Pneumocystis Pneumonia: Immunity, Vaccines, and Treatments
Abstract
:1. Introduction
2. Development of PCP and the Immune Response
2.1. CD4+ T-Cells
2.2. CD8+ T Cells
2.3. Macrophages
2.4. Neutrophils
2.5. B-Cells
2.6. Natural Killer Cells
3. Drug Treatments
3.1. Current Drugs in Use
3.2. Drugs in Development
4. Vaccine Development against PCP
4.1. Vaccination with Whole Organisms
4.2. Subunit Vaccines
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chabe, M.; Aliouat-Denis, C.M.; Delhaes, L.; El Moukhtar, A.; Viscogliosi, E.; Dei-Cas, E. Pneumocystis: From a doubtful unique entity to a group of highly diversified fungal species. FEMS Yeast Res. 2011, 11, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Edman, J.C.; Kovacs, J.A.; Masur, H.; Santi, D.V.; Elwood, H.J.; Sogin, M.L. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature 1988, 334, 519–522. [Google Scholar] [CrossRef]
- Aliouat-Denis, C.M.; Chabe, M.; Demanche, C.; Aliouat el, M.; Viscogliosi, E.; Guillot, J.; Delhaes, L.; Dei-Cas, E. Pneumocystis species, co-evolution and pathogenic power. Infect. Genet. Evol. 2008, 8, 708–726. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv113. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.; Lundgren, J.D.; Masur, H.; Walzer, P.D.; Hanson, D.L.; Frederick, T.; Huang, L.; Beard, C.B.; Kaplan, J.E. Current epidemiology of Pneumocystis pneumonia. Emerg. Infect. Dis. 2004, 10, 1713–1720. [Google Scholar] [CrossRef]
- Miller, R.F.; Huang, L.; Walzer, P.D. Pneumocystis pneumonia associated with human immunodeficiency virus. Clin. Chest Med. 2013, 34, 229–241. [Google Scholar] [CrossRef] [Green Version]
- De Armas Rodríguez, Y.; Wissmann, G.; Müller, A.L.; Pederiva, M.A.; Brum, M.C.; Brackmann, R.L.; Capó de Paz, V.; Calderón, E.J. Pneumocystis jirovecii pneumonia in developing countries. Parasite 2011, 18, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Varthalitis, I.; Aoun, M.; Daneau, D.; Meunier, F. Pneumocystis carinii pneumonia in patients with cancer. An increasing incidence. Cancer 1993, 71, 481–485. [Google Scholar] [CrossRef]
- Gordon, S.M.; LaRosa, S.P.; Kalmadi; Arroliga, A.C.; Avery, R.K.; Truesdell-LaRosa; Longworth, D.L. Should Prophylaxis for Pneumocystis carinii Pneumonia in Solid Organ Transplant Recipients Ever Be Discontinued? Clin. Infect. Dis. 1999, 28, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Su, L.; Jiang, S.-J.; Qu, H. Risk factors for mortality from pneumocystis carinii pneumonia (PCP) in non-HIV patients: A meta-analysis. Oncotarget 2017, 8, 59729–59739. [Google Scholar] [CrossRef] [Green Version]
- Arend, S.M.; Kroon, F.P.; van’t Wout, J.W. Pneumocystis carinii Pneumonia in Patients without AIDS, 1980 through 1993: An Analysis of 78 Cases. Arch. Intern. Med. 1995, 155, 2436–2441. [Google Scholar] [CrossRef]
- Burghi, G.; Biard, L.; Roux, A.; Valade, S.; Robert-Gangneux, F.; Hamane, S.; Maubon, D.; Debourgogne, A.; Le Gal, S.; Dalle, F.; et al. Characteristics and outcome according to underlying disease in non-AIDS patients with acute respiratory failure due to Pneumocystis pneumonia. Eur. J. Clin. Microbiol. Infect. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.; Canet, E.; Valade, S.; Gangneux-Robert, F.; Hamane, S.; Lafabrie, A.; Maubon, D.; Debourgogne, A.; Le Gal, S.; Dalle, F.; et al. Pneumocystis jirovecii pneumonia in patients with or without AIDS, France. Emerg. Infect. Dis. 2014, 20, 1490–1497. [Google Scholar] [CrossRef]
- Roblot, F.; Godet, C.; Le Moal, G.; Garo, B.; Faouzi Souala, M.; Dary, M.; De Gentile, L.; Gandji, J.A.; Guimard, Y.; Lacroix, C.; et al. Analysis of underlying diseases and prognosis factors associated with Pneumocystis carinii pneumonia in immunocompromised HIV-negative patients. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 523–531. [Google Scholar] [CrossRef]
- Sokulska, M.; Kicia, M.; Wesołowska, M.; Hendrich, A.B. Pneumocystis jirovecii—From a commensal to pathogen: Clinical and diagnostic review. Parasitol. Res. 2015, 114, 3577–3585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, K.A.; Morris, A. Pneumocystis infection and the pathogenesis of chronic obstructive pulmonary disease. Immunol. Res. 2011, 50, 175–180. [Google Scholar] [CrossRef] [Green Version]
- George, M.P.; Kannass, M.; Huang, L.; Sciurba, F.C.; Morris, A. Respiratory symptoms and airway obstruction in HIV-infected subjects in the HAART era. PLoS ONE 2009, 4, e6328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gingo, M.R.; George, M.P.; Kessinger, C.J.; Lucht, L.; Rissler, B.; Weinman, R.; Slivka, W.A.; McMahon, D.K.; Wenzel, S.E.; Sciurba, F.C.; et al. Pulmonary function abnormalities in HIV-infected patients during the current antiretroviral therapy era. Am. J. Respir. Crit. Care Med. 2010, 182, 790–796. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.; Alexander, T.; Radhi, S.; Lucht, L.; Sciurba, F.C.; Kolls, J.K.; Srivastava, R.; Steele, C.; Norris, K.A. Airway obstruction is increased in pneumocystis-colonized human immunodeficiency virus-infected outpatients. J. Clin. Microbiol. 2009, 47, 3773–3776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, K.A.; Morris, A.; Patil, S.; Fernandes, E. Pneumocystis colonization, airway inflammation, and pulmonary function decline in acquired immunodeficiency syndrome. Immunol. Res. 2006, 36, 175–187. [Google Scholar] [CrossRef]
- Morris, A.M.; Huang, L.; Bacchetti, P.; Turner, J.; Hopewell, P.C.; Wallace, J.M.; Kvale, P.A.; Rosen, M.J.; Glassroth, J.; Reichman, L.B.; et al. Permanent declines in pulmonary function following pneumonia in human immunodeficiency virus-infected persons. The Pulmonary Complications of HIV Infection Study Group. Am. J. Respir. Crit. Care Med. 2000, 162, 612–616. [Google Scholar] [CrossRef]
- Morris, A.; Sciurba, F.C.; Lebedeva, I.P.; Githaiga, A.; Elliott, W.M.; Hogg, J.C.; Huang, L.; Norris, K.A. Association of chronic obstructive pulmonary disease severity and Pneumocystis colonization. Am. J. Respir. Crit. Care Med. 2004, 170, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Netravali, M.; Kling, H.M.; Shipley, T.; Ross, T.; Sciurba, F.C.; Norris, K.A. Relationship of pneumocystis antibody response to severity of chronic obstructive pulmonary disease. Clin. Infect. Dis. 2008, 47, e64–e68. [Google Scholar] [CrossRef] [Green Version]
- Kaneshiro, E.S.; Ellis, J.E.; Jayasimhulu, K.; Beach, D.H. Evidence for the presence of “metabolic sterols” in Pneumocystis: Identification and initial characterization of Pneumocystis carinii sterols. J. Eukaryot. Microbiol. 1994, 41, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Fei, M.W.; Kim, E.J.; Sant, C.A.; Jarlsberg, L.G.; Davis, J.L.; Swartzman, A.; Huang, L. Predicting mortality from HIV-associated Pneumocystis pneumonia at illness presentation: An observational cohort study. Thorax 2009, 64, 1070–1076. [Google Scholar] [CrossRef] [Green Version]
- Pifer, L.L.; Hughes, W.T.; Stagno, S.; Woods, D. Pneumocystis carinii infection: Evidence for high prevalence in normal and immunosuppressed children. Pediatrics 1978, 61, 35–41. [Google Scholar] [PubMed]
- Morris, A.; Beard, C.B.; Huang, L. Update on the epidemiology and transmission of Pneumocystis carinii. Microbes. Infect. 2002, 4, 95–103. [Google Scholar] [CrossRef]
- Beck, J.M. Pneumocystis carinii and geographic clustering: Evidence for transmission of infection. Am. J. Respir. Crit. Care Med. 2000, 162, 1605–1606. [Google Scholar] [CrossRef]
- Chen, W.; Gigliotti, F.; Harmsen, A.G. Latency is not an inevitable outcome of infection with Pneumocystis carinii. Infect. Immun. 1993, 61, 5406–5409. [Google Scholar] [CrossRef] [Green Version]
- Vargas, S.L.; Hughes, W.T.; Wakefield, A.E.; Oz, H.S. Limited Persistence in and Subsequent Elimination of Pneumocystis carinii from the Lungs after P. carinii Pneumonia. J. Infect. Dis. 1995, 172, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.B.; Carter, J.L.; Keely, S.P.; Huang, L.; Pieniazek, N.J.; Moura, I.N.; Roberts, J.M.; Hightower, A.W.; Bens, M.S.; Freeman, A.R.; et al. Genetic variation in Pneumocystis carinii isolates from different geographic regions: Implications for transmission. Emerg. Infect. Dis. 2000, 6, 265–272. [Google Scholar] [CrossRef]
- Dumoulin, A.; Mazars, E.; Seguy, N.; Gargallo-Viola, D.; Vargas, S.; Cailliez, J.C.; Aliouat, E.M.; Wakefield, A.E.; Dei-Cas, E. Transmission of Pneumocystis carinii disease from immunocompetent contacts of infected hosts to susceptible hosts. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 671–678. [Google Scholar] [CrossRef]
- Witt, K.; Nielsen, T.N.; Junge, J. Dissemination of Pneumocystis carinii in Patients with AIDS. Scand. J. Infect. Dis. 1991, 23, 691–695. [Google Scholar] [CrossRef]
- Karam, M.B.; Mosadegh, L. Extra-pulmonary Pneumocystis jiroveci infection: A case report. Braz. J. Infect. Dis. 2014, 18, 681–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Kim, J.; Paik, S.S.; Pai, H. Atypical Presentation of Pneumocystis jirovecii Infection in HIV Infected Patients: Three Different Manifestations. J. Korean Med. Sci. 2018, 33, e115. [Google Scholar] [CrossRef]
- Sharma, N.; Ahlawat, R.S.; Singh, H.; Sharma, C.; Anuradha, S. Pneumocystis jirovecii infection of bilateral adrenal glands in an immunocompetent adult: A case report. J. R. Coll. Physicians Edinb. 2019, 49, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Limper, A.H.; Offord, K.P.; Smith, T.F.; Martin, W.J., 2nd. Pneumocystis carinii pneumonia. Differences in lung parasite number and inflammation in patients with and without AIDS. Am. Rev. Respir. Dis. 1989, 140, 1204–1209. [Google Scholar] [CrossRef]
- Phair, J.; Munoz, A.; Detels, R.; Kaslow, R.; Rinaldo, C.; Saah, A. The risk of Pneumocystis carinii pneumonia among men infected with human immunodeficiency virus type 1. Multicenter AIDS Cohort Study Group. N. Engl. J. Med. 1990, 322, 161–165. [Google Scholar] [CrossRef]
- Shellito, J.; Suzara, V.V.; Blumenfeld, W.; Beck, J.M.; Steger, H.J.; Ermak, T.H. A new model of Pneumocystis carinii infection in mice selectively depleted of helper T lymphocytes. J. Clin. Investig. 1990, 85, 1686–1693. [Google Scholar] [CrossRef] [Green Version]
- Roths, J.B.; Marshall, J.D.; Allen, R.D.; Carlson, G.A.; Sidman, C.L. Spontaneous Pneumocystis carinii pneumonia in immunodeficient mutant scid mice. Natural history and pathobiology. Am. J. Pathol. 1990, 136, 1173–1186. [Google Scholar]
- Harmsen, A.G.; Stankiewicz, M. Requirement for CD4+ cells in resistance to Pneumocystis carinii pneumonia in mice. J. Exp. Med. 1990, 172, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Beck, J.M.; Blackmon, M.B.; Rose, C.M.; Kimzey, S.L.; Preston, A.M.; Green, J.M. T cell costimulatory molecule function determines susceptibility to infection with Pneumocystis carinii in mice. J. Immunol. 2003, 171, 1969–1977. [Google Scholar] [CrossRef]
- Chen, W.; Havell, E.A.; Harmsen, A.G. Importance of endogenous tumor necrosis factor alpha and gamma interferon in host resistance against Pneumocystis carinii infection. Infect. Immun. 1992, 60, 1279–1284. [Google Scholar] [CrossRef] [Green Version]
- Meissner, N.N.; Swain, S.; Tighe, M.; Harmsen, A.; Harmsen, A. Role of Type I IFNs in Pulmonary Complications of Pneumocystis murina Infection. J. Immunol. 2005, 174, 5462–5471. [Google Scholar] [CrossRef]
- Meissner, N.; Swain, S.; McInnerney, K.; Han, S.; Harmsen, A.G. Type-I IFN Signaling Suppresses an Excessive IFN-γ Response and Thus Prevents Lung Damage and Chronic Inflammation During Pneumocystis (PC) Clearance in CD4 T Cell-Competent Mice. Am. J. Pathol. 2010, 176, 2806–2818. [Google Scholar] [CrossRef] [PubMed]
- Garvy, B.A.; Ezekowitz, R.A.; Harmsen, A.G. Role of gamma interferon in the host immune and inflammatory responses to Pneumocystis carinii infection. Infect. Immun. 1997, 65, 373–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, M.H.; Harmsen, A.G.; Garvy, B.A. IL-10 Modulates Host Responses and Lung Damage Induced by Pneumocystis carinii Infection. J. Immunol. 2003, 170, 1002–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolls, J.K.; Habetz, S.; Shean, M.K.; Vazquez, C.; Brown, J.A.; Lei, D.; Schwarzenberger, P.; Ye, P.; Nelson, S.; Summer, W.R.; et al. IFN-gamma and CD8+ T cells restore host defenses against Pneumocystis carinii in mice depleted of CD4+ T cells. J. Immunol. 1999, 162, 2890–2894. [Google Scholar]
- Mc Allister, F.; Steele, C.; Zheng, M.; Young, E.; Shellito, J.E.; Marrero, L.; Kolls, J.K. T Cytotoxic-1 CD8+ T Cells Are Effector Cells against Pneumocystis in Mice. J. Immunol. 2004, 172, 1132–1138. [Google Scholar] [CrossRef]
- Ruan, S.; Samuelson, D.R.; Assouline, B.; Morre, M.; Shellito, J.E. Treatment with Interleukin-7 Restores Host Defense against Pneumocystis in CD4+ T-Lymphocyte-Depleted Mice. Infect. Immun. 2016, 84, 108–119. [Google Scholar] [CrossRef] [Green Version]
- de la Rua, N.M.; Samuelson, D.R.; Charles, T.P.; Welsh, D.A.; Shellito, J.E. CD4+ T-Cell-Independent Secondary Immune Responses to Pneumocystis Pneumonia. Front. Immunol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Harmsen, A.G.; Chen, W.; Gigliotti, F. Active immunity to Pneumocystis carinii reinfection in T-cell-depleted mice. Infect. Immun. 1995, 63, 2391–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gigliotti, F.; Crow, E.L.; Bhagwat, S.P.; Wright, T.W. Sensitized CD8+ T cells fail to control organism burden but accelerate the onset of lung injury during Pneumocystis carinii pneumonia. Infect. Immun. 2006, 74, 6310–6316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limper, A.H.; Hoyte, J.S.; Standing, J.E. The role of alveolar macrophages in Pneumocystis carinii degradation and clearance from the lung. J. Clin. Investig. 1997, 99, 2110–2117. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gigliotti, F.; Bhagwat, S.P.; George, T.C.; Wright, T.W. Immune modulation with sulfasalazine attenuates immunopathogenesis but enhances macrophage-mediated fungal clearance during Pneumocystis pneumonia. PLoS Pathog. 2010, 6, e1001058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.P.; Christmann, B.S.; Werner, J.L.; Metz, A.E.; Trevor, J.L.; Lowell, C.A.; Steele, C. IL-33 and M2a alveolar macrophages promote lung defense against the atypical fungal pathogen Pneumocystis murina. J. Immunol. 2011, 186, 2372–2381. [Google Scholar] [CrossRef] [Green Version]
- Deckman, J.M.; Kurkjian, C.J.; McGillis, J.P.; Cory, T.J.; Birket, S.E.; Schutzman, L.M.; Murphy, B.S.; Garvy, B.A.; Feola, D.J. Pneumocystis infection alters the activation state of pulmonary macrophages. Immunobiology 2017, 222, 188–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasbury, M.E.; Merali, S.; Durant, P.J.; Tschang, D.; Ray, C.A.; Lee, C.H. Polyamine-mediated apoptosis of alveolar macrophages during Pneumocystis pneumonia. J. Biol. Chem. 2007, 282, 11009–11020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, B.N.; Lisse, I.M.; Gerstoft, J.; Borgeskov, S.; Skinhøj, P. Cellular profiles in bronchoalveolar lavage fluid of HIV-infected patients with pulmonary symptoms: Relation to diagnosis and prognosis. Aids 1991, 5, 527–533. [Google Scholar] [CrossRef]
- Sadaghdar, H.; Huang, Z.B.; Eden, E. Correlation of bronchoalveolar lavage findings to severity of Pneumocystis carinii pneumonia in AIDS. Evidence for the development of high-permeability pulmonary edema. Chest 1992, 102, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.D.; Wright, T.W.; Degel, P.M.; Gigliotti, F.; Harmsen, A.G. Neither neutrophils nor reactive oxygen species contribute to tissue damage during Pneumocystis pneumonia in mice. Infect. Immun. 2004, 72, 5722–5732. [Google Scholar] [CrossRef] [Green Version]
- Lund, F.E.; Hollifield, M.; Schuer, K.; Lines, J.L.; Randall, T.D.; Garvy, B.A. B cells are required for generation of protective effector and memory CD4 cells in response to Pneumocystis lung infection. J. Immunol. 2006, 176, 6147–6154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saud, B.K.; Al-Sum, Z.; Alassiri, H.; Al-Ghonaium, A.; Al-Muhsen, S.; Al-Dhekri, H.; Arnaout, R.; Alsmadi, O.; Borrero, E.; Abu-Staiteh, A.; et al. Clinical, immunological, and molecular characterization of hyper-IgM syndrome due to CD40 deficiency in eleven patients. J. Clin. Immunol. 2013, 33, 1325–1335. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Yu, H.H.; Chien, Y.H.; Chu, K.H.; Lau, Y.L.; Lee, J.H.; Wang, L.C.; Chiang, B.L.; Yang, Y.H. X-linked hyper-IgM syndrome with CD40LG mutation: Two case reports and literature review in Taiwanese patients. J. Microbiol. Immunol. Infect. 2015, 48, 113–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Shin, J.A.; Han, S.B.; Chung, N.G.; Jeong, D.C. Pneumocystis jirovecii pneumonia as an initial manifestation of hyper-IgM syndrome in an infant: A case report. Medicine 2019, 98, e14559. [Google Scholar] [CrossRef] [PubMed]
- Bonagura, V.R.; Cunningham-Rundles, S.; Edwards, B.L.; Ilowite, N.T.; Wedgwood, J.F.; Valacer, D.J. Common variable hypogammaglobulinemia, recurrent Pneumocystis carinii pneumonia on intravenous γ-globulin therapy, and natural killer deficiency. Clin. Immunol. Immunopathol. 1989, 51, 216–231. [Google Scholar] [CrossRef]
- Bonagura, V.R.; Cunningham-Rundles, S.L.; Schuval, S. Dysfunction of natural killer cells in human immunodeficiency virus-infected children with or without Pneumocystis carinii pneumonia. J. Pediatr. 1992, 121, 195–201. [Google Scholar] [CrossRef]
- Duncan, R.A.; von Reyn, C.F.; Alliegro, G.M.; Toossi, Z.; Sugar, A.M.; Levitz, S.M. Idiopathic CD4+ T-Lymphocytopenia—Four Patients with Opportunistic Infections and No Evidence of HIV Infection. N. Engl. J. Med. 1993, 328, 393–398. [Google Scholar] [CrossRef]
- Guzman, J.; Wang, Y.M.; Teschler, H.; Kienast, K.; Brockmeyer, N.; Costabel, U. Phenotypic analysis of bronchoalveolar lavage lymphocytes from acquired immunodeficiency patients with and without Pneumocystis carinii pneumonia. Acta Cytol. 1992, 36, 900–904. [Google Scholar]
- Kelly, M.N.; Zheng, M.; Ruan, S.; Kolls, J.; D’Souza, A.; Shellito, J.E. Memory CD4+ T Cells Are Required for Optimal NK Cell Effector Functions against the Opportunistic Fungal Pathogen Pneumocystis murina. J. Immunol. 2013, 190, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Catherinot, E.; Lanternier, F.; Bougnoux, M.E.; Lecuit, M.; Couderc, L.J.; Lortholary, O. Pneumocystis jirovecii Pneumonia. Infect. Dis. Clin. N. Am. 2010, 24, 107–138. [Google Scholar] [CrossRef]
- Thomas, C.F.; Limper, A.H. Pneumocystis Pneumonia. N. Engl. J. Med. 2004, 350, 2487–2498. [Google Scholar] [CrossRef]
- Hardak, E.; Brook, O.; Yigla, M. Radiological features of Pneumocystis jirovecii Pneumonia in immunocompromised patients with and without AIDS. Lung 2010, 188, 159–163. [Google Scholar] [CrossRef]
- Khodavaisy, S.; Mortaz, E.; Mohammadi, F.; Aliyali, M.; Fakhim, H.; Badali, H. Pneumocystis jirovecii colonization in Chronic Obstructive Pulmonary Disease (COPD). Curr. Med. Mycol. 2015, 1, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.L.; Price, J.S.; Backx, M. Therapy and Management of Pneumocystis jirovecii Infection. J. Fungi 2018, 4, 127. [Google Scholar] [CrossRef] [Green Version]
- Krajicek, B.J.; Thomas, C.F., Jr.; Limper, A.H. Pneumocystis pneumonia: Current concepts in pathogenesis, diagnosis, and treatment. Clin. Chest Med. 2009, 30, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Tasaka, S. Recent Advances in the Diagnosis and Management of Pneumocystis Pneumonia. Tuberc. Respir. Dis. 2020, 83, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Brogden, R.N.; Carmine, A.A.; Heel, R.C.; Speight, T.M.; Avery, G.S. Trimethoprim: A Review of its Antibacterial Activity, Pharmacokinetics and Therapeutic Use in Urinary Tract Infections. Drugs 1982, 23, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Suarez, I.; Roderus, L.; van Gumpel, E.; Jung, N.; Lehmann, C.; Fatkenheuer, G.; Hartmann, P.; Plum, G.; Rybniker, J. Low prevalence of DHFR and DHPS mutations in Pneumocystis jirovecii strains obtained from a German cohort. Infection 2017, 45, 341–347. [Google Scholar] [CrossRef]
- Safrin, S.; Finkelstein, D.M.; Feinberg, J.; Frame, P.; Simpson, G.; Wu, A.; Cheung, T.; Soeiro, R.; Hojczyk, P.; Black, J.R. Comparison of three regimens for treatment of mild to moderate Pneumocystis carinii pneumonia in patients with AIDS. A double-blind, randomized, trial of oral trimethoprim-sulfamethoxazole, dapsone-trimethoprim, and clindamycin-primaquine. ACTG 108 Study Group. Ann. Intern. Med. 1996, 124, 792–802. [Google Scholar] [CrossRef]
- Martin, S.I.; Fishman, J.A. Pneumocystis pneumonia in solid organ transplantation. Am. J. Transpl. 2013, 13 (Suppl. 4), 272–279. [Google Scholar] [CrossRef]
- Argy, N.; Le Gal, S.; Coppee, R.; Song, Z.; Vindrios, W.; Massias, L.; Kao, W.C.; Hunte, C.; Yazdanpanah, Y.; Lucet, J.C.; et al. Pneumocystis Cytochrome b Mutants Associated With Atovaquone Prophylaxis Failure as the Cause of Pneumocystis Infection Outbreak Among Heart Transplant Recipients. Clin. Infect. Dis. 2018, 67, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Plosker, G.L.; Croom, K.F. Sulfasalazine: A review of its use in the management of rheumatoid arthritis. Drugs 2005, 65, 1825–1849. [Google Scholar] [CrossRef]
- Nunokawa, T.; Yokogawa, N.; Shimada, K.; Sugii, S. Effect of sulfasalazine use on the presence of Pneumocystis organisms in the lung among patients with rheumatoid arthritis: A test-negative design case-control study with PCR tests. Mod. Rheumatol. 2019, 29, 436–440. [Google Scholar] [CrossRef]
- Bozzette, S.A.; Sattler, F.R.; Chiu, J.; Wu, A.W.; Gluckstein, D.; Kemper, C.; Bartok, A.; Niosi, J.; Abramson, I.; Coffman, J.; et al. A controlled trial of early adjunctive treatment with corticosteroids for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. California Collaborative Treatment Group. N. Engl. J. Med. 1990, 323, 1451–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yale, S.H.; Limper, A.H. Pneumocystis carinii pneumonia in patients without acquired immunodeficiency syndrome: Associated illness and prior corticosteroid therapy. Mayo Clin. Proc. 1996, 71, 5–13. [Google Scholar] [CrossRef]
- Sepkowitz, K.A.; Brown, A.E.; Telzak, E.E.; Gottlieb, S.; Armstrong, D. Pneumocystis carinii pneumonia among patients without AIDS at a cancer hospital. JAMA 1992, 267, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Cushion, M.T.; Linke, M.J.; Ashbaugh, A.; Sesterhenn, T.; Collins, M.S.; Lynch, K.; Brubaker, R.; Walzer, P.D. Echinocandin treatment of pneumocystis pneumonia in rodent models depletes cysts leaving trophic burdens that cannot transmit the infection. PLoS ONE 2010, 5, e8524. [Google Scholar] [CrossRef]
- Nevez, G.; Le Gal, S. Caspofungin and Pneumocystis Pneumonia: It Is Time To Go Ahead. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Perlin, D.S. Review of the Novel Echinocandin Antifungal Rezafungin: Animal Studies and Clinical Data. J Fungi 2020, 6, 192. [Google Scholar] [CrossRef] [PubMed]
- Cushion, M.; Ashbaugh, A. Rezafungin Prophylactic Efficacy in a Mouse Model of Pneumocystis Pneumonia. Biol. Blood Marrow Transplant. 2019, 25, S366. [Google Scholar] [CrossRef]
- Cushion, M.T.; Ashbaugh, A.; Ong, V. Rezafungin Prevention of Pneumocystis Pneumonia and Pneumocystis reactivation Using Different Doses and Durations of Prophylaxis in a Mouse Model. Blood 2019, 134, 3266. [Google Scholar] [CrossRef]
- Gigliotti, F.; Hughes, W.T. Passive immunoprophylaxis with specific monoclonal antibody confers partial protection against Pneumocystis carinii pneumonitis in animal models. J. Clin. Investig. 1988, 81, 1666–1668. [Google Scholar] [CrossRef] [PubMed]
- Empey, K.M.; Hollifield, M.; Schuer, K.; Gigliotti, F.; Garvy, B.A. Passive Immunization of Neonatal Mice against Pneumocystis carinii f. sp. muris Enhances Control of Infection without Stimulating Inflammation. Infect. Immun. 2004, 72, 6211–6220. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, M.S.; Angus, W.C.; Shaw, M.M.; Durant, P.J.; Lee, C.H.; Pascale, J.M.; Smith, J.W. Antibody to Pneumocystis carinii protects rats and mice from developing pneumonia. Clin. Diagn. Lab. Immunol. 1998, 5, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Roths, J.B.; Sidman, C.L. Single and combined humoral and cell-mediated immunotherapy of Pneumocystis carinii pneumonia in immunodeficient scid mice. Infect. Immun. 1993, 61, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Hoy, Z.; Wright, T.W.; Elliott, M.; Malone, J.; Bhagwat, S.; Wang, J.; Gigliotti, F. Combination Immunotherapy with Passive Antibody and Sulfasalazine Accelerates Fungal Clearance and Promotes the Resolution of Pneumocystis-Associated Immunopathogenesis. Infect. Immun. 2020, 88. [Google Scholar] [CrossRef] [Green Version]
- Pascale, J.M.; Shaw, M.M.; Durant, P.J.; Amador, A.A.; Bartlett, M.S.; Smith, J.W.; Gregory, R.L.; McLaughlin, G.L. Intranasal Immunization Confers Protection against Murine Pneumocystis carinii Lung Infection. Infect. Immun. 1999, 67, 805–809. [Google Scholar] [CrossRef] [Green Version]
- Garvy, B.A.; Wiley, J.A.; Gigliotti, F.; Harmsen, A.G. Protection against Pneumocystis carinii pneumonia by antibodies generated from either T helper 1 or T helper 2 responses. Infect. Immun. 1997, 65, 5052–5056. [Google Scholar] [CrossRef] [Green Version]
- Gigliotti, F.; Harmsen, A.G. Pneumocystis carinii host origin defines the antibody specificity and protective response induced by immunization. J. Infect. Dis. 1997, 176, 1322–1326. [Google Scholar] [CrossRef] [Green Version]
- Gigliotti, F.; Wiley, J.A.; Harmsen, A.G. Immunization with Pneumocystis carinii gpA Is Immunogenic but Not Protective in a Mouse Model of P. carinii Pneumonia. Infect. Immun. 1998, 66, 3179. [Google Scholar] [CrossRef] [Green Version]
- Gigliotti, F.; McCool, T. Glycoprotein A is the immunodominant antigen of Pneumocystis carinii in mice following immunization. Parasitol. Res. 1996, 82, 90–91. [Google Scholar] [CrossRef]
- Graves, D.C.; McNabb, S.J.; Ivey, M.H.; Worley, M.A. Development and characterization of monoclonal antibodies to Pneumocystis carinii. Infect. Immun. 1986, 51, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Theus, S.A.; Linke, M.J.; Andrews, R.P.; Walzer, P.D. Proliferative and cytokine responses to a major surface glycoprotein of Pneumocystis carinii. Infect. Immun. 1993, 61, 4703–4709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theus, S.A.; Smulian, A.G.; Steele, P.; Linke, M.J.; Walzer, P.D. Immunization with the major surface glycoprotein of Pneumocystis carinii elicits a protective response. Vaccine 1998, 16, 1149–1157. [Google Scholar] [CrossRef]
- Bishop, L.R.; Helman, D.; Kovacs, J.A. Discordant antibody and cellular responses to Pneumocystis major surface glycoprotein variants in mice. BMC Immunol. 2012, 13, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, K.R.; Koch, J.; Levin, L.; Walzer, P.D. Enzyme-linked immunosorbent assay and serologic responses to Pneumocystis jiroveci. Emerg. Infect. Dis. 2004, 10, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Bishop, L.R.; Kovacs, J.A. Quantitation of anti-Pneumocystis jiroveci antibodies in healthy persons and immunocompromised patients. J. Infect. Dis. 2003, 187, 1844–1848. [Google Scholar] [CrossRef]
- Daly, K.; Koch, J.; Respaldiza, N.; de la Horra, C.; Montes-Cano, M.A.; Medrano, F.J.; Varela, J.M.; Calderon, E.J.; Walzer, P.D. Geographical variation in serological responses to recombinant Pneumocystis jirovecii major surface glycoprotein antigens. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2009, 15, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Walzer, P.D.; Djawe, K.; Levin, L.; Daly, K.R.; Koch, J.; Kingsley, L.; Witt, M.; Golub, E.T.; Bream, J.H.; Taiwo, B.; et al. Long-term serologic responses to the Pneumocystis jirovecii major surface glycoprotein in HIV-positive individuals with and without P. jirovecii infection. J. Infect. Dis. 2009, 199, 1335–1344. [Google Scholar] [CrossRef] [Green Version]
- Smulian, A.G.; Sullivan, D.W.; Theus, S.A. Immunization with recombinant Pneumocystis carinii p55 antigen provides partial protection against infection: Characterization of epitope recognition associated with immunization. Microbes. Infect. 2000, 2, 127–136. [Google Scholar] [CrossRef]
- Theus, S.A.; Sullivan, D.W.; Walzer, P.D.; Smulian, A.G. Cellular responses to a 55-kilodalton recombinant Pneumocystis carinii antigen. Infect. Immun. 1994, 62, 3479–3484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, H.; Guo, J.Y.; Ma, S.L.; Zhang, N.; An, C.L. Synthetic p55 tandem DNA vaccine against Pneumocystis carinii in rats. Microbiol. Immunol. 2016, 60, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Shellito, J.E.; Marrero, L.; Zhong, Q.; Julian, S.; Ye, P.; Wallace, V.; Schwarzenberger, P.; Kolls, J.K. CD4+ T cell-independent vaccination against Pneumocystis carinii in mice. J. Clin. Investig. 2001, 108, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.; Gigliotti, F.; Simpson-Haidaris, P.J.; Haidaris, C.G. Epitope Mapping of a Protective Monoclonal Antibody against Pneumocystis carinii with Shared Reactivity to Streptococcus pneumoniae Surface Antigen PspA. Infect. Immun. 2004, 72, 1548–1556. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.; Haidaris, C.G.; Wright, T.W.; Gigliotti, F. Active Immunization against Pneumocystis carinii with a Recombinant P. carinii Antigen. Infect. Immun. 2006, 74, 2446–2448. [Google Scholar] [CrossRef] [Green Version]
- Tesini, B.L.; Wright, T.W.; Malone, J.E.; Haidaris, C.G.; Harber, M.; Sant, A.J.; Nayak, J.L.; Gigliotti, F. Immunization with Pneumocystis Cross-Reactive Antigen 1 (Pca1) Protects Mice against Pneumocystis Pneumonia and Generates Antibody to Pneumocystis jirovecii. Infect. Immun. 2017, 85, e00850-16. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.H.; Gigliotti, F.; Wright, T.W.; Simpson-Haidaris, P.J.; Weinberg, G.A.; Haidaris, C.G. Molecular characterization of KEX1, a kexin-like protease in mouse Pneumocystis carinii. Gene 2000, 242, 141–150. [Google Scholar] [CrossRef]
- Gigliotti, F.; Haidaris, C.G.; Wright, T.W.; Harmsen, A.G. Passive intranasal monoclonal antibody prophylaxis against murine Pneumocystis carinii pneumonia. Infect. Immun. 2002, 70, 1069–1074. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.M.; Norris, K.A. Vaccine-Induced Immunogenicity and Protection Against Pneumocystis Pneumonia in a Nonhuman Primate Model of HIV and Pneumocystis Coinfection. J. Infect. Dis. 2016, 213, 1586–1595. [Google Scholar] [CrossRef] [Green Version]
- Cobos Jiménez, V.; Rabacal, W.; Rayens, E.; Norris, K.A. Immunization with Pneumocystis recombinant KEX1 induces robust and durable humoral responses in immunocompromised non-human primates. Hum. Vaccines Immunother. 2019, 15, 2075–2080. [Google Scholar] [CrossRef]
- Peglow, S.L.; Smulian, A.G.; Linke, M.J.; Pogue, C.L.; Nurre, S.; Crisler, J.; Phair, J.; Gold, J.W.; Armstrong, D.; Walzer, P.D. Serologic responses to Pneumocystis carinii antigens in health and disease. J. Infect. Dis. 1990, 161, 296–306. [Google Scholar] [CrossRef]
- Respaldiza, N.; Medrano, F.J.; Medrano, A.C.; Varela, J.M.; de la Horra, C.; Montes-Cano, M.; Ferrer, S.; Wichmann, I.; Gargallo-Viola, D.; Calderon, E.J. High seroprevalence of Pneumocystis infection in Spanish children. Clin. Microbiol. Infect. 2004, 10, 1029–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, S.L.; Hughes, W.T.; Santolaya, M.E.; Ulloa, A.V.; Ponce, C.A.; Cabrera, C.E.; Cumsille, F.; Gigliotti, F. Search for primary infection by Pneumocystis carinii in a cohort of normal, healthy infants. Clin. Infect. Dis. 2001, 32, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Gingo, M.R.; Lucht, L.; Daly, K.R.; Djawe, K.; Palella, F.J.; Abraham, A.G.; Bream, J.H.; Witt, M.D.; Kingsley, L.A.; Norris, K.A.; et al. Serologic responses to pneumocystis proteins in HIV patients with and without Pneumocystis jirovecii pneumonia. J. Acquir. Immune Defic. Syndr. 2011, 57, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kling, H.M.; Shipley, T.W.; Patil, S.P.; Kristoff, J.; Bryan, M.; Montelaro, R.C.; Morris, A.; Norris, K.A. Relationship of Pneumocystis jiroveci humoral immunity to prevention of colonization and chronic obstructive pulmonary disease in a primate model of HIV infection. Infect. Immun. 2010, 78, 4320–4330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, S.; Cai, Y.; Ramsay, A.J.; Welsh, D.A.; Norris, K.; Shellito, J.E. B cell and antibody responses in mice induced by a putative cell surface peptidase of Pneumocystis murina protect against experimental infection. Vaccine 2017, 35, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.J.; Lueck, C.; Ziesing, S.; Stoll, M.; Haller, H.; Gottlieb, J.; Eder, M.; Welte, T.; Hoeper, M.M.; Scherag, A.; et al. Clinical course, treatment and outcome of Pneumocystis pneumonia in immunocompromised adults: A retrospective analysis over 17 years. Crit. Care 2018, 22, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, T.; Fujita, M.; Hirano, R.; Sasaki, T.; Watanabe, K. Risk factors for pneumocystis pneumonia onset in HIV-negative patients treated with high-dose systemic corticosteroids. Infect. Dis. 2019, 51, 305–307. [Google Scholar] [CrossRef]
- Gonzalez Santiago, T.M.; Wetter, D.A.; Kalaaji, A.N.; Limper, A.H.; Lehman, J.S. Pneumocystis jiroveci pneumonia in patients treated with systemic immunosuppressive agents for dermatologic conditions: A systematic review with recommendations for prophylaxis. Int. J. Dermatol. 2016, 55, 823–830. [Google Scholar] [CrossRef] [PubMed]
Antigen | Animal Model | Dose Route Adjuvant | Immunosuppression Method | Protective? | Efficacy Readout (Result) | Ref |
---|---|---|---|---|---|---|
Inactivated whole organism | Murine | 106 trophs IN Cholera toxin B | CD4 T-cell depletion via mAb | Partial | i. Stained lung smears (no organisms present) ii. PCR (positive for mitochondrial rRNA) | [99] |
Murine | 107 organisms IT None | CD4 T-cell depletion via mAb | Partial | i. Stained lung smears (decreased organism burden) | [100] | |
Murine | 107 nuclei IT None | CD4 T-cell depletion via mAb | Yes | i. Stained lung smears (no organisms present) ii. PCR (negative for glycoprotein A and mitochondrial rRNA) | [53] | |
Murine | 106 cysts IT None | CD4 T-cell depletion via mAb | Yes | i. Stained lung smears (no organisms present) | [101] | |
gpa (Msg) | Murine | 10-10 µg IT Quil A | CD4 T-cell depletion via mAb | No | i. Stained lung smears (organisms present) | [102] |
Rat | 1-100 µg SubQ Titermax | Methylprednisolone | Partial | ii. Stained lung smears and sections (Decrease in organism burden) | [109] | |
p55 | Rat | 100 µg SubQ Titermax | Methylprednisolone | Partial | i. Stained lung smears and (Decrease in organism burden) | [112] |
Rat | 100 µg IM None | Dexamethasone | Partial | i. Stained lung sections (Decrease in organism burden) ii. PCR (Positive for p55) | [114] | |
Murine | 104 Pc-pulsed DCs IV None | CD4 T-cell depletion via mAb | Partial | i. Stained lung sections (no organisms present) ii. PCR (Positive for mitochondrial rRNA) | [115] | |
A12 (Pca1) | Murine | 25 µg SubQ Titermax | CD4 T-cell depletion via mAb | Partial | i. PCR (10/14 mice negative for single-copy kex1 gene) ii. PCR (Positive for gpA gene) | [117] |
Murine | 100 µg SubQ Titermax | CD4 T-cell depletion via mAb | Partial | i. PCR (Positive for single-copy kex1 gene) ii. PCR (negative for multicopy gpA gene) | [118] | |
SPD1 | Murine | 5 µg SubQ MF-59 | CD4 T-cell depletion via mAb | Partial | i. PCR (reduction in mitochondrial rRNA copy number) | [128] |
Kexin | Rhesus macaques | 50-100 µg IM Alum | Simian immunodeficiency virus | Partial | Criteria for PCP (1/6 animals developed PCP): i. BAL smears (detection of organism in BAL fluid) ii. PCR (PCR of organism DNA in BAL) iii. Immunohistochemistry (organism detection in lungs) | [121] |
IN—intranasal, IT—intratracheal, SubQ—subcutaneous, IM—intramuscular |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gingerich, A.D.; Norris, K.A.; Mousa, J.J. Pneumocystis Pneumonia: Immunity, Vaccines, and Treatments. Pathogens 2021, 10, 236. https://doi.org/10.3390/pathogens10020236
Gingerich AD, Norris KA, Mousa JJ. Pneumocystis Pneumonia: Immunity, Vaccines, and Treatments. Pathogens. 2021; 10(2):236. https://doi.org/10.3390/pathogens10020236
Chicago/Turabian StyleGingerich, Aaron D., Karen A. Norris, and Jarrod J. Mousa. 2021. "Pneumocystis Pneumonia: Immunity, Vaccines, and Treatments" Pathogens 10, no. 2: 236. https://doi.org/10.3390/pathogens10020236
APA StyleGingerich, A. D., Norris, K. A., & Mousa, J. J. (2021). Pneumocystis Pneumonia: Immunity, Vaccines, and Treatments. Pathogens, 10(2), 236. https://doi.org/10.3390/pathogens10020236