Experimental Infection of Ticks: An Essential Tool for the Analysis of Babesia Species Biology and Transmission
Abstract
:1. Introduction
2. General Description of the Babesia Life Cycle
3. Experimental Models of Babesia Species—Transmission by Ticks
3.1. Tick Infestations on Babesia spp. Infected Animals
3.2. Tick Infection through Artificial Feeding Systems
3.3. Tick Infection through Injection
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Homer, M.J.; Aguilar-Delfin, I.; Telford, S.R., 3rd; Krause, P.J.; Persing, D.H. Babesiosis. Clin. Microbiol. Rev. 2000, 13, 451–469. [Google Scholar] [CrossRef]
- Lobo, C.A.; Singh, M.; Rodriguez, M. Human babesiosis: Recent advances and future challenges. Curr. Opin. Hematol. 2020, 27, 399–405. [Google Scholar] [CrossRef]
- Chauvin, A.; Moreau, E.; Bonnet, S.; Plantard, O.; Malandrin, L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 2009, 40, 37. [Google Scholar] [CrossRef] [Green Version]
- Krause, P.J. Human babesiosis. Int. J. Parasitol. 2019, 49, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Bock, R.; Jackson, L.; de Vos, A.; Jorgensen, W. Babesiosis of cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef] [PubMed]
- Yeruham, I.; Hadani, A.; Galker, F. Some epizootiological and clinical aspects of ovine babesiosis caused by Babesia ovis—A review. Vet. Parasitol. 1998, 74, 153–163. [Google Scholar] [CrossRef]
- Tirosh-Levy, S.; Gottlieb, Y.; Fry, L.M.; Knowles, D.P.; Steinman, A. Twenty Years of Equine Piroplasmosis Research: Global Distribution, Molecular Diagnosis, and Phylogeny. Pathogens 2020, 9, 926. [Google Scholar] [CrossRef] [PubMed]
- Nadal, C.; Bonnet, S.I.; Marsot, M. Eco-epidemiology of equine piroplasmosis and its associated tick vectors in Europe: A systematic literature review and a meta-analysis of prevalence. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Knowles, D.P.; Kappmeyer, L.S.; Haney, D.; Herndon, D.R.; Fry, L.M.; Munro, J.B.; Sears, K.; Ueti, M.W.; Wise, L.N.; Silva, M.; et al. Discovery of a novel species, Theileria haneyi n. sp., infective to equids, highlights exceptional genomic diversity within the genus Theileria: Implications for apicomplexan parasite surveillance. Int. J. Parasitol. 2018, 48, 679–690. [Google Scholar] [CrossRef]
- Bilić, P.; Kuleš, J.; Barić, R.; Mrljak, V. Canine Babesiosis: Where Do We Stand? Acta Vet. 2018, 68, 127–160. [Google Scholar] [CrossRef] [Green Version]
- Suarez, C.E.; Noh, S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet. Parasitol. 2011, 180, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Morales, A.J.; Bonilla-Aldana, D.K.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E. Research on Babesia: A bibliometric assessment of a neglected tick-borne parasite. F1000Res 2018, 7, 1987. [Google Scholar] [CrossRef]
- Bonnet, S.I.; Liu, X.Y. Laboratory artificial infection of hard ticks: A tool for the analysis of tick-borne pathogen transmission. Acarologia 2012, 52, 453–464. [Google Scholar] [CrossRef] [Green Version]
- de la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Pena, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front. Cell Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Muller, J.; Hemphill, A. In vitro culture systems for the study of apicomplexan parasites in farm animals. Int. J. Parasitol. 2013, 43, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Sondgeroth, K.S.; McElwain, T.F.; Ueti, M.W.; Scoles, G.A.; Reif, K.E.; Lau, A.O. Tick passage results in enhanced attenuation of Babesia bovis. Infect. Immun. 2014, 82, 4426–4434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, N.P. Differences in the life cycles between a vaccine strain and an unmodified strain of Babesia bovis (Babes, 1889) in the tick Boophilus microplus (Canestrini). J. Protozool. 1978, 25, 497–501. [Google Scholar] [CrossRef]
- Zaugg, J.L.; Kuttler, K.L. Experimental infections of Babesia bigemina in American bison. J. Wildl. Dis. 1987, 23, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Chauvin, A.; Valentin, A.; Malandrin, L.; L’Hostis, M. Sheep as a new experimental host for Babesia divergens. Vet. Res. 2002, 33, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Garcia, G.; Santamaria-Espinosa, R.M.; Lira-Amaya, J.J.; Figueroa, J.V. Challenges in Tick-Borne Pathogen Detection: The Case for Babesia spp. Identification in the Tick Vector. Pathogens 2021, 10, 92. [Google Scholar] [CrossRef]
- Sun, Y.; Moreau, E.; Chauvin, A.; Malandrin, L. The invasion process of bovine erythrocyte by Babesia divergens: Knowledge from an in vitro assay. Vet. Res. 2011, 42, 62. [Google Scholar] [CrossRef] [Green Version]
- Spencer, A.M.; Goethert, H.K.; Telford, S.R., 3rd; Holman, P.J. In vitro host erythrocyte specificity and differential morphology of Babesia divergens and a zoonotic Babesia sp. from eastern cottontail rabbits (Sylvilagus floridanus). J. Parasitol. 2006, 92, 333–340. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.M.; Long, J.A.; Allred, D.R. Cytoadherence of Babesia bovis-infected erythrocytes to bovine brain capillary endothelial cells provides an in vitro model for sequestration. Infect. Immun. 1999, 67, 3921–3928. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H.; Hatta, T.; Alim, M.A.; Tsubokawa, D.; Mikami, F.; Kusakisako, K.; Matsubayashi, M.; Umemiya-Shirafuji, R.; Tsuji, N.; Tanaka, T. Initial development of Babesia ovata in the tick midgut. Vet. Parasitol. 2017, 233, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Bhat, U.K.; Mahoney, D.F.; Wright, I.G. The invasion and growth of Babesia bovis in tick tissue culture. Experientia 1979, 35, 752–753. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.F.; Bastos, C.V.; Vasconcelos, M.M.; Passos, L.M. Babesia bigemina: In vitro multiplication of sporokinetes in Ixodes scapularis (IDE8) cells. Exp. Parasitol. 2009, 122, 192–195. [Google Scholar] [CrossRef] [PubMed]
- de Rezende, J.; Rangel, C.P.; McIntosh, D.; Silveira, J.A.; Cunha, N.C.; Ramos, C.A.; Fonseca, A.H. In vitro cultivation and cryopreservation of Babesia bigemina sporokinetes in hemocytes of Rhipicephalus microplus. Vet. Parasitol. 2015, 212, 400–403. [Google Scholar] [CrossRef]
- Dunn, J.M.; Krause, P.J.; Davis, S.; Vannier, E.G.; Fitzpatrick, M.C.; Rollend, L.; Belperron, A.A.; States, S.L.; Stacey, A.; Bockenstedt, L.K.; et al. Borrelia burgdorferi promotes the establishment of Babesia microti in the northeastern United States. PLoS ONE 2014, 9, e115494. [Google Scholar] [CrossRef]
- Randolph, S.E. The effect of Babesia microti on feeding and survival in its tick vector, Ixodes trianguliceps. Parasitology 1991, 102 Pt 1, 9–16. [Google Scholar] [CrossRef]
- Ruebush, T.K., 2nd; Piesman, J.; Collins, W.E.; Spielman, A.; Warren, M. Tick transmission of Babesia microti to rhesus monkeys (Macaca mulatta). Am. J. Trop. Med. Hyg. 1981, 30, 555–559. [Google Scholar] [CrossRef]
- Gray, J.; von Stedingk, L.V.; Gurtelschmid, M.; Granstrom, M. Transmission studies of Babesia microti in Ixodes ricinus ticks and gerbils. J. Clin. Microbiol. 2002, 40, 1259–1263. [Google Scholar] [CrossRef] [Green Version]
- Walter, G.; Weber, G. A study on the transmission (transstadial, transovarial) of Babesia microti, strain "Hannover i", in its tick vector, Ixodes ricinus (author’s transl). Tropenmed. Parasitol. 1981, 32, 228–230. [Google Scholar] [PubMed]
- Li, L.H.; Zhu, D.; Zhang, C.C.; Zhang, Y.; Zhou, X.N. Experimental transmission of Babesia microti by Rhipicephalus haemaphysaloides. Parasites Vectors 2016, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Cao, J.; Zhou, Y.; Zhang, H.; Gong, H.; Zhou, J. Evaluation on Infectivity of Babesia microti to Domestic Animals and Ticks Outside the Ixodes Genus. Front. Microbiol. 2017, 8, 1915. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, S.; Jouglin, M.; Malandrin, L.; Becker, C.; Agoulon, A.; L’Hostis, M.; Chauvin, A. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology 2007, 134, 197–207. [Google Scholar] [CrossRef]
- Joyner, L.P.; Davies, S.F.; Kendall, S.B. The Experimental Transmission of Babesia divergens by Ixodes ricinus. Exp. Parasitol. 1963, 14, 367–373. [Google Scholar] [CrossRef]
- Donnelly, J.; Peirce, M.A. Experiments on the transmission of Babesia divergens to cattle by the tick Ixodes ricinus. Int. J. Parasitol. 1975, 5, 363–367. [Google Scholar] [CrossRef]
- Lewis, D.; Young, E.R. The transmission of a human strain of Babesia divergens by Ixodes ricinus ticks. J. Parasitol. 1980, 66, 359–360. [Google Scholar] [CrossRef]
- Mackenstedt, U.; Gauer, M.; Mehlhorn, H.; Schein, E.; Hauschild, S. Sexual cycle of Babesia divergens confirmed by DNA measurements. Parasitol. Res. 1990, 76, 199–206. [Google Scholar] [CrossRef]
- Bonnet, S.; Brisseau, N.; Hermouet, A.; Jouglin, M.; Chauvin, A. Experimental in vitro transmission of Babesia sp. (EU1) by Ixodes ricinus. Vet. Res. 2009, 40, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.D.; Osorno, B.M.; Brener, J.; De La Rosa, R.; Ristic, M. Bovine babesiosis: Severity and reproducibility of Babesia bovis infections induced by Boophilus microplus under laboratory conditions. Res. Vet. Sci. 1978, 24, 287–292. [Google Scholar] [CrossRef]
- Smith, T.; Kilborne, F.L. Investigations into the nature, causation and prevention of Southern cattle fever. In Ninth Annual Report of the Bureau of Animal Industry for the Year 1892; Government Printing Office: Washington, DC, USA, 1893; pp. 177–304. [Google Scholar]
- Callow, L.; Hoyte, H. Transmission experiments using Babesia bigemina, Theileria mutans, Borrelia sp. and the cattle tick, Boophilus microplus. Aust. Vet. J. 1961, 37, 381–390. [Google Scholar] [CrossRef]
- Callow, L.L. Babesia Bigemina in Ticks Grown on Non-Bovine Hosts and Its Transmission to These Hosts. Parasitology 1965, 55, 375–381. [Google Scholar] [CrossRef]
- Morzaria, S.P.; Young, A.S.; Hudson, E.B. Babesia bigemina in Kenya: Experimental transmission by Boophilus decoloratus and the production of tick-derived stabilates. Parasitology 1977, 74, 291–298. [Google Scholar] [CrossRef]
- Akinboade, O.A.; Dipeolu, O.O.; Adetunji, A. Experimental transmission of Babesia bigemina and Anaplasma marginale to calves with the larvae of Boophilus decoloratus. Zentralbl. Veterinarmed. B 1981, 28, 329–332. [Google Scholar] [CrossRef]
- Akinboade, O.A. Experimental transmission of Babesia bigemina in sheep using infective larval tick of Boophilus decoloratus. Rev. Elev. Med. Vet. Pays. Trop. 1981, 34, 271–273. [Google Scholar]
- Morzaria, S.P.; Brocklesby, D.W.; Harradine, D.L. Experimental transmission of Babesia major by Haemaphysalis punctata. Res. Vet. Sci. 1977, 23, 261–262. [Google Scholar] [CrossRef]
- Yin, H.; Lu, W.; Luo, J.; Zhang, Q.; Lu, W.; Dou, H. Experiments on the transmission of Babesia major and Babesia bigemina by Haemaphysalis punctata. Vet. Parasitol. 1996, 67, 89–98. [Google Scholar] [CrossRef]
- Umemiya-Shirafuji, R.; Hatta, T.; Okubo, K.; Sato, M.; Maeda, H.; Kume, A.; Yokoyama, N.; Igarashi, I.; Tsuji, N.; Fujisaki, K.; et al. Transovarial persistence of Babesia ovata DNA in a hard tick, Haemaphysalis longicornis, in a semi-artificial mouse skin membrane feeding system. Acta Parasitol. 2018, 63, 433. [Google Scholar] [CrossRef]
- Roby, T.O.; Anthony, D.W.; Thornton, C.W., Jr.; Holbrook, A.A. The Hereditary Transmission of Babesia Caballi in the Tropical Horse Tick, Dermacentor Nitens Neumann. Am. J. Vet. Res. 1964, 25, 494–499. [Google Scholar]
- Schwint, O.N.; Knowles, D.P.; Ueti, M.W.; Kappmeyer, L.S.; Scoles, G.A. Transmission of Babesia caballi by Dermacentor nitens (Acari: Ixodidae) is restricted to one generation in the absence of alimentary reinfection on a susceptible equine host. J. Med. Entomol. 2008, 45, 1152–1155. [Google Scholar] [CrossRef] [Green Version]
- de Waal, D.T.; Potgieter, F.T. The transstadial transmission of Babesia caballi by Rhipicephalus evertsi evertsi. Onderstepoort. J. Vet. Res. 1987, 54, 655–656. [Google Scholar]
- Erster, O.; Roth, A.; Wolkomirsky, R.; Leibovich, B.; Savitzky, I.; Shkap, V. Transmission of Babesia ovis by different Rhipicephalus bursa developmental stages and infected blood injection. Ticks Tick Borne Dis. 2016, 7, 13–19. [Google Scholar] [CrossRef]
- Jongejan, F.; Fourie, J.J.; Chester, S.T.; Manavella, C.; Mallouk, Y.; Pollmeier, M.G.; Baggott, D. The prevention of transmission of Babesia canis canis by Dermacentor reticulatus ticks to dogs using a novel combination of fipronil, amitraz and (S)-methoprene. Vet. Parasitol. 2011, 179, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Beugnet, F.; Halos, L.; Larsen, D.; Labuschagne, M.; Erasmus, H.; Fourie, J. The ability of an oral formulation of afoxolaner to block the transmission of Babesia canis by Dermacentor reticulatus ticks to dogs. Parasites Vectors 2014, 7, 283. [Google Scholar] [CrossRef] [Green Version]
- Taenzler, J.; Liebenberg, J.; Roepke, R.K.; Heckeroth, A.R. Prevention of transmission of Babesia canis by Dermacentor reticulatus ticks to dogs after topical administration of fluralaner spot-on solution. Parasites Vectors 2016, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Fourie, J.J.; de Vos, C.; Crafford, D.; Pollmeier, M.; Schunack, B. A study on the long-term efficacy of Seresto(R) collars in preventing Babesia canis (Piana & Galli-Valerio, 1895) transmission to dogs by infected Dermacentor reticulatus (Fabricius, 1794) ticks. Parasites Vectors 2019, 12, 139. [Google Scholar] [CrossRef]
- Varloud, M.; Liebenberg, J.; Fourie, J. Early Babesia canis transmission in dogs within 24 h and 8 h of infestation with infected pre-activated male Dermacentor reticulatus ticks. Parasites Vectors 2018, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beugnet, F.; Lebon, W.; de Vos, C. Prevention of the transmission of Babesia rossi by Haemaphysalis elliptica in dogs treated with Nexgard((R)). Parasite 2019, 26, 49. [Google Scholar] [CrossRef] [Green Version]
- Mehlhorn, H.; Shein, E. The piroplasms: Life cycle and sexual stages. Adv. Parasitol. 1984, 23, 37–103. [Google Scholar] [CrossRef]
- Gray, J.; Weiss, M.L. Babesia microti. In Emerging Protozoan Pathogens; Naveed Ahmed, K., Ed.; Taylor & Francis: New York, NY, USA, 2007; pp. 303–349. [Google Scholar]
- Jalovecka, M.; Sojka, D.; Ascencio, M.; Schnittger, L. Babesia Life Cycle—When Phylogeny Meets Biology. Trends Parasitol. 2019, 35, 356–368. [Google Scholar] [CrossRef]
- Razmi, G.; Nouroozi, E. Transovarial Transmission of Babesia ovis by Rhipicephalus sanguineus and Hyalomma marginatum. Iran J. Parasitol. 2010, 5, 35–39. [Google Scholar]
- Bonnet, S.; Choumet, V.; Masseglia, S.; Cote, M.; Ferquel, E.; Lilin, T.; Marsot, M.; Chapuis, J.L.; Vourc’h, G. Infection of Siberian chipmunks (Tamias sibiricus barberi) with Borrelia sp. reveals a low reservoir competence under experimental conditions. Ticks Tick Borne Dis. 2015, 6, 393–400. [Google Scholar] [CrossRef]
- Almazan, C.; Simo, L.; Fourniol, L.; Rakotobe, S.; Borneres, J.; Cote, M.; Peltier, S.; Maye, J.; Versille, N.; Richardson, J.; et al. Multiple Antigenic Peptide-Based Vaccines Targeting Ixodes ricinus Neuropeptides Induce a Specific Antibody Response but Do Not Impact Tick Infestation. Pathogens 2020, 9, 900. [Google Scholar] [CrossRef] [PubMed]
- Almazan, C.; Fourniol, L.; Rouxel, C.; Alberdi, P.; Gandoin, C.; Lagree, A.C.; Boulouis, H.J.; de la Fuente, J.; Bonnet, S.I. Experimental Ixodes ricinus-Sheep Cycle of Anaplasma phagocytophilum NV2Os Propagated in Tick Cell Cultures. Front. Vet. Sci. 2020, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almazan, C.; Bonnet, S.; Cote, M.; Slovak, M.; Park, Y.; Simo, L. A Versatile Model of Hard Tick Infestation on Laboratory Rabbits. J. Vis. Exp. 2018. [Google Scholar] [CrossRef]
- Razmi, G.R.; Naghibi, A.; Aslani, M.R.; Fathivand, M.; Dastjerdi, K. An epidemiological study on ovine babesiosis in the Mashhad suburb area, province of Khorasan, Iran. Vet. Parasitol. 2002, 108, 109–115. [Google Scholar] [CrossRef]
- Gray, J.S.; Estrada-Pena, A.; Zintl, A. Vectors of Babesiosis. Annu. Rev. Entomol. 2019, 64, 149–165. [Google Scholar] [CrossRef]
- Piesman, J. Intensity and duration of Borrelia burgdorferi and Babesia microti infectivity in rodent hosts. Int. J. Parasitol. 1988, 18, 687–689. [Google Scholar] [CrossRef]
- Mather, T.N.; Telford, S.R., 3rd; Moore, S.I.; Spielman, A. Borrelia burgdorferi and Babesia microti: Efficiency of transmission from reservoirs to vector ticks (Ixodes dammini). Exp. Parasitol. 1990, 70, 55–61. [Google Scholar] [CrossRef]
- Diuk-Wasser, M.A.; Vannier, E.; Krause, P.J. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences. Trends Parasitol. 2016, 32, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, S.; Kazimirova, M.; Richardson, R.; Simo, L. Tick saliva and its role in pathogen transmission. In Skin and Arthropod Vectors; Boulanger, N., Ed.; Elsevier: London, UK, 2018. [Google Scholar]
- Liu, X.Y.; Bonnet, S.I. Hard tick factors implicated in pathogen transmission. PLoS Negl. Trop. Dis. 2014, 8, e2566. [Google Scholar] [CrossRef]
- Tsuji, N.; Miyoshi, T.; Battsetseg, B.; Matsuo, T.; Xuan, X.; Fujisaki, K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog. 2008, 4, e1000062. [Google Scholar] [CrossRef] [Green Version]
- Boldbaatar, D.; Battsetseg, B.; Matsuo, T.; Hatta, T.; Umemiya-Shirafuji, R.; Xuan, X.; Fujisaki, K. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem. Cell Biol. 2008, 86, 331–344. [Google Scholar] [CrossRef]
- Bastos, R.G.; Ueti, M.W.; Knowles, D.P.; Scoles, G.A. The Rhipicephalus (Boophilus) microplus Bm86 gene plays a critical role in the fitness of ticks fed on cattle during acute Babesia bovis infection. Parasites Vectors 2010, 3, 111. [Google Scholar] [CrossRef] [Green Version]
- Antunes, S.; Galindo, R.C.; Almazan, C.; Rudenko, N.; Golovchenko, M.; Grubhoffer, L.; Shkap, V.; do Rosario, V.; de la Fuente, J.; Domingos, A. Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int. J. Parasitol. 2012, 42, 187–195. [Google Scholar] [CrossRef]
- Heekin, A.M.; Guerrero, F.D.; Bendele, K.G.; Saldivar, L.; Scoles, G.A.; Dowd, S.E.; Gondro, C.; Nene, V.; Djikeng, A.; Brayton, K.A. The ovarian transcriptome of the cattle tick, Rhipicephalus (Boophilus) microplus, feeding upon a bovine host infected with Babesia bovis. Parasites Vectors 2013, 6, 276. [Google Scholar] [CrossRef] [Green Version]
- Merino, O.; Almazan, C.; Canales, M.; Villar, M.; Moreno-Cid, J.A.; Galindo, R.C.; de la Fuente, J. Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine 2011, 29, 8575–8579. [Google Scholar] [CrossRef]
- Waldron, S.J.; Jorgensen, W.K. Transmission of Babesia spp. by the cattle tick (Boophilus microplus) to cattle treated with injectable or pour-on formulations of ivermectin and moxidectin. Aust. Vet. J. 1999, 77, 657–659. [Google Scholar] [CrossRef]
- Mangold, A.J.; Aguirre, D.H.; Cafrune, M.M.; de Echaide, S.T.; Guglielmone, A.A. Evaluation of the infectivity of a vaccinal and a pathogenic Babesia bovis strain from Argentina to Boophilus microplus. Vet. Parasitol. 1993, 51, 143–148. [Google Scholar] [CrossRef]
- Jongejan, F.; de Vos, C.; Fourie, J.J.; Beugnet, F. A novel combination of fipronil and permethrin (Frontline Tri-Act(R)/Frontect(R)) reduces risk of transmission of Babesia canis by Dermacentor reticulatus and of Ehrlichia canis by Rhipicephalus sanguineus ticks to dogs. Parasites Vectors 2015, 8, 602. [Google Scholar] [CrossRef] [Green Version]
- Fourie, L.J.; Stanneck, D.; Horak, I.G. The efficacy of collars impregnated with flumethrin and propoxur against experimental infestations of adult Rhipicephalus sanguineus on dogs. J. S. Afr. Vet. Assoc. 2003, 74, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Pena, A.; Reme, C. Efficacy of a collar impregnated with amitraz and pyriproxyfen for prevention of experimental tick infestations by Rhipicephalus sanguineus, Ixodes ricinus, and Ixodes scapularis in dogs. J. Am. Vet. Med. Assoc. 2005, 226, 221–224. [Google Scholar] [CrossRef]
- Gregson, J. Notes on some phenomenal feeding of ticks. Proc. Ent. Soc. Br. Columb. 1938, 34, 8. [Google Scholar]
- Inokuma, H.; Kemp, D.H. Establishment of Boophilus microplus infected with Babesia bigemina by using in vitro tube feeding technique. J. Vet. Med. Sci. 1998, 60, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Antunes, S.; Merino, O.; Mosqueda, J.; Moreno-Cid, J.A.; Bell-Sakyi, L.; Fragkoudis, R.; Weisheit, S.; Perez de la Lastra, J.M.; Alberdi, P.; Domingos, A.; et al. Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection. Parasites Vectors 2014, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Antunes, S.; Merino, O.; Lerias, J.; Domingues, N.; Mosqueda, J.; de la Fuente, J.; Domingos, A. Artificial feeding of Rhipicephalus microplus female ticks with anti calreticulin serum do not influence tick and Babesia bigemina acquisition. Ticks Tick Borne Dis. 2015, 6, 47–55. [Google Scholar] [CrossRef]
- Pierce, A.; Pierce, M. A note on the cultivation of Boophilus microplus (Canestrini, 1887) (Ixodidae: Acarina) on the embryonated hen egg. Aust. Vet. J. 1956, 32, 144–146. [Google Scholar] [CrossRef]
- Becker, C.A.; Malandrin, L.; Depoix, D.; Larcher, T.; David, P.H.; Chauvin, A.; Bischoff, E.; Bonnet, S. Identification of three CCp genes in Babesia divergens: Novel markers for sexual stages parasites. Mol. Biochem. Parasitol. 2010, 174, 36–43. [Google Scholar] [CrossRef]
- Becker, C.A.; Malandrin, L.; Larcher, T.; Chauvin, A.; Bischoff, E.; Bonnet, S.I. Validation of BdCCp2 as a marker for Babesia divergens sexual stages in ticks. Exp. Parasitol. 2013, 133, 51–56. [Google Scholar] [CrossRef]
- Maeda, H.; Hatta, T.; Alim, M.A.; Tsubokawa, D.; Mikami, F.; Matsubayashi, M.; Miyoshi, T.; Umemiya-Shirafuji, R.; Kawazu, S.I.; Igarashi, I.; et al. Establishment of a novel tick-Babesia experimental infection model. Sci. Rep. 2016, 6, 37039. [Google Scholar] [CrossRef] [Green Version]
- Rechav, Y.; Zyzak, M.; Fielden, L.J.; Childs, J.E. Comparison of methods for introducing and producing artificial infection of ixodid ticks (Acari: Ixodidae) with Ehrlichia chaffeensis. J. Med. Entomol. 1999, 36, 414–419. [Google Scholar] [CrossRef]
- Antunes, S.; Couto, J.; Ferrolho, J.; Rodrigues, F.; Nobre, J.; Santos, A.S.; Santos-Silva, M.M.; de la Fuente, J.; Domingos, A. Rhipicephalus bursa Sialotranscriptomic Response to Blood Feeding and Babesia ovis Infection: Identification of Candidate Protective Antigens. Front. Cell Infect. Microbiol. 2018, 8, 116. [Google Scholar] [CrossRef]
Babesia spp. | Suspected or Confirmed Main Vectors | Main Vertebrate Hosts | Realization of the Complete Transmission Cycle Under Experimental Conditions |
---|---|---|---|
Babesia microti | Ixodes persulcatus Ixodes ovatus Ixodes scapularis Ixodes trianguliceps Ixodes dammini Ixodes ricinus Rhipicephalus haemaphysaloides Haemaphysalis longicornis | Human, rodent | ND ND [28] [29] [30] [31,32] [33] [34] |
Babesia divergens | Ixodes ricinus | Human, cattle | [35,36,37,38,39] |
Babesia venatorum | Ixodes ricinus | Human, roe deer | [40] |
Babesia duncani | Dermacentor albipictus | Human, mule deer | ND |
Babesia bovis | Rhipicephalus microplus Rhipicephalus annulatus Rhipicephalus geigyi | Cattle, buffalo | [41] ND ND |
Babesia bigemina | Rhipicephalusannulatus Rhipicephalus microplus Rhipicephalus decoloratus Rhipicephalus geigyi Rhipicephalus evertsi | Cattle, buffalo | [42] [43,44] [45,46,47] ND ND |
Babesia major | Haemaphysalis punctata | Cattle | [48,49] |
Babesia ovata | Haemaphysalis longicornis | Cattle | [50] |
Babesia orientalis | Rhipicephalus haemaphysaloides | Water buffalo | ND |
Babesia caballi | Dermacentor nitens Dermacentor sp. Hyalomma sp. Rhipicephalus evertsi | Horse, Donkey, Mule | [51,52] ND ND [53] |
Babesia ovis | Rhipicephalus bursa | Sheep and Goat | [54] |
Babesia motasi | Rhipicephalus bursa Haemaphysalis punctata | Sheep and Goat | ND ND |
Babesia canis | Dermacentor reticulatus Haemaphysalis spp. Hyalomma spp. | Dog | [55,56,57,58,59] ND ND |
Babesia gibsoni | Haemaphysalis sp. Rhipicephalus sanguineus | Dog | ND ND |
Babesia vogeli | Rhipicephalus sanguineus | Dog | ND |
Babesia rossi | Haemaphysaliselliptica Rhipicephalus sanguineus | Dog | [60] ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnet, S.I.; Nadal, C. Experimental Infection of Ticks: An Essential Tool for the Analysis of Babesia Species Biology and Transmission. Pathogens 2021, 10, 1403. https://doi.org/10.3390/pathogens10111403
Bonnet SI, Nadal C. Experimental Infection of Ticks: An Essential Tool for the Analysis of Babesia Species Biology and Transmission. Pathogens. 2021; 10(11):1403. https://doi.org/10.3390/pathogens10111403
Chicago/Turabian StyleBonnet, Sarah I., and Clémence Nadal. 2021. "Experimental Infection of Ticks: An Essential Tool for the Analysis of Babesia Species Biology and Transmission" Pathogens 10, no. 11: 1403. https://doi.org/10.3390/pathogens10111403
APA StyleBonnet, S. I., & Nadal, C. (2021). Experimental Infection of Ticks: An Essential Tool for the Analysis of Babesia Species Biology and Transmission. Pathogens, 10(11), 1403. https://doi.org/10.3390/pathogens10111403