008, 92, 021904. [Google Scholar] [CrossRef]
- Niklasson, G.A.; Li, S.Y.; Granqvist, C.G. Thermochromic vanadium oxide thin films: Electronic and optical properties. J. Phys. Conf. Ser. 2014, 559, 012001. [Google Scholar] [CrossRef]
- Du, J.; Gao, Y.; Luo, H.; Zhang, Z.; Kang, L.; Chen, Z. Formation and metal-to-insulator transition properties of VO2–ZrV2O7 composite films by polymer-assisted deposition. Sol. Energy Mater. Sol. Cells 2011, 95, 1604–1609. [Google Scholar] [CrossRef]
- Koo, H.; Shin, D.; Bae, S.-H.; Ko, K.-E.; Chang, S.-H.; Park, C. The Effect of CeO2 Antireflection Layer on the Optical Properties of Thermochromic VO2 Film for Smart Window System. J. Mater. Eng. Perform. 2013, 23, 402. [Google Scholar] [CrossRef]
- Kiri, P.; Ridley, I.; Binions, R.; Warwick, M.E.A. Fluorine doped vanadium dioxide thin films for smart windows. Thin Solid Films 2011, 520, 1363–1366. [Google Scholar] [CrossRef]
- Li, S.Y.; Mlyuka, N.R.; Primetzhofer, D.; Hallén, A.; Possnert, G.; Niklasson, G.A.; Granqvist, C.G. Bandgap widening in thermochromic Mg-doped VO2 thin films: Quantitative data based on optical absorption. Appl. Phys. Lett. 2013, 103, 161907. [Google Scholar] [CrossRef]
- Binions, R.; Piccirillo, C.; Palgrave, R.G.; Parkin, I.P. Hybrid Aerosol Assisted and Atmospheric Pressure CVD of Gold-Doped Vanadium Dioxide. Chem. Vap. Depos. 2008, 14, 33–39. [Google Scholar] [CrossRef]
- Wang, N.; Liu, S.; Zeng, X.T.; Magdassi, S.; Long, Y. Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature. J. Mater. Chem. C 2015, 3, 6771–6777. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, Y.; Zhang, Z.; Luo, H.; Cao, C.; Chen, Z.; Dai, L.; Liu, X. VO2 Thermochromic Smart Window for Energy Savings and Generation. Sci. Rep. 2013, 3, 3029. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H. Thermochromic glazing of windows with better luminous solar transmittance. Sol. Energy Mater. Sol. Cells 2002, 71, 537–540. [Google Scholar] [CrossRef]
- Lee, M.H.; Cho, J.S. Better thermochromic glazing of windows with anti-reflection coating. Thin Solid Films 2000, 365, 5–6. [Google Scholar] [CrossRef]
- Xu, G.; Jin, P.; Tazawa, M.; Yoshimura, K. Optimization of antireflection coating for VO2-based energy efficient window. Sol. Energy Mater. Sol. Cells 2004, 83, 29–37. [Google Scholar] [CrossRef]
- Jin, P.; Xu, G.; Tazawa, M.; Yoshimura, K. A VO2-Based Multifunctional Window with Highly Improved Luminous Transmittance. Jpn. J. Appl. Phys. 2002, 41, L278–L280. [Google Scholar] [CrossRef]
- Chen, X.; Lv, Q.; Yi, X. Smart window coating based on nanostructured VO2 thin film. Opt. Int. J. Light Electron Opt. 2012, 123, 1187. [Google Scholar] [CrossRef]
- Ji, Y.X.; Li, S.Y.; Niklasson, G.A.; Granqvist, C.G. Durability of thermochromic VO2 thin films under heating and humidity: Effect of Al oxide top coatings. Thin Solid Films 2014, 562, 568–573. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Kortidis, I.; Michail, G.; Tsagaraki, K.; Binas, V.; Kiriakidis, G.; Aperathitis, E. Study of low temperature rf-sputtered Mg-doped vanadium dioxide thermochromic films deposited on low-emissivity substrates. Thin Solid Films 2016, 601, 99–105. [Google Scholar] [CrossRef]
- Miller, M.J.; Wang, J. Multilayer ITO/VO2/TiO2 thin films for control of solar and thermal spectra. Sol. Energy Mater. Sol. Cells 2016, 154, 88–93. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, K.; Zobel, M.; Mackovic, M.; Unruh, T.; Spiecker, E.; Schmuki, P. Formation of Highly Ordered VO2 Nanotubular/Nanoporous Layers and Their Supercooling Effect in Phase Transitions. Adv. Mater. 2012, 24, 1571–1575. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Bao, J.; Tao, M.; Zhu, R.; Lin, Y.; Zhanga, X.; Xie, Y. Periodic porous thermochromic VO2(M) films with enhanced visible transmittance. Chem. Commun. 2013, 49, 6021–6023. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Wang, N.; Li, Y.; Zhang, J.; Xu, Z.; Long, Y. Bioinspired multifunctional vanadium dioxide: Improved thermochromism and hydrophobicity. Langmuir 2014, 30, 10766–10771. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, M.; Kong, L.; Long, Y.; Jiang, X.; Yu, A. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties. Prog. Mater. Sci. 2016, 81, 1–54. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromics and thermochromics: Toward a new paradigm for energy efficient buildings. Mater. Today Proc. 2016, 3, S2–S11. [Google Scholar] [CrossRef]
- Louloudakis, D.; Vernardou, D.; Spanakis, E.; Suchea, M.; Kenanakis, G.; Pemble, M.; Savvakis, C.; Katsarakis, N.; Koudoumas, E.; Kiriakidis, G. Atmospheric pressure chemical vapor deposition of amorphous tungsten doped vanadium dioxide for smart window applications. Adv. Mater. Lett. 2016, 7, 100–150. [Google Scholar] [CrossRef]
Condition | Temperature | |||
---|---|---|---|---|
Cold (T < Tc) | Hot (T > Tc) | |||
Structure | Monoclinic, semiconducting | Rutile, metallic | ||
Wavelength | Visible (%) | Near IR (%) | Visible (%) | Near IR (%) |
Transmittance (T) | 65 | 80 | 65 | 15 |
Reflectance (R) | 17 | 12 | 17 | 77 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, A.-L.; Chen, S.; Romero, L.; Top, I.; Binions, R. Thin Films for Advanced Glazing Applications. Buildings 2016, 6, 37. https://doi.org/10.3390/buildings6030037
Anderson A-L, Chen S, Romero L, Top I, Binions R. Thin Films for Advanced Glazing Applications. Buildings. 2016; 6(3):37. https://doi.org/10.3390/buildings6030037
Chicago/Turabian StyleAnderson, Ann-Louise, Shuqun Chen, Luz Romero, Işıl Top, and Russell Binions. 2016. "Thin Films for Advanced Glazing Applications" Buildings 6, no. 3: 37. https://doi.org/10.3390/buildings6030037
APA StyleAnderson, A. -L., Chen, S., Romero, L., Top, I., & Binions, R. (2016). Thin Films for Advanced Glazing Applications. Buildings, 6(3), 37. https://doi.org/10.3390/buildings6030037