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Abstract: This study presents a new analytical model on the dissipation process of the initial total
energy of the hemi-cylindrical shell subjected to the explosive blast load. The analytical formulation
has been established using the energy method. The analytical predictions have been validated
and found to be in excellent agreement with numerical simulations calculated by explicit finite
element method (via LS-DYNA). The variational parameters considered are the shell thickness,
elastic modulus, densities of the shell, and the positions of the detonation. Considering varieties
of the parameters, the analytical and numerical results demonstrate that the pattern of vibrating
deformations can be classified into two types according to the detonation positions. If the detonation
position was at the midpoint of the width, there was no main frequency, whilst if the detonation
position was at the edge of the width, the shell vibrated with a main frequency. It was also found
from both analytical and numerical models that the total initial energy is inversely proportional to the
thickness of the shell (T), namely, the exact formula can be written as β = ρac/ρsT. Surprisingly, this
study is the first to highlight that the total energy decreases with time by the exponential function,
and the exponential ratio (β) is inversely proportional to the thickness of the shell as well.
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1. Introduction

Hemi-cylindrical shell structures are used in many applications in ocean engineering, aerospace,
composite materials and civil engineering [1–6]. For example, submarine, sea detector, aircraft brakes,
ballistic components, gymnasiums, modern libraries, buried gas pipelines, and large span roofs are
some of the distinct fields of applications [7–10]. In all these applications, the cylindrically curved
panel structures can be subjected to different loading conditions. Due to the increased precision and
increased destructive power and lethality of modern weapons, both military structures and some civil
structures have become vulnerable to extreme shock loads [11–14]. Therefore, blast load is becoming
an important topic. How much energy a shell can absorb become more and more significant so
that structural engineers can safely design the shell structures [15–18]. However, little works on the
energy responses, especially on the decrease of energy deduced by air damping has been reported to
date [19–21].

Cylindrical shells are fundamental parts of large roofs and a wide number of military structures
which could be subjected to air blast load [22,23]. Most of them are related to the dynamic response
of isotropic shell structures subjected to the blast loads especially with some erosion criteria [24,25].
H. S. Turkmen [26] investigated the dynamic response of steel cylindrical shell panels subjected to air
blast load via the assumptions of Love’s theory of thin elastic shells. They used a Fourier transformation
technique to analyze the blast data. Santosa and Arifurrahman [27] studied the response analysis
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of blast impact load of metal-foam sandwich panels via numerical simulation. In their papers, A
parametric studies were carried out by varying panel thickness, specific material and foam density
for certain blast loads and impact stand-off distance. Nihal and Kennedy [28–30] researched the
dynamic stiffness equations of variable thickness cylindrical shells using Donnell, Timoshenko and
Flugge theories. A theoretical formula was derived in his paper. Tang et al. [31] founded an analytical
procedure for free vibration analysis of a circular cylindrical shell with arbitrary boundary conditions.
Chen and Ye used the Wittrick–Williams [32] algorithm to create a generalized formula with general
shaped meridians and arbitrary boundary conditions. Actually, they created a numerical method.
Thibaut and Nicolas [33] paid attention to the stability of the shell between static and dynamic buckling.
The different failure mode was discussed according to different loading rate.

Some experimental studies are related to shell structures subjected to blast load. Robert and
K. Clubley [34] have carried out a long duration blast load experiment of a cylindrical shell structure
containing varying fluid levels [35]. J. L. Ma et al. [35] studied the behavior of single-layer lattice
shells subjected to confined blast load. Their studies investigated the effect of scaled distance, the
ratio of rise to span, and the ratio of height to span. Emarti and M. K. Singha [36] studied a nonlinear
response of cylindrical panels subjected to a parabolical distributed blast load. The effects of the ratio
of span to thickness, radius to span and peak pressure were developed comprising Tsai-Wu quadratic
failure criterion.

Unfortunately, few studies which were devoted to the theoretical and experimental results of
the blast-loaded cylindrical shell structures can be found in the literatures [37–39]. In fact, there are
few publications of research on the air damping up to date [40,41]. Therefore, this study is the first
to establish the combination of theoretical study and numerical simulations in order to investigate
the hemi-cylindrical shell exposed to the explosive blast shock wave. Numerical simulations were
carried out using an explicit finite element method (LS-DYNA) to verify the theoretical predictions of
energy decrease contributed by the air damping. The mathematical model of the hemi-cylindrical shell
subjected to a blast load has been established by using the energy-based Donnell’s theory alongside
the modified theory of the damping forces. In addition, LS-DYNA software is utilized to obtain the
energy data numerically [42–44]. LS-DYNA results were compared with analytical results and excellent
agreement can be observed. According to the traditional approach in the design, there is no analytical
method to estimate the precise value of air damping. This study enables a novel analytical prediction
formulation that can be practically utilized in design and analysis of hemi-cylindrical shell structures
exposed to the explosive blast load. This new mathematical technique will reduce significantly the
time to calculate the energy responses of the structure in comparison with the numerical modeling.

2. Systems of Motion

The geometry of the hemi-cylindrical shells with simple supports at both longitude end was
investigated in this work. The equation of motion [45] is listed in Equation (1):{

Γ2φ+ D∇4ω+ ρstω′′ = p
1
Et∇

4φ− Γ2ω = 0
(1)

where, φ, ω represent the Airy’s function on the membrane force and the normal displacement,
respectively, D = ET3/12(1− v2), ρs, T the stiffness, density, and thickness of the shell, respectively.
E is the elastic modulus, p pressure acted upon the shell, ∇, Γ2 are defined as ∇ = ∂

∂x i + ∂
∂x j,

Γ2 = 1
rx

∂
∂x2 +

1
rs

∂
∂s2 , respectively. In the specific case of cylindrical shells, Γ2 = 1

R
∂
∂x2 . The 1st and 2nd

terms are taken into account as the B-surface force or S-surface force. According to the theory of
Donnell–Mushtari, Γ2φ expresses the normal pressure contributed from the extension of the middle
surface which is the so-called membrane force or B-surface force, and D∇4ω expresses the normal
pressure contributed from the curvature of the middle surface which is the so-called moment force or
S-surface force. The diagram of geography and coordinate is shown in Figure 1.
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n
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while the classical frequency formula derived from Donnell’s theory is shown as Equation (8), 
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Figure 1. The diagram of a cylindrical coordinate.

2.1. Frequency Analysis

When the free vibration is considered, both φ and ω can be assumed as a harmonic function with
the same frequency ω0. Meanwhile, the shell can be assumed to vibrate in an n-th half wave along the
length and an m-th half wave along the semi-circular arc. So, it can be concluded that [28,46],{

ω = A · sin( nπ
S x) cos(mπ

L s) cos(ω0t)
φ = B · sin( nπ

S x) cos(mπ
L s) cos(ω0t)

(2)

where, S = πR = αL, donate the length along the hemi circular arc, L is the length of the cylindrical
shell and A, B is a coefficient, respectively. Therefore, the following statement is true according to the
2nd term of Equation (2),

∇
4 = (

n2

S2 +
m2

L2 )
2

φ =
ET
R2 ·

n2

S2ω⇒φ =
ET
R2 ·

n2S2

(n2 + α2m2)2ω. (3)

By Substituting Equation (3) to the first term of Equation (1) without any pressure acting on the
shell, the Equation (2) may be simplified as Equation (4) shown below,

ET
R4
·

n2S2

(n2 + α2m2)2ω+ D∇4ω+ ρsT ·ω′′ = 0. (4)

As for the natural frequencies, it may be derived after substituting Equation (2) into Equation (4),

ω2
0 =

1
ρs
{

E
R4

n2S2

(n2 + α2m2)2 +
Dπ4

T
(

n2

S2 +
m2

L2 )
2

}, (5)

If denote symbols, Ω2 =
ρsR2(1−v2)

E ω2, k = T2

12R2 , the dimensionless symbol value can be deducted
below as Equation (6),

Ω2 =
π2n2(1− v2)

(n2 + α2m2)2 + k(n2 + α2m2)
2
. (6)

If only circumferential modes are considered, m = 0 and Equation (6) may be simplified as,

Ω2 = {
π2(1− v2)

n2 + kn4
}, (7)

while the classical frequency formula derived from Donnell’s theory is shown as Equation (8),

Ω2 =
1
2
{1 + n2 + k(n2

− 1) −
√
(1 + n2 + k(n2 − 1))2

− 4k · n2(n− 1)2
}. (8)

Figure 2 reveals the comparison of frequencies calculated from classical formula and this paper.
The frequency predictions of this paper and Donnell’s theory are in excellent agreement since the 4th



Buildings 2019, 9, 168 4 of 28

order mode has less than 5% deviation. In addition, the Equation (7) is a new modified mathematical
technique, which is simpler in a practical form and can be applied to calculate the frequency of 3-D
model whilst the Donnell’s formula can be applied to the 2-D model only.
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2.2. Relationship between Energy and Position

The pressure impulse [47,48] can be calculated as follows,

I = 200q2/3/r. (9)

Thus, the total energy absorbed in the blast event by the shell is proportional to the impulse
multiplying by pressure area. Considering that the position of detonation is at the midpoint of the
width, Figure 3 shows the schematic diagram for the calculation of energy caused by blast impulse.

Ee ∝

∫ L

0
I · ds ∝

∫ s2

s1

R

R2 + (z− z0)2 ds ∝ 200q2/3
{a tan(

L− z0
R

) + a tan(
z0
R
)},

where, Ee denote the total energy. Let z = z0/L, r = R/L, the solution can be deduced as

Ee ∝ 200q2/3
{a tan(

1− z
r

) + a tan(
z
r
)}. (10)
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Figure 3. The calculation sketch of energy when detonation is in the middle along the width.

According to the Equation (10), the total energy Ee will reach the value of max at z = 0.5, where the
position is just at the midpoint of longitude of the shell exactly. The coefficient should be determined
by the configuration, thickness, and material of the shell.
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2.3. Energy Analysis of the Damping Load

The air damping in the vibrating shell can be predicted as ρdω
′, where ρd is the density of air.

Thus, If the damping force is taken into account, the free vibration of Equation (4) may be rewritten as
Equation (11) below by adding damping force,

Et
R4

n2S2

(n2 + α2m2)2ω+ D∇4ω+ ρsTω′′ + ρdω
′ = 0. (11)

The energy contributed from the damping load is,

Ed = ρd

∫ t

0
dt
∫

Ω
v2ds.

And the kinetic energy of the shell structure can be obtained as,

Ek =
1
2
ρsT
∫

Ω
v2ds.

Therefore, it may be obtained finally,

Ed = β

∫ t

0
Ekdt or

dEd
dt

= βEk, where
2ρd

ρsT
= β. (12)

Due to the principle of energy conversion, the internal energy and kinetic energy of shell transfer
to each other in the procedure of vibration. The maximum value of energy in both internal energy and
kinetic energy is equivalent with a few differences between phases. As for the high frequency in the
procedure of blast, it is reasonable to assume the internal energy of the shell be equal to the kinetic
energy. According to the conservation of energy laws, it may be concluded that,

2Ed + Ek + Ei = E0 (13)

where, E0 is a constant denoting the total initial energy. Substituted with the relationship of Equation (12),
it can be obtained that, β

∫ t
0 Ekdt + Ek = E0, finally, the solution can be derived,

Ek = E0e−βt. (14)

The solution of Equation (14) shows that after a short blast duration, the shell will absorb a certain
degree of energy which is equivalent to E0 which will decrease by the exponential function with the
exponential ratio β.

Nevertheless, kinetic energy is not equal to internal energy sometimes. As described below, the
energy decreases by the exponential function and there is a phase difference between the internal
energy and the kinetic energy. Therefore, taking account into such difference, it is reasonable to assume
that [49],

Ei = Ek −Ae−αt sin(ω0t + ϕ) (15)

where, A is the amplitude, α the exponential ratio, both of which can be determined by the geometry
configuration, material of the shell and the position of blast detonation. ϕ is the difference of phase
between the internal energy and kinetic energy. Thus, the conservation equation may be rewritten as,

2Ed + 2Ek −Ae−at sin(ω0t + ϕ0) = E0. (16)
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The theoretical solution can be concluded as,

Ek = E0e−βt +
A
2

e−αt sin(ω0t + ϕ0)

(b + β)2 +ω2
0

,

where, A = A
√
(b2 − bβ+ω2

0)
2
+ β2ω2

0, tan(ϕ0) = (b2
− bβ+ ω2

0)/βω0. When the frequency ω0 is
large, the solution can be simplified as Equation (17),

Ek = E0e−βt. (17)

The formula Equation (17) is identical to Equation (14) exactly. Whilst the vibration frequency
ω0 is small, sin(ω0t + ϕ0) may be treated as a constant value in the limit range. So, the solution can
be simplified,

Ek = E1e−βt + E2e−αt, (18)

where E1 + E2 = E0, is the initial total energy of shell after blast procedure and E1 − E2 should be fixed
by the configuration and properties of the model.

2.4. Pressure Load

Contributed by lots of experiments, there are several blast models for numerical calculation of
blast load. The Brode model [50,51] does not account for the angle of incidence of the blast wave on the
surface of the structure. The CONWEP algorithms [52] however considered the angle by combining
the reflected pressure (normal-incidence) value and the incident pressure (side-on incidence) value
which is also the method that LS-DYNA accepts. The pressure load is calculated by Equation (19) by
using the keywords *LOAD_BLAST_SEGMENT_SET and *LOAD_BLAST_ENHANCED in LS-DYNA
software [53,54].

Pinc = Ps(1− τ)e−aτ, τ =
t− ta

t+ − ta
(19)

Figure 4 presents the pattern of blast load from Equation (19) and the results obtained from
numerical simulation. It can be seen that the shape of pressure vs. time from both theory and simulation
are the same. The peak pressure is determined by both the position and the mass of detonation. In
addition, the velocity of the blast is more than 1000 m/s so that there is some time delay in the different
position when the blast reaches.

Buildings 2019, 9, x FOR PEER REVIEW 6 of 28 

where, 2 2 2 2 2
0 0( )β ω β ω= − + +A A b b , 2 2

0 0 0tan( ) (b bϕ β ω βω= − + )/ . When the frequency 0ω  is 
large, the solution can be simplified as Equation (17), 

0
t

kE E e β−= . (17) 

The formula Equation (17) is identical to Equation (14) exactly. Whilst the vibration frequency 

0ω  is small, 0 0sin( )ω ϕ+t  may be treated as a constant value in the limit range. So, the solution can 
be simplified, 

1 2
t t

kE Ee E eβ α− −= + , (18) 

where 1 2 0+ =E E E , is the initial total energy of shell after blast procedure and 1 2−E E  should be 
fixed by the configuration and properties of the model. 

2.4. Pressure Load 

Contributed by lots of experiments, there are several blast models for numerical calculation of 
blast load. The Brode model [50,51] does not account for the angle of incidence of the blast wave on 
the surface of the structure. The CONWEP algorithms [52] however considered the angle by 
combining the reflected pressure (normal-incidence) value and the incident pressure (side-on 
incidence) value which is also the method that LS-DYNA accepts. The pressure load is calculated by 
Equation (19) by using the keywords *LOAD_BLAST_SEGMENT_SET and 
*LOAD_BLAST_ENHANCED in LS-DYNA software [53,54]. 

(1 ) ττ −= − a
inc sP P e , τ

+

−
=

−
a

a

t t
t t

 (19) 

Figure 4 presents the pattern of blast load from Equation (19) and the results obtained from 
numerical simulation. It can be seen that the shape of pressure vs. time from both theory and 
simulation are the same. The peak pressure is determined by both the position and the mass of 
detonation. In addition, the velocity of the blast is more than 1000 m/s so that there is some time delay 
in the different position when the blast reaches. 

  
(a) (b) 

Figure 4. The plot of pressure vs. time in theory and numerical simulation. (a) The pattern of blast 
load, (b) The time history of blast load in simulation 

2.5. Numerical Verification 

To verify the numerical method, the simulations of the experiments in the studies [55] have been 
carried out again via the commercial software LS-DYNA (incensed by ANSYS 19.0). The model was 
a rectangle membrane vibrating under a collision load. The membrane is made of Heytex H5474 and 
the geometry details are shown in Figure 5a. Besides, the blast load is simulated by a sphere bullet 
acting upon at the center of the membrane labeled as point C1. Figure 5b shows the corresponding 
numerical model where the air element is hidden. In the model, the grid size of shell was 10 mm and 
that of bullet is 5 mm. There are 39,071 quadrilateral elements after meshing. The bullet was then 
simulated as a sphere with the same radius and density to the bullet. In order to consider the effect 
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Figure 4. The plot of pressure vs. time in theory and numerical simulation. (a) The pattern of blast
load, (b) The time history of blast load in simulation

2.5. Numerical Verification

To verify the numerical method, the simulations of the experiments in the studies [55] have been
carried out again via the commercial software LS-DYNA (incensed by ANSYS 19.0). The model was a
rectangle membrane vibrating under a collision load. The membrane is made of Heytex H5474 and the
geometry details are shown in Figure 5a. Besides, the blast load is simulated by a sphere bullet acting
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upon at the center of the membrane labeled as point C1. Figure 5b shows the corresponding numerical
model where the air element is hidden. In the model, the grid size of shell was 10 mm and that of
bullet is 5 mm. There are 39,071 quadrilateral elements after meshing. The bullet was then simulated
as a sphere with the same radius and density to the bullet. In order to consider the effect of the air, it
was assumed to be an elastic material with a density of 1.225 kg/m3, bulk module 101,325 Pa.
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Figure 5. The experiment model and the numerical model. (a) Experiment geometry model (mm).
(b) Numerical model with hiding air element.

Figure 6 shows the comparison of displacement time history at C1 and C2. The experiment data
is expressed in a solid green line with a square and the numerical result is plotted in a dotted blue line
with a circle. The cycle time of experiment and simulation is 0.071 s and 0.072 s which can be seen as
the same value. The correlation coefficient of C1 and C2 are 0.931, 0.927, respectively. If the abscissa
value is considered from 0.0 s to 2.0 s only, the correlation coefficient can be improved to 0.952, 0.962
respectively. Therefore, it can be concluded that the data fit well and the numerical model can be used
to calculate the dynamic response of the shell vibrating in the air.
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Figure 6. The comparison of the displacement time history of C1 and C2.

3. Numerical Simulations

3.1. Simulation Model

In order to verify the analytical prediction, some numerical investigations were carried out via the
commercial software LS-DYNA (incensed by ANSYS 19.0). The prototype model has been developed
using a popular steel hemi-cylindrical shell with radius R = 5.0 m, length L = 30 m, and thickness
t = 0.01 m. The commonly-used steel of Q235 type has been used in such models with an elastic
modulus of 2.1 × 1011 Pa, and a Poison’s ratio of 0.23. To consider the effect of air, it was considered as
an elastic fluid with bulk modulus 101,325 Pa. In such a case, the effect of air was assumed as an elastic
material. The density of air is 1.225 kg/m3, viscous coefficient 1.81 × 10−5 kg/(ms), which means [56,57]
the sound speed was c = 287.6. The model sketch is shown in Figure 7. As for the boundary condition
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of shell, both longitude side were pinned. For the boundary of the air, the elements at the ground
position were fixed, while the equation of state (EoS) was set to that of an ideal gas, represented by
*EOS_IDEAL_GAS.
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As for the parameter analysis, the variable thickness and the ratio of radius to length with a certain
blast point are considered. The summary of numerical simulations is list below. The meshing model is
presented in Figure 7. And the arrangement of detonation position was present in Figure 8.

Table 1 shows the relationship between total energy, max displacement, and the density of the
mesh. Considering the balance of the calculation time and the numerical precision of simulation, the
element density of 0.3 m was accepted in the simulation. After meshing, there were 72,773 nodes,
70,080 elements including 1920 shells, and 68,160 solid elements in the model. The blast point was
set to the position of P11, P12, P13, P21, P22, P23, and TNT charge was set to be 10 kg. To save the
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calculation time, the dead time of the blast was set to 0.01 s. As this paper focuses more on energy, the
simulation result of the air is not discussed below.
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Table 1. The total energy with different density of mesh.

Density of Mesh (m) 2.0 1.0 0.8 0.5 0.3 0.2 0.1

Total Energy (104 J) 4.52 4.21 3.93 3.90 3.89 3.89 3.88
Max Displacement (mm) 82 73 70 69 68 67 67

3.2. Natural Frequencies and Corresponding Mode Shapes

To identify the different vibrational modes in correlation with the position of blast detonation, the
modes of vibration and natural frequencies are identified using LS-DYNA. The results are evaluated in
this section with a thickness of 0.01 m. Figures 9 and 10 show the edge configuration in the vibrating
time t = 0.26 s, 0.76 s, and 1.26 s with the case of P11 and P13, respectively. From both Figures, it can be
depicted that the shell vibrates in the symmetrical radial directions.
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Figure 11a–d show the time history of displacement and correspondent FFT (fast Fourier
transformation [58,59]) result. It illustrates that the first three main frequencies are 4.0 Hz, 7.5 Hz, and
11.5 HZ excluding the DC component, which means the vibration at the conditions of P11 and P13
comprise of several main frequencies.
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Figures 12 and 13 show the asymmetrical configuration at the vibrating time t = 0.24 s, 0.60 s, and
1.26 s at the conditions of P21 and P23, respectively. From both figures, it can express that the shell
sway left to right and came back periodically.

Figure 14a–d show the time history of displacement and the correspondent result of FFT. It
illustrates that the main frequency is 3.5 Hz excluding the DC component which means the vibration
of P11 and P13 has a main frequency. And the main frequency is less than the first order frequency at
the conditions of P11 and P13.
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Figure 12. The displacement mode when t = 0.24 s, t = 0.60, t = 1.26 s, P21. (a) t = 0.24 s, (b) t = 0.60 s,
and (c) t = 1.26 s.
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Figure 14. The displacement vs. time and correspondent result of FFT, P13, and P23. (a) The
displacements of points at the condition P21. (b) The corresponding result of FFT at the condition
P21. (c) The displacements of points at the condition P23. (d) The corresponding result of FFT at the
condition P23.

The different vibrational modes result from different position of blast detonation. Figure 15
depicts the blast load on the condition of P1 and P2. When the detonation is at the middle of the width,
blast load acting on the shell are radially uniform as seen in Figure 15, so that the shell is excited only
in the radial direction through a localized mode. In contrast, in the asymmetrical condition of blast
detonation being at the edge of the structure, the blast load acting on the shell is not symmetrically
uniform. The closer the shell element next to the detonation, the larger the asymmetrical blast load is.
Therefore, the shell vibrated from left to right in a global mode of vibration.
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3.3. Global Energy

The analytical model described above can also calculate the energy responses based on the
numerical simulation’s parameters. The total energy mainly includes the kinetic energy, the internal
energy of the shell, the outside air and the inside air. Figure 16 shows the time history of the global
kinetic, internal, and total energy, while Figure 17 plots the time history of the integrations of the
kinetic, internal and total energy. From the conservative law of energy, the global total energy should
be the same after the blast time 0.01 s. Figure 16 depicts the total energy of all parts is the same after
0.01 s. But the total energy of the shell part alone decreases with respect to time, whereas the internal
energy of the air part increases.

Figure 17 shows that the integration of the kinetic energy of the shell part and the internal energy
of both the inner air part and outer air part. The result of energy fits Equations (12) and (14) really well.
In Equation (14), the formula shows that the total energy decrease with the principle of exponential
function. And, the result in the Figures 16 and 17 was in the appliance to such laws. This means that
the energy decreased from the shell element is the reciprocal effect as the increase of the energy of the
air parts interacting with the shell. Importantly, the increased energy of the inside air and the outside
air are almost the same.
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Figure 16. The plot of global and shell part energy vs. time. (a) The energy plot of all parts in the
simulation, (b) The energy plot of shell part
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Figure 17. The plot of energy vs. time and the integration of shell part energy.

3.4. Displacement

To compare the different displacement modal, the contour map of condition P12 and P22 with
varied timed are shown in Figures 18 and 19. Figure 18 illustrates the radial displacement with the
times of 0.6 s, 1.2 s, 1.8 s, and 2.4 s respectively. It can be concluded that there is no evitable modal
displacement in both circumferential and longitudinal directions. Figure 19 also demonstrates that in
the circumferential direction, there is evitable displacement, while in the longitudinal direction, the
displacement modal is not obvious.
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3.5. The Velocity of the Air Part

Figure 20 depicts the velocity counter of air part. Figure 20a shows that of air outside and
Figure 20b illustrates that of air inside. It can be seen from Figure 20a that the velocity of the radial
direction is almost the same in the circumferential direction. That mean the velocity of the shell is same
in the radial direction for the velocity of the boundary air is from the motion of the shell. As for the
part of air inside, the principle of radial velocity is same except for the larger value.

Figure 21 depicts the velocity contour of the air part at the condition of P22. The Figure 21a shows
the contour of the air part outside and Figure 21b illustrates that of the air part inside. It can be seen
from Figure 20a, the radial velocity is very different in the circumferential direction, on the other hand,
the radial velocities almost are the same according to Figure 20b. The velocity in Figure 21 plots that
the air flow from left to right which means that the shell vibrates from left to right. These differences
contributed from different vibration modal were discussed in Section 3.3.
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part outside. (b) Air part inside.

Buildings 2019, 9, x FOR PEER REVIEW 15 of 28 

 
(a) 

 
(b) 

Figure 20. The velocity counter of the air part with a thickness of 0.01m, P12, when t = 1.20 s. (a) Air 
part outside. (b) Air part inside. 

 
(a) 

 
(b) 

Figure 21. The velocity counter of air part with thickness 0.01 m, P22, when t = 1.20 s. (a) Air part 
outside. (b) Air part inside. 

Figure 21. The velocity counter of air part with thickness 0.01 m, P22, when t = 1.20 s. (a) Air part
outside. (b) Air part inside.



Buildings 2019, 9, 168 16 of 28

4. Parametric Analyses

It is apparent that the new analytical model can be used very well to predict the blast effects on
the hemi-cylindrical shell structures. However, to enhance the insight into the blast responses of the
structure in operations for real world applications, it is crucial to carry out further parametric studies.

4.1. Displacement Analysis

Figure 22 shows the displacement time history of three points and the consequent FFT result on
the condition of thickness 0.03 m, R = 5.0 m, z = L/4, x = 0.0. The coordinates of the three points are
(0, R, 0), (0, R, L/2), (R/2,

√
3/2R, L/2), respectively. From Figure 22, it is very clear that there are several

main frequencies and the dominant frequency is large. Thus, according to the discussion above, when
the blast detonation position is at the middle of the shell, it can be derived that the energy decrease
principle can be described in the formula shown as Equation (14).
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Figure 22. The plot of displacement time history when the thickness is 0.03 m, P12.

Figure 23 shows the x-displacement time history of the same three points and the consequent FFT
with the condition of thickness 0.03 m, R = 5.0 m, z = L/4, x = R/2. The main frequency is 1.3 Hz which
is the dominant one in the whole frequencies. That means when the blast detonation position is close
to the edge, the principle can still be described by the formulation of Equation (18).
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Figure 23. The plot of x-displacement vs. time when the thickness is 0.03 m, P22.

Figure 24 presents a configuration after deformation with x = 0 (P12) and x = R/2 (P22). It shows
that, when the detonation is at x = R/2, the configuration modal is in low frequency pattern, while, the
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detonation is at x = 0, the modal configuration is in large frequency modal. The result of Figure 24
agrees very well with those of Figures 20 and 21. The deviation is less than 4%.Buildings 2019, 9, x FOR PEER REVIEW 17 of 28 
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Figure 24. The configuration of the shell with displacement multiplied 50 times, t = 1.30 s.

4.2. Total Energy vs. Thickness

To obtain the relationship between T and the decrease ratio β, some more simulations have been
conducted. As mentioned above, T/D should be more than 1/100 and less than 1/20. As the parameter,
D = 2R = 10 m, the thickness should be among in 0.01–0.1 m. As predicted in Section 2.1, it can be
seen that the value of β is proportional inversely to a thickness of T, so the typical simulation with
the thickness being 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.06, 0.10, 0.20, and 0.50 were calculated. The
other parameters and results as listed in Table 2. Besides, to compare the different effects of detonation
points, the coordinates with x = 0.0, L/4, L/2 are taken accounted in. Detonation point arrangement is
listed in Figure 8 above.

Table 2. The initial total energy (×104 J) and the ratio β at different T /m.

T z/L E0 β z/L E0 β z/L E0 β z/L E0 β

0.010

0/4
with
x = 0
R = 5
L = 30

6.2 3.87

1/4
with
x = 0
R = 5
L = 30

12 3.74

2/4
with
x = 0
R = 5
L = 30

12.5 3.93

2/4
with
x = 0

R = 7.5
L = 30

9.9 3.89
0.015 4.1 2.53 8.1 2.46 8.25 2.59 6.6 2.59
0.020 3.2 2.03 6.2 2.04 6.31 2.16 4.9 1.94
0.025 2.5 1.44 4.8 1.72 4.94 1.89 4.0 1.55
0.030 2.0 0.87 3.9 0.77 4.03 0.83 3.3 1.26
0.040 1.5 0.69 2.9 0.65 2.94 0.69 2.3 0.86
0.060 1.0 0.38 2.0 0.39 1.96 0.38 1.5 0.33
0.100 0.6 0.24 1.2 0.24 1.25 0.24 1.0 0.23
0.200 0.3 0.12 0.6 0.13 0.59 0.12
0.500 0.1 0.02 0.2 0.03 0.19 0.03

From the results of Table 2, the decreasing ratio with radius R = 7.5 m is the same as that of the
radius R = 5 m at the condition of Z = 2/4, X = 0 and L = 30. Therefore, it can be obtained that the laws
about the energy decreasing with time have no effect with the radius of the shell.

Figure 25 shows the fitting curve with data of energy vs. time. The coefficients are listed in Table 2
with 95% confidence bounds. The fitting curve agrees extreme well with the data seen from the plot.
In fact, the other conditions reveal the same outcomes, which are not shown in this paper.

Figure 26 is the plot of the ratio vs. the thickness with Z = 0, L/4, L/2 respectively and x = 0, R = 5 m.
It can be obtained from the results that the total energy is proportional inversely to the thickness of the
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shell. According to the Equation (4), the moment force can be neglected when the thickness T is small,
during the period of the blast, it can be simplified as shown in Equation (20),

ET
R4

n2S2

(n2 + α2m2)2ω+ ρstω′′ = P(t) (20)

where, P(t) is the blast load. According to the Equation (20), the displacement of ω is proportional
inversely to the thickness. The empirical formula can be seen as E = A/T, where, A is a parameter
depending on the configuration and the materials of the model.Buildings 2019, 9, x FOR PEER REVIEW 18 of 28 
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Figure 25. The energy time history with thickness t = 0.01 m, x = 0.0 m and z = 0, z = L/2 respectively.
(a) z = 0.0 m. (b) z = L/2 m.
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Figure 26. The plot of the ratio vs. thickness when x = 0.

Figure 27 expresses the difference in the fitting curve and simulation data fitted with Equations (14)
and (18), respectively. From Figure 27, it shows that in the conditions of detonation close to the shell
side, the decrease of energy agrees with Equation (18) but not Equation (14). And in Equation (18),
there are four parameters about E1, E2, β, and α. Where, E1 + E2 is the total initial energy, β is the
decrease ratio determined via Equation (12) and α is another decrease ratio determining the difference
between internal energy and kinetic energy. All the parameters in different thickness are listed in
Table 3 according to the Equation (18).

Figure 28 depicts the principle of total energy E1 + E2 related to the thickness of the shell. Also, it
reveals that the initial energy in the condition of detonation next to shell side also fit the analytical
prediction in this study well extremely.
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Figure 27. The comparison between Equations (14) and (18).

Table 3. The initial total energy (×104 J) and the ratio β at different T /m.

T z/L E1 E2 β α z/L E1 E2 β α z/L E0 β

0.010

0/4
with
×2.5
R = 5

5.2 1.6 5.12 0.38

1/4
with
×2.5
R = 5

9.8 3.6 4.46 0.32

2/4
with
×0.0

R = 7.5

9.9 3.89
0.015 3.2 1.4 3.35 0.26 5.9 3.4 3.57 0.28 6.6 2.59
0.020 2.0 1.5 2.95 0.32 4.1 3.0 3.01 0.25 4.9 1.94
0.025 1.6 1.2 1.74 0.24 3.1 2.5 1.81 0.24 4.0 1.55
0.030 0.8 1.5 1.30 0.37 2.4 2.4 1.86 0.27 3.3 1.26
0.040 0.8 0.9 1.24 0.15 1.6 1.9 1.41 0.17 2.3 0.86
0.060 0.6 0.6 1.07 0.13 1.3 1.1 1.18 0.13 1.5 0.33
0.100 0.3 0.5 1.11 0.17 0.6 0.9 1.07 0.16 1.0 0.23
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Figure 28. The comparison between Equations (14) and (18).

4.3. Decrease Ratio vs. Thickness

As for the parameters described above, it can be known that the sound velocity of air is
c =
√

Eb/ρa = 287 m/s resulting in the exponential coefficient being β = ρac/ρsT = 0.045/T. As
predicted from Equation (12), the coefficient is proportional inversely to the thickness of shell. Figure 29
shows the exponential coefficient of energy vs. thickness with z = 0, z = L/4 and z =L/2. In addition,
the theoretical result above is also illustrated for comparison. The results show that the numerical
data fits very well with the analytical prediction. It is also found that the displacement of the shell is
proportional inversely to the thickness, resulting in the fact that the energy contributed by damping
force is proportional inversely to the thickness as well.
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Figure 29. Plot of ratio vs. thickness when x = 0.

Based on the discussion above, it can be concluded that the energy of shell after blast decreases in
accordance with the exponential function, while, the exponential ratio is proportional inversely to the
thickness and the scale factor is 2 times of the ratio ρa/ρs.

Figure 30 illustrates the comparison of the decrease ratio β in the conditions of Z = 0, Z = L/4,
Z = L/2, R = 7.5, Z = L/2 and the analytical result, respectively. In the conditions of Z = 0, the adjusted
R-square is 0.89 whilst in the conditions of Z = L/4, the adjusted R-square is 0.94. In addition, as seen
from Figure 30, it can be derived that the analytical and numerical simulation data agree very well
in the cases of shell thickness among [0.01 m–0.06 m], whilst the discrepancy between simulation
and theory becomes larger by a certain degree when the shell thickness is larger than 0.06 m. This
discrepancy is because the nature frequency of the shell is very large with the large thickness. In such a
case, the assumption of the theory is not exactly correct.
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Figure 30. The comparison of decreasing ratio in the conditions of Z = 0, Z = L/4 and theory.

4.4. The Analysis of Elastic Modulus

The effects of elastic modulus E and Poisson’s ratio υ have been investigated. Table 4 shows the
conditions according to different E and υ with R = 5 m and L = 30 m, where the detonation position is
at (0,0,0), (0,0,0), and (2.5,0,15), respectively.
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Table 4. The initial total energy (×104 J) and the ratio β at different E and υ, with R = 5, L = 30.

E υ E0 β υ E0 β υ E1 β E2 α

910

Case 1
0.23

Z = 0/4 × 0.0

1.89 3.29

Case 2
0.13

Z = 0/4 × 0.0

1.91 3.28

Case 3
0.07

Z = 2/4 × 2.5

3.37 3.25 5.28 0.30
470 3.46 3.45 3.52 3.45 2.11 5.09 3.53 0.61
210 6.16 3.82 5.91 3.86 10.8 6.41 3.73 0.55
170 6.76 4.01 7.26 3.95 12.7 7.19 3.10 0.46
140 7.81 4.29 8.25 4.53 12.2 7.34 4.40 0.52
70 10.2 4.55 11.7 4.62 13.0 7.82 5.65 0.37
40 11.8 4.29 11.7 4.42 11.5 9.13 6.78 0.31
10 14.3 4.31 13.8 4.37 8.64 14.6 19.7 0.05

Figure 31 presents the curve fitting using an exponential function in accordance with Equation (14).
All the analytical results of Case 1 and Case 2 are compliance with the Equation (14). The statistics
about the initial energy and decrease ratio can be seen in Table 4.
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Figure 31. The plot and fitting curve of energy vs. time with E = 140 and 470 in case 1, respectively.

From the results of Case 1 and Case 2 shown in Figure 32, when only Poisson’s ratio changes from
0.23 to 0.13, it can be seen that the analytical results of both cases are similar, the correlation coefficients
of energy and β are 0.989, 0.989, respectively. It is evident that the Poisson’s ratio has little effect on the
initial energy and decrease ratio.
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Figure 32. The comparison of energy and decrease ration vs. elastic modulus.

Figure 33 presents the curve fitting using an exponential function in accordance with Equation (18).
The correlation coefficients of the two cases is 0.978 and 0.987, respectively. All the results of Case 3
are in compliance with the Equation (18). The statistics about the initial energy and decrease ratio are
shown in Table 4 as well.
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Figure 33. The plot of energy vs. time with E = 70, 470 GPa in case 1, respectively.

Figure 34 illustrates the relationship between initial energy vs. elastic modulus. According to
Figure 34, the fitting solutions by the least square method can be obtained. The fitting type is considered
as a/(a+ E), where a is the parameter which should be determined. The fitting results are in very good
agreement with SSE of 0.08 and R-square of 0.9993, which shows that there can be a rational correlation
between energy and elastic modulus. It is noted that, when the elastic modulus limits to zero, the
energy tends to be a limited value, not infinite value. That is the influence partially contributed by the
air around the shell inside and outside.
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Figure 34. The plot of energy vs. elastic modulus with t = 0.01 m, detonation position, x = 0, z = 0.

4.5. Material Parameters

As mentioned in Equations (14) and (18) above, the laws of energy decrease have nothing to do
with the different material model. In this section, the simulations at the different material model and
different densities have been carried out. Table 5 shows the simulation results in the plastic model
of E = 210 GPa, υ = 0.23, fy = 410 MPa, Et = 4.0 GPa with density being 10, 7.8, 4.0, 2.0, 1.0, 0.6, and
0.3 ton/m3, respectively. Where, fy denote the yield stress, Et tangent elastic modules. In the LS-DYNA
software [54,60], the Keywords *MAT_PLASTIC_KINEMATIC was used. It should be noted that in all
the situations listed in Table 5, the shell remained in the elastic stage.
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Table 5. Simulation results at plastic kinematic model.

ρ (ton/m3) 10 7.8 4.0 2.0 1.0 0.6 0.3

E0 (104 J) 1.94 2.13 2.31 2.31 2.18 1.95 1.80
β 4.62 3.84 2.18 1.16 1.73 2.33 3.53

From Table 5, it can be found that the density of shell has no obvious relationship with the total
initial energy. It still can be found that at the same blast load, the inertial force will decrease with the
decrease of density, resulting in an increase of displacement as well. Therefore, the internal energy of
the shell after the blast process will increase as well. Meanwhile, the kinetic energy will decrease with
the decrease in density. So, the total energy has no significant affection for the changes in density.

Figure 35 shows the relationship of energy vs. time at the condition of density 10 ton/m3. It can be
seen that the result fits very well with Equation (14) of this study. Actually, all the other conditions
listed in Table 5 fits Equation (14) well.
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Figure 35. The plot of energy vs. time at density ρ = 10 ton/m3.

Figure 36 shows the relationship between the decrease ratio and the density of the shell. From
Figure 36, it can be concluded that when the density is less than 2.0 ton/m3, there is an obvious
discrepancy between the numerical simulation result and the analytical prediction. Whilst, the density
is more than 2.0 ton/m3, the theory result agrees with the simulation result very well. The transit point
is at density of 2.0 ton/m3. The results show that the application of Equation (14) is limited in the range
of density larger than 2.0 ton/m3. Those characteristics due to the limit of assumption accepted in
this study.
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It should be noticed that on this condition, some shell element goes into the plastic stage. So, the
value of E0 at conditions of density 4.0, 2.0, and 1.0 ton/m3 in Table 5 is the total initial energy, which is
also the same as the value of E1 + E2.

Figure 37 shows that at the condition of density = 2.0 ton/m3, the principle of energy decrease is
compliance with Equation (18), while at the condition of density 7.8 ton/m3, the principle of that is
compliance with Equation (14).
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Figure 37. The plot of energy vs. time at the density = 7.8, 2.0, respectively.

Figure 38 illustrates the different mode of kinetic energy and internal energy. It can be seen from
the left plot of Figure 38 that at the condition of density 7.8, the kinetic energy has the same principle to
the internal energy approximately. While, at the condition of density 4.0, the internal energy is larger
than the kinetic energy for the existence of plastic strain energy which cannot be transformed to kinetic
energy. This means that if the structure goes into the plastic stage, the principle of energy decrease is in
compliance with Equation (18) but not Equation (14). In addition, the parameters in Equation (14) can
be obtained as listed in Table 6.
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Figure 38. The comparison of internal energy and kinetic energy at density = 7.8, 4.0 ton/m3.

Table 6. Plastic kinematic model, E = 210 GPa, υ = 0.23, fy = 210 MPa, Et = 4.0 GPa.

ρ (ton/m3) 10 7.8 4.0 2.0 1.0

E0 (104 J) 5.62 6.08 7.52 7.86 8.21
β 4.63 3.76 3.12 1.48 2.75
α / / 0.12 0.03 0.06
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5. Conclusions

This study establishes a new analytical model of the total initial energy and the energy responses
of the hemi-cylindrical shell subjected to the explosive blast load. Both the new analytical prediction
and the explicit finite element analysis were used to evaluate the energy response of the structure
vibrating in the air under the external blast load by employing both analytical and numerical studies.
The simulation results demonstrated that the global deformation model is classified into two types,
which indicates that the detonation position is the dominant factor for the deformation models of the
hemi-cylindrical shells. When the detonation position was symmetrical at the middle of the shell, the
vibration frequency had several main frequencies with a high order modal shape. Correspondingly,
the shell vibrated in the radial direction. When the detonation position was next to the edge of the
shell, it vibrated in a main frequency with a low modal shape. Correspondingly, the shell vibrated
from left to right and came back regularly.

This study is the first to demonstrate that the total initial energy which the shell can absorb in the
duration of the blast is proportional inversely to the thickness of the shell. Besides, Poisson’s ratio of
the shell has little effect on total initial energy and the relationship to elastic modulus can be formulated
as a rational function.

The key parametric studies in this paper include the thickness of the shell and the explosive
detonation positions. It is found that the total energy of the shell contributed from blast load is inversely
proportional to the thickness of the shell. In addition, the total energy decreases in an exponential
manner respectively to time and the decrease ratio is inverse proportional to the thickness of the shell;
finally, the exact formula is β = ρac/ρsT. The thickness of shell plays a key role in both total initial
energy and the decrease ratio of energy. Therefore, these insights can be useful in dealing with the
design and analysis of hemi-cylindrical shell structures to resist explosive blast load.
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