Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art
Abstract
:1. Introduction
2. Seismic Response of Structural Systems
2.1. General Issues
2.2. Current Codifications
2.3. Ongoing Research
3. Seismic Response of Non-Structural Architectural Components
3.1. General Issues
3.2. Current Codifications
3.3. Ongoing Research
4. Conclusions and Future Developments
Author Contributions
Funding
Conflicts of Interest
References
- Montuori, R.; Gabbianelli, G.; Nastri, E.; Simoncelli, M. Rigid plastic analysis for the seismic performance evaluation of steel storage racks. Steel Compos. Struct. 2019, 32, 1–19. [Google Scholar]
- Piluso, V.; Pisapia, A.; Nastri, E.; Montuori, R. Ultimate resistance and rotation capacity of low yielding high hardening aluminium alloy beams under non-uniform bending. Thin Walled Struct. 2019, 135, 123–136. [Google Scholar] [CrossRef]
- Castaldo, P.; Nastri, E.; Piluso, V. Ultimate behaviour of RHS temper T6 aluminium alloy beams subjected to non-uniform bending: Parametric analysis. Thin Walled Struct. 2017, 115, 129–141. [Google Scholar] [CrossRef]
- Castaldo, P.; Nastri, E.; Piluso, V. FEM simulations and rotation capacity evaluation for RHS temper T4 aluminium alloy beams. Compos. Part B Eng. 2017, 115, 124–137. [Google Scholar] [CrossRef]
- Fiorino, L.; Iuorio, O.; Macillo, V.; Terracciano, M.T.; Pali, T.; Landolfo, R. Seismic design method for CFS diagonal strap-braced stud walls: Experimental validation. J. Struct. Eng. 2016, 142, 04015154. [Google Scholar] [CrossRef]
- Macillo, V.; Fiorino, L.; Landolfo, R. Seismic response of CFS shear walls sheathed with nailed gypsum panels: Experimental tests. Thin Walled Struct. 2017, 120, 161–171. [Google Scholar] [CrossRef]
- Krawinkler, H.; Francisco, P.; Ibarra, L.; Ayoub, A.; Medina, R. Development of a Testing Protocol for Woodframe Structures; Publication No. W-02; CUREE: Richmond, CA, USA, 2001. [Google Scholar]
- CEN. EN 1993-1-3 Eurocode 3: Design of Steel Structures—Part 1–3: General Rules—Supplementary Rules for Cold-Formed Members and Sheeting; European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- AISI. S100-16 North American Specification for the Design of Cold-Formed Steel Structural Members; American Iron and Steel Institute (AISI): Washington, DC, USA, 2016; ISBN 9781771391535. [Google Scholar]
- Australia/New Zealand Standards. AUS/NZS 4600. Cold-Formed Steel Structures; Australia/New Zealand Standards: Sydney, NSW, Australia, 2005. [Google Scholar]
- AISI. S400-15 North American Standard for Seismic Design of Cold Formed Steel Structural Systems; American Iron and Steel Institute (AISI): Washington, DC, USA, 2015. [Google Scholar]
- SEI/ASCE. ASCE 7-10 Minimim Design Loads for Buildings and other Structures; American Society of Civil Engineers: Reston, VA, USA, 2010; ISBN 9780784410851. [Google Scholar]
- NRCC. National Building Code of Canada; National Research Council of Canada (NRCC): Ottawa, ON, Canada, 2005.
- CEN. EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- Liu, P.; Peterman, K.D.; Schafer, B.W. Impact of construction details on OSB-sheathed cold-formed steel framed shear walls. J. Constr. Steel Res. 2014, 101, 114–123. [Google Scholar] [CrossRef]
- Yu, C. Shear resistance of cold-formed steel framed shear walls with 0.686 mm, 0.762 mm, and 0.838 mm steel sheet sheathing. Eng. Struct. 2010, 32, 1522–1529. [Google Scholar] [CrossRef]
- Uang, C.-M.; Sato, A.; Hong, J.-K.; Wood, K. Cyclic testing and modeling of cold-formed steel special bolted moment frame connections. J. Struct. Eng. 2010, 136, 953–960. [Google Scholar] [CrossRef]
- Adham, S.A.; Avanessian, V.; Hart, G.C.; Anderson, R.W.; Elmlinger, J.; Gregory, J. Shear wall resistance of lightgage steel stud wall systems. Earthq. Spectra 1990, 6, 1–14. [Google Scholar] [CrossRef]
- Gad, E.F.; Duffield, C.F.; Hutchinson, G.L.; Mansell, D.S.; Stark, G. Lateral performance of cold-formed steel-framed domestic structures. Eng. Struct. 1999, 21, 83–95. [Google Scholar] [CrossRef]
- Schafer, B.W.; Ayhan, D.; Leng, J.; Liu, P.; Padilla-Llano, D.; Peterman, K.D.; Stehman, M.; Buonopane, S.G.; Eatherton, M.; Madsen, R.; et al. Seismic response and engineering of cold-formed steel framed buildings. Structures 2016, 8, 197–212. [Google Scholar] [CrossRef]
- Hoehler, M.S.; Smith, C.M.; Hutchinson, T.C.; Wang, X.; Meacham, B.J.; Kamath, P. Behavior of steel-sheathed shear walls subjected to seismic and fire loads. Fire Saf. J. 2017, 91, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Fiorino, L.; Macillo, V.; Landolfo, R. Shake table tests of a full-scale two-story sheathing-braced cold-formed steel building. Eng. Struct. 2017, 151, 633–647. [Google Scholar] [CrossRef]
- Fiorino, L.; Bucciero, B.; Landolfo, R. Shake table tests of three storey cold-formed steel structures with strap-braced walls. Bull. Earthq. Eng. 2019, 17, 4217–4275. [Google Scholar] [CrossRef]
- Peck, Q.; Rogers, N.; Serrette, R. Cold-formed steel framed gypsum shear walls: In-plane response. J. Struct. Eng. 2012, 138, 932–941. [Google Scholar] [CrossRef]
- Velchev, K.; Comeau, G.; Balh, N.; Rogers, C.A. Evaluation of the AISI S213 seismic design procedures through testing of strap braced cold-formed steel walls. Thin Walled Struct. 2010, 48, 846–856. [Google Scholar] [CrossRef]
- Mirzaei, A.; Sangree, R.H.; Velchev, K.; Comeau, G.; Balh, N.; Rogers, C.A.; Schafer, B.W. Seismic capacity-based design of narrow strap-braced cold-formed steel walls. J. Constr. Steel Res. 2015, 115, 81–91. [Google Scholar] [CrossRef]
- Mohebbi, S.; Mirghaderi, S.R.; Farahbod, F.; Bagheri Sabbagh, A.; Torabian, S. Experiments on seismic behaviour of steel sheathed cold-formed steel shear walls cladded by gypsum and fiber cement boards. Thin Walled Struct. 2016, 104, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Accorti, M.; Baldassino, N.; Zandonini, R.; Scavazza, F.; Rogers, C.A. Response of CFS Sheathed Shear Walls. Structures 2016, 7, 100–112. [Google Scholar] [CrossRef]
- Fiorino, L.; Terracciano, M.T.; Landolfo, R. Experimental investigation of seismic behaviour of low dissipative CFS strap-braced stud walls. J. Constr. Steel Res. 2016, 127, 92–107. [Google Scholar] [CrossRef]
- Terracciano, M.T.; Vincenzo, M.; Pali, T.; Bucciero, B.; Luigi, F.; Landolfo, R. Seismic design and performance of low energy dissipative CFS strap-braced stud walls. Bull. Earthq. Eng. 2018, 17, 1075–1098. [Google Scholar] [CrossRef]
- Ye, J.; Wang, X.; Jia, H.; Zhao, M. Cyclic performance of cold-formed steel shear walls sheathed with double-layer wallboards on both sides. Thin Walled Struct. 2015, 92, 146–159. [Google Scholar] [CrossRef]
- Wang, X.; Ye, J. Reversed cyclic performance of cold-formed steel shear walls with reinforced end studs. J. Constr. Steel Res. 2015, 113, 28–42. [Google Scholar] [CrossRef]
- Esmaeili Niari, S.; Rafezy, B.; Abedi, K. Seismic behavior of steel sheathed cold-formed steel shear wall: Experimental investigation and numerical modeling. Thin Walled Struct. 2015, 96, 337–347. [Google Scholar] [CrossRef]
- Moghimi, H.; Ronagh, H.R. Performance of light-gauge cold-formed steel strap-braced stud walls subjected to cyclic loading. Eng. Struct. 2009, 31, 69–83. [Google Scholar] [CrossRef]
- Latreille, P.; Nikolaidou, V.; Rogers, C.A.; Lignos, D.G. Characterization of cold-formed steel framed diaphragm response under in-plane loading and influence of non-structural gypsum panels. In Proceedings of the International Specialty Conference on Cold-Formed Steel Structures, St. Louis, MO, USA, 3–4 November 2010; p. 1. [Google Scholar]
- Nikolaidou, V.; Latreille, P.; Rogers, C.A.; Lignos, D.G. Characterization of cold-formed steel framed/woodsheathed floor and roof diaphragm structures. In Proceedings of the 16th World Conference on Earthquake Engineering, 16WCEE, Santiago, Chile, 9–13 January 2017; p. 452. [Google Scholar]
- Baldassino, N.; Bernardi, M.; Zandonini, R.; Zordan, M. Study of cold-formed steel floor systems under shear loadings. In Proceedings of the Eighth International Conference on Thin-Walled Structures (ICTWS 2018), Lisbon, Portugal, 24–27 July 2018. [Google Scholar]
- Vieira, L.C.M.; Schafer, B.W. Lateral stiffness and strength of sheathing braced cold-formed steel stud walls. Eng. Struct. 2012, 37, 205–213. [Google Scholar] [CrossRef]
- Peterman, K.D.; Nakata, N.; Schafer, B.W. Hysteretic characterization of cold-formed steel stud-to-sheathing connections. J. Constr. Steel Res. 2014, 101, 254–264. [Google Scholar] [CrossRef]
- Swensen, S.; Deierlein, G.G.; Miranda, E. Behavior of screw and adhesive connections to gypsum wallboard in wood and cold-formed steel-framed wallettes. J. Struct. Eng. 2016, 142, E4015002. [Google Scholar] [CrossRef]
- Ye, J.; Wang, X.; Zhao, M. Experimental study on shear behavior of screw connections in CFS sheathing. J. Constr. Steel Res. 2016, 121, 1–12. [Google Scholar] [CrossRef]
- Fiorino, L.; Macillo, V.; Landolfo, R. Experimental characterization of quick mechanical connecting systems for cold-formed steel structures. Adv. Struct. Eng. 2017, 20, 1098–1110. [Google Scholar] [CrossRef]
- Fiorino, L.; Pali, T.; Bucciero, B.; Macillo, V.; Teresa Terracciano, M.; Landolfo, R. Experimental study on screwed connections for sheathed CFS structures with gypsum or cement based panels. Thin Walled Struct. 2017, 116, 234–249. [Google Scholar] [CrossRef]
- Serrette, R.; Nolan, D. Wood structural panel to cold-formed steel shear connections with pneumatically driven knurled steel pins. Pract. Period. Struct. Des. Constr. 2017, 22, 04017002. [Google Scholar] [CrossRef]
- Shamim, I.; Rogers, C.A. Steel sheathed/CFS framed shear walls under dynamic loading: Numerical modelling and calibration. Thin Walled Struct. 2013, 71, 57–71. [Google Scholar] [CrossRef]
- Nithyadharan, M.; Kalyanaraman, V. Modelling hysteretic behaviour of cold-formed steel wall panels. Eng. Struct. 2013, 46, 643–652. [Google Scholar] [CrossRef]
- Kechidi, S.; Bourahla, N. Deteriorating hysteresis model for cold-formed steel shear wall panel based on its physical and mechanical characteristics. Thin Walled Struct. 2016, 98, 421–430. [Google Scholar] [CrossRef]
- Fiorino, L.; Shakeel, S.; Macillo, V.; Landolfo, R. Seismic response of CFS shear walls sheathed with nailed gypsum panels: Numerical modelling. Thin Walled Struct. 2018, 122, 359–370. [Google Scholar] [CrossRef]
- Macillo, V.; Shakeel, S.; Fiorino, L.; Landolfo, R. Development and calibration of a hysteretic model for CFS strap braced stud walls. Adv. Steel Constr. 2018, 14, 336–359. [Google Scholar]
- Fiorino, L.; Shakeel, S.; Macillo, V.; Landolfo, R. Behaviour factor (q) evaluation the CFS braced structures according to FEMA P695. J. Constr. Steel Res. 2017, 138, 324–339. [Google Scholar] [CrossRef]
- Shakeel, S.; Landolfo, R.; Fiorino, L. Behaviour factor evaluation of CFS shear walls with gypsum board sheathing according to FEMA P695 for Eurocodes. Thin Walled Struct. 2019, 141, 194–207. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Xu, L. Simplified nonlinear finite element analysis of buildings with CFS shear wall panels. J. Constr. Steel Res. 2011, 67, 565–575. [Google Scholar] [CrossRef]
- Zhou, X.; He, Y.; Shi, Y.; Zhou, T.; Liu, Y. Experiment and FE analysis on shear resistance of cold-formed steel stud assembled wall in residential structure. Adv. Steel Constr. 2010, 6, 914–925. [Google Scholar]
- Hatami, S.; Rahmani, A.; Parvaneh, A.; Ronagh, H.R. A parametric study on seismic characteristics of cold-formed steel shear walls by finite element modeling. Adv. Steel Constr. 2014, 10, 53–71. [Google Scholar]
- Buonopane, S.G.; Bian, G.; Tun, T.H.; Schafer, B.W. Computationally efficient fastener-based models of cold-formed steel shear walls with wood sheathing. J. Constr. Steel Res. 2015, 110, 137–148. [Google Scholar] [CrossRef]
- Telue, Y.; Mahendran, M. Behaviour of cold-formed steel wall frames lined with plasterboard. J. Constr. Steel Res. 2001, 57, 435–452. [Google Scholar] [CrossRef] [Green Version]
- ASCE. 41-13 Seismic Evaluation and Upgrade of Existing Buildings; American Society of Civil Engineers: Reston, VA, USA, 2013. [Google Scholar]
- Jenkins, C.; Soroushian, S.; Rahmanishamsi, E.; Maragakis, E. Experimental fragility analysis of cold-formed steel-framed partition wall systems. In Proceedings of the Structures Congress 2015, Portland, OR, USA, 23–25 April 2015; pp. 1760–1773. [Google Scholar]
- Wang, X.; Pantoli, E.; Hutchinson, T.C.; Restrepo, J.I.; Wood, R.L.; Hoehler, M.S.; Grzesik, P.; Sesma, F.H. Seismic performance of cold-formed steel wall systems in a full-scale building. J. Struct. Eng. 2015, 141, 04015014. [Google Scholar] [CrossRef]
- Magliulo, G.; Petrone, C.; Capozzi, V.; Maddaloni, G.; Lopez, P.; Manfredi, G. Seismic performance evaluation of plasterboard partitions via shake table tests. Bull. Earthq. Eng. 2014, 12, 1657–1677. [Google Scholar] [CrossRef]
- Fiorino, L.; Bucciero, B.; Landolfo, R. Evaluation of seismic dynamic behaviour of drywall partitions, façades and ceilings through shake table testing. Eng. Struct. 2019, 180, 103–123. [Google Scholar] [CrossRef]
- Badillo-Almaraz, H.; Whittaker, A.S.; Reinhorn, A.M. Seismic fragility of suspended ceiling systems. Earthq. Spectra 2007, 23, 21–40. [Google Scholar] [CrossRef]
- Jenkins, C.; Soroushian, S.; Rahmanishamsi, E.; Maragakis, E.M. Experimental fragility analysis of cold-formed steel-framed partition wall systems. Thin Walled Struct. 2016, 103, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, J.I.; Bersofsky, A.M. Performance characteristics of light gage steel stud partition walls. Thin Walled Struct. 2011, 49, 317–324. [Google Scholar] [CrossRef]
- Retamales, R.; Davies, R.; Mosqueda, G.; Filiatrault, A. Experimental seismic fragility of cold-formed steel framed gypsum partition walls. J. Struct. Eng. 2013, 139, 1285–1293. [Google Scholar] [CrossRef]
- Tasligedik, A.S.; Pampanin, S.; Palermo, A. Low damage seismic solutions for non-structural drywall partitions. Bull. Earthq. Eng. 2015, 13, 1029–1050. [Google Scholar] [CrossRef]
- Petrone, C.; Magliulo, G.; Lopez, P.; Manfredi, G. Seismic fragility of plasterboard partitions via in-plane quasi-static tests. Earthq. Eng. Struct. Dyn. 2015, 44, 2589–2606. [Google Scholar] [CrossRef]
- Pali, T.; Macillo, V.; Terracciano, M.T.; Buccieros, B.; Fiorino, L.; Landolfo, R. In-plane quasi-static cyclic tests of nonstructural lightweight steel drywall partitions for seismic performance evaluation. Earthq. Eng. Struct. Dyn. 2018, 47, 1566–1588. [Google Scholar] [CrossRef]
- Fiorino, L.; Pali, T.; Landolfo, R. Out-of-plane seismic design by testing of non-structural lightweight steel drywall partition walls. Thin Walled Struct. 2018, 130, 213–230. [Google Scholar] [CrossRef]
Lateral Force Resisting System | ASCE 7 | NBCC |
---|---|---|
CFS light-frame shear walls sheathed with wood structural panels | 6.5 to 7.0 | 4.25 |
CFS light-frame shear walls with steel sheet sheathing | 6.5 to 7.0 | 2.6 |
CFS light-frame strap braced wall systems | 4.0 | 2.47 |
CFS special bolted moment resisting frames; | 3.5 | - |
CFS light-frame shear walls with gypsum sheathing on one side and wood-based sheathing on the other side | - | 2.55 |
CFS light-frame shear walls with fiberboard or gypsum sheathing. | 2.0 to 2.5 | - |
Conventional construction CFS light-frame strap braced wall systems | - | 1.56 |
Non-Structural Components | Category |
---|---|
Drywall partitions and façades (in-plane response) Suspended discontinuous ceilings | (1) deformation-sensitive |
Drywall partitions and façades (out-of-plane response) Suspended continuous drywall ceilings | (2) acceleration-sensitive |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lorenzo, G.; De Martino, A. Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art. Buildings 2019, 9, 228. https://doi.org/10.3390/buildings9110228
Di Lorenzo G, De Martino A. Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art. Buildings. 2019; 9(11):228. https://doi.org/10.3390/buildings9110228
Chicago/Turabian StyleDi Lorenzo, Gianmaria, and Attilio De Martino. 2019. "Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art" Buildings 9, no. 11: 228. https://doi.org/10.3390/buildings9110228
APA StyleDi Lorenzo, G., & De Martino, A. (2019). Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art. Buildings, 9(11), 228. https://doi.org/10.3390/buildings9110228