High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria
Abstract
:1. Introduction
2. Results
2.1. Taxonomical Identification of Collected Tick Species
2.2. Infection Rates of Microorganisms and Their Co-Infection Rates in Ticks
3. Discussion
4. Materials and Methods
4.1. Ethical Statement
4.2. Tick Collection and Morphological Identification
4.3. DNA Extraction
4.4. DNA Pre-Amplification
4.5. High-Throughput Microfluidic Real-Time PCR
4.6. Standard/Nested PCR and Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pesquera, C.; Portillo, A.; Palomar, A.M.; Oteo, J.A. Investigation of tick-borne bacteria (Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Borrelia spp.) in ticks collected from Andean tapirs, cattle and vegetation from a protected area in Ecuador. Parasit. Vectors 2015, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Nijhof, A.M.; Sauter-Louis, C.; Schauer, B.; Staubach, C.; Conraths, F.J. Distribution of ticks infesting ruminants and risk factors associated with high tick prevalence in livestock farms in the semi-arid and arid agro-ecological zones of Pakistan. Parasit. Vectors 2017, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008, 13, 6938–6946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silatsa, B.A.; Simo, G.; Githaka, N.; Mwaura, S.; Kamga, R.M.; Oumarou, F.; Keambou, C.; Bishop, R.P.; Djikeng, A.; Kuiate, J.R.; et al. A comprehensive survey of the prevalence and spatial distribution of ticks infesting cattle in different agro-ecological zones of Cameroon. Parasit. Vectors 2019, 12, 489. [Google Scholar] [CrossRef] [Green Version]
- Moutailler, S.; Valiente Moro, C.; Vaumourin, E.; Michelet, L.; Tran, F.H.; Devillers, E.; Cosson, J.F.; Gasqui, P.; Van, V.T.; Mavingui, P.; et al. Co-Infection of Ticks: The Rule Rather Than the Exception. PLoS Negl. Trop. Dis. 2016, 10, e0004539. [Google Scholar] [CrossRef] [Green Version]
- Benchikh Elfegoun, M.C.; Kohil, K.; Gharbi, M.; Afoutni, L.; Benachour, M.L. Cinétique d’infestation par les tiques des bovins de la région subhumide de Constantine en Algérie. Rev. D’éle. Méd. Vét. Pays Trop. 2019, 72, 41–45. [Google Scholar] [CrossRef]
- Bitam, I.; Parola, P.; Matsumoto, K.; Rolain, J.M.; Baziz, B.; Boubidi, S.C.; Harrat, Z.; Belkaid, M.; Raoult, D. First molecular detection of R. conorii, R. aeschlimannii, and R. massiliae in ticks from Algeria. Ann. N. Y. Acad. Sci. 2006, 1078, 368–372. [Google Scholar] [CrossRef]
- Dib, L.; Lafri, I.; Boucheikhchoukh, M.; Dendani, Z.; Bitam, I.; Benakhla, A. Seasonal distribution of Rickettsia spp. in ticks in northeast Algeria. New Microbes New Infect. 2019, 27, 48–52. [Google Scholar] [CrossRef]
- Abdelkadir, K.; Palomar, A.M.; Portillo, A.; Oteo, J.A.; Ait-Oudhia, K.; Khelef, D. Presence of Rickettsia aeschlimannii, ‘Candidatus Rickettsia barbariae’ and Coxiella burnetii in ticks from livestock in Northwestern Algeria. Ticks Tick-Borne Dis. 2019, 10, 924–928. [Google Scholar] [CrossRef]
- Sadeddine, R.; Diarra, A.Z.; Laroche, M.; Mediannikov, O.; Righi, S.; Benakhla, A.; Dahmana, H.; Raoult, D.; Parola, P. Molecular identification of protozoal and bacterial organisms in domestic animals and their infesting ticks from north-eastern Algeria. Ticks Tick-Borne Dis. 2020, 11, 101330. [Google Scholar] [CrossRef]
- Noda, H.; Munderloh, U.G.; Kurtti, T.J. Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl. Environ. Microbiol. 1997, 63, 3926–3932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duron, O.; Noël, V.; McCoy, K.D.; Bonazzi, M.; Sidi-Boumedine, K.; Morel, O.; Vavre, F.; Zenner, L.; Jourdain, E.; Durand, P.; et al. The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii. PLoS Pathog. 2015, 11, e1004892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelet, L.; Delannoy, S.; Devillers, E.; Umhang, G.; Aspan, A.; Juremalm, M.; Chirico, J.; van der Wal, F.J.; Sprong, H.; Boye Pihl, T.P.; et al. High-throughput screening of tick-borne pathogens in Europe. Front. Cell. Infect. Microbiol. 2014, 4, 103. [Google Scholar] [CrossRef] [PubMed]
- Grech-Angelini, S.; Stachurski, F.; Vayssier-Taussat, M.; Devillers, E.; Casabianca, F.; Lancelot, R.; Uilenberg, G.; Moutailler, S. Tick-borne pathogens in ticks (Acari: Ixodidae) collected from various domestic and wild hosts in Corsica (France), a Mediterranean island environment. Transbound. Emerg. Dis. 2020, 67, 745–757. [Google Scholar] [CrossRef]
- Benchikh Elfegoun, M.C.; Gharbi, M.; Djebir, S.; Kohil, K. Dynamique d’activité saisonnière des tiques ixodidés parasites des bovins dans deux étages bioclimatiques du nord-est algérien. Rev. D’éle. Méd. Vét. Pays Trop. 2013, 66, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Sarih, M.; Socolovschi, C.; Boudebouch, N.; Hassar, M.; Raoult, D.; Parola, P. Spotted fever group Rickettsiae in ticks, Morocco. Emerg. Infect. Dis. 2008, 14, 1067–1073. [Google Scholar] [CrossRef]
- Said, Y.; Lahmar, S.; Dhibi, M.; Rjeibi, M.R.; Jdidi, M.; Gharbi, M. First survey of ticks, tick-borne pathogens (Theileria, Babesia, Anaplasma and Ehrlichia) and Trypanosoma evansi in protected areas for threatened wild ruminants in Tunisia. Parasitol. Int. 2020, 81, 102275. [Google Scholar] [CrossRef] [PubMed]
- Bitam, I. Vectors of Rickettsiae in Africa. Ticks Tick-Borne Dis. 2012, 3, 382–386. [Google Scholar] [CrossRef]
- Portillo, A.; Santibáñez, S.; García-Álvarez, L.; Palomar, A.M.; Oteo, J.A. Rickettsioses in Europe. Microbes Infect. 2015, 17, 834–838. [Google Scholar] [CrossRef]
- Beati, L.; Meskini, M.; Thiers, B.; Raoult, D. Rickettsia aeschlimannii sp. nov., a new spotted fever group Rickettsia associated with Hyalomma marginatum ticks. Int. J. Syst. Bacteriol. 1997, 47, 548–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mediannikov, O.; Diatta, G.; Fenollar, F.; Sokhna, C.; Trape, J.F.; Raoult, D. Tick-borne rickettsioses, neglected emerging diseases in rural Senegal. PLoS Negl. Trop. Dis. 2010, 4, e821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehounoud, C.B.; Yao, K.P.; Dahmani, M.; Achi, Y.L.; Amanzougaghene, N.; Kacou N’Douba, A.; N’Guessan, J.D.; Raoult, D.; Fenollar, F.; Mediannikov, O. Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d’Ivoire. PLoS Negl. Trop. Dis. 2016, 10, e0004367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández Soto, P.; Encinas Grandes, A.; Pérez Sánchez, R. Rickettsia aeschlimannii in Spain: Molecular evidence in Hyalomma marginatum and five other tick species that feed on humans. Emerg. Infect. Dis. 2003, 9, 889–890. [Google Scholar] [PubMed]
- Germanakis, A.; Chochlakis, D.; Angelakis, E.; Tselentis, Y.; Psaroulaki, A. Rickettsia aeschlimannii infection in a man, Greece. Emerg. Infect. Dis. 2013, 19, 1176–1177. [Google Scholar] [CrossRef]
- Wei, Q.Q.; Guo, L.P.; Wang, A.D.; Mu, L.M.; Zhang, K.; Chen, C.F.; Zhang, W.J.; Wang, Y.Z. The first detection of Rickettsia aeschlimannii and Rickettsia massiliae in Rhipicephalus turanicus ticks, in northwest China. Parasit. Vectors 2015, 8, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Socolovschi, C.; Mediannikov, O.; Raoult, D.; Parola, P. The relationship between spotted fever group Rickettsiae and Ixodid ticks. Vet. Res. 2009, 40, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafar, A.; Cabezas-Cruz, A.; Galon, C.; Obregon, D.; Gasser, R.B.; Moutailler, S.; Jabbar, A. Bovine ticks harbour a diverse array of microorganisms in Pakistan. Parasit. Vectors 2020, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Dib, L.; Bitam, I.; Bensouilah, M.; Parola, P.; Raoult, D. First description of Rickettsia monacensis in Ixodes ricinus in Algeria. Clin. Microbiol. Infect. 2009, 15, 261–262. [Google Scholar] [CrossRef] [Green Version]
- Kernif, T.; Messaoudene, D.; Ouahioune, S.; Parola, P.; Raoult, D.; Bitam, I. Spotted fever group rickettsiae identified in Dermacentor marginatus and Ixodes ricinus ticks in Algeria. Ticks Tick-Borne Dis. 2012, 3, 380–381. [Google Scholar] [CrossRef]
- Boucheikhchoukh, M.; Laroche, M.; Aouadi, A.; Dib, L.; Benakhla, A.; Raoult, D.; Parola, P. MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. Comp. Immunol. Microbiol. Infect. Dis. 2018, 57, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Akl, T.; Bourgoin, G.; Souq, M.L.; Appolinaire, J.; Poirel, M.T.; Gibert, P.; Abi Rizk, G.; Garel, M.; Zenner, L. Detection of tick-borne pathogens in questing Ixodes ricinus in the French Pyrenees and first identification of Rickettsia monacensis in France. Parasite 2019, 26, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFadden, A.M.J.; Rawdon, T.G.; Meyer, J.; Makin, J.; Morley, C.M.; Clough, R.R.; Tham, K.; Müllner, P.; Geysen, D. An outbreak of haemolytic anaemia associated with infection of Theileria orientalis in naïve cattle. N. Z. Vet. J. 2011, 59, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.O.; Tolf, C.; Tamba, P.; Stefanache, M.; Radbea, G.; Rubel, F.; Waldenström, J.; Dobler, G.; Chițimia-Dobler, L. Babesia, Theileria, and Hepatozoon species in ticks infesting animal hosts in Romania. Parasitol. Res. 2017, 116, 2291–2297. [Google Scholar] [CrossRef]
- Chisu, V.; Alberti, A.; Zobba, R.; Foxi, C.; Masala, G. Molecular characterization and phylogenetic analysis of Babesia and Theileria spp. in ticks from domestic and wild hosts in Sardinia. Acta Trop. 2019, 196, 60–65. [Google Scholar] [CrossRef]
- Bock, R.; Jackson, L.; De Vos, A.; Jorgensen, W. Babesiosis of cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, S.; Esmaeilnejad, B.; Tavassoli, M. A molecular study on Babesia spp. in cattle and ticks in West-Azerbaijan province, Iran. Vet. Res. Forum Int. Q. J. 2017, 8, 299–306. [Google Scholar]
- Battilani, M.; De Arcangeli, S.; Balboni, A.; Dondi, F. Genetic diversity and molecular epidemiology of Anaplasma. Infect. Genet. Evol. 2017, 49, 195–211. [Google Scholar] [CrossRef]
- Dahmani, M.; Davoust, B.; Tahir, D.; Raoult, D.; Fenollar, F.; Mediannikov, O. Molecular investigation and phylogeny of Anaplasmataceae species infecting domestic animals and ticks in Corsica, France. Parasit. Vectors 2017, 10, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrolho, J.; Antunes, S.; Santos, A.S.; Velez, R.; Padre, L.; Cabezas-Cruz, A.; Santos-Silva, M.M.; Domingos, A. Detection and phylogenetic characterization of Theileria spp. and Anaplasma marginale in Rhipicephalus bursa in Portugal. Ticks Tick-Borne Dis. 2016, 7, 443–448. [Google Scholar] [CrossRef]
- Hornok, S.; Micsutka, A.; Fernández de Mera, I.G.; Meli, M.L.; Gönczi, E.; Tánczos, B.; Mangold, A.J.; Farkas, R.; Lutz, H.; Hofmann-Lehmann, R.; et al. Fatal bovine anaplasmosis in a herd with new genotypes of Anaplasma marginale, Anaplasma ovis and concurrent haemoplasmosis. Res. Vet. Sci. 2012, 92, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Boularias, G.; Azzag, N.; Gandoin, C.; Bouillin, C.; Chomel, B.; Haddad, N.; Boulouis, H.J. Bartonella bovis and Bartonella chomelii infection in dairy cattle and their ectoparasites in Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101450. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.P.; Amanfu, W.; Losho, T.C. Bovine borreliosis in Botswana. Onderstepoort J. Vet. Res. 2000, 67, 221–223. [Google Scholar]
- Mc Coya, B.N.; Maïgab, O.; Schwana, T.G. Detection of Borrelia theileri in Rhipicephalus geigyi from Mali. Ticks Tick-Borne Dis. 2014, 5, 401–403. [Google Scholar]
- Ahantarig, A.; Trinachartvanit, W.; Baimai, V.; Grubhoffer, L. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol. 2013, 58, 419–428. [Google Scholar] [CrossRef]
- Raoult, D.; Roux, V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin. Microbiol. Rev. 1997, 10, 694–719. [Google Scholar] [CrossRef]
- Gondard, M.; Delannoy, S.; Pinarello, V.; Aprelon, R.; Devillers, E.; Galon, C.; Pradel, J.; Vayssier-Taussat, M.; Albina, E.; Moutailler, S. Upscaling surveillance of tick-borne pathogens in the French Caribbean islands. Pathogens 2020, 9, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mixson, T.R.; Campbell, S.R.; Gill, J.S.; Ginsberg, H.S.; Reichard, M.V.; Schulze, T.L.; Dasch, G.A. Prevalence of Ehrlichia, Borrelia, and Rickettsial Agents in Amblyomma americanum (Acari: Ixodidae) Collected from Nine States. J. Med. Entomol. 2006, 43, 1261–1268. [Google Scholar] [CrossRef]
- Walker, A.R.; Bouattour, A.; Camicas, J.; Estrada-Peña, A.; Horak, I.; Latif, A.; Pegram, R.; Preston, P. Ticks of Domestic Animals in Africa: A Guide to Identification of Species; Bioscience Reports: Edinburgh, UK, 2003; ISBN 095451730X. [Google Scholar]
- Loh, S.M.; Gofton, A.W.; Lo, N.; Gillett, A.; Ryan, U.M.; Irwin, P.J.; Oskam, C.L. Novel Borrelia species detected in echidna ticks, Bothriocroton concolor, in Australia. Parasit. Vectors 2016, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Rar, V.A.; Fomenko, N.V.; Dobrotvorsky, A.K.; Livanova, N.H.; Rudakova, S.A.; Fedorov, E.G.; Astanin, V.B.; Morozova, O.V. Tick borne pathogen detection, Western Siberia, Russia. Emerg. Infect. Dis. 2005, 11, 1708–1715. [Google Scholar] [CrossRef]
- Regnery, R.L.; Spruill, C.L.; Plikaytis, B.D. Genotypic identification of Rickettsiae and estimation of intra species sequence divergence for portions of two rickettsial genes. J. Bacteriol. 1991, 173, 1576–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veikkolainen, V.; Vesterinen, E.J.; Lilley, T.M.; Pulliainen, A.T. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerg. Infect. Dis. 2014, 20, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Masatani, T.; Hayashi, K.; Andoh, M.; Tateno, M.; Endo, Y.; Asada, M.; Kusakisako, K.; Tanaka, T.; Gokuden, M.; Hozumi, N.; et al. Detection and molecular characterization of Babesia, Theileria, and Hepatozoon species in hard ticks collected from Kagoshima, the southern region in Japan. Ticks Tick-Borne Dis. 2017, 8, 581–587. [Google Scholar] [CrossRef] [PubMed]
Species | Borrelia spp. | A.marginale | A.centrale | R. aeschlimannii | R.massiliae | R.monacensis | R.helvetica | Bartonella spp. | T.orientalis | B.bigemina | FLE |
---|---|---|---|---|---|---|---|---|---|---|---|
R. bursa (n = 51) | 4 | 2 | 0 | 11 | 0 | 0 | 0 | 3 | 8 | 0 | 15 |
(7.8%) | (3.9%) | (21.5%) | (5.8%) | (15.6%) | (29.4%) | ||||||
(0.4–15.2%) | (0–9.2%) | (10.2–32.5%) | (0–12.2%) | (5.7–25.6%) | (16.8–41.9%) | ||||||
R. sanguineus (n = 07) | 1 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 0 | 5 | 1 |
(14.2%) | (57.1%) | (28.5%) | (71.4%) | (14.2%) | |||||||
(0–40%) | (20.4–93.8%) | (0–61.9%) | (37.9–100%) | (0–40.2%) | |||||||
R. annulatus (n = 01) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
(100%) | |||||||||||
(0–100%) | |||||||||||
Rhipicephalus spp. (n = 50) | 1 | 6 | 1 | 5 | 0 | 0 | 0 | 3 | 11 | 0 | 21 |
(2%) | (12%) | (2%) | (10%) | (6%) | (22%) | (42%) | |||||
(0–5.8%) | (3–21%) | (0–5.8%) | (1.6–18.3%) | (0–12.5%) | (10.5–33.4%) | (28.3–55.6%) | |||||
H. detritum (n = 41) | 3 | 2 | 0 | 2 | 2 | 0 | 0 | 3 | 6 | 0 | 37 |
(7.3%) | (4.8%) | (4.8%) | (4.8%) | (7.3%) | (14.3%) | (90.2%) | |||||
(0–15.2%) | (0–11.3%) | (0–11.3%) | (0–11.3%) | (0–15.2%) | (3.5–25%) | (81.1–99.3%) | |||||
H. marginatum (n = 15) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 12 |
(6.6%) | (6.6%) | (80%) | |||||||||
(0–19.1%) | (0–19.1%) | (59.7–100%) | |||||||||
H. lusitanicum (n = 04) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 |
(25%) | (100%) | ||||||||||
(0–67.4%) | (25–100%) | ||||||||||
Hyalomma spp. (n = 53) | 6 | 1 | 0 | 8 | 5 | 0 | 0 | 4 | 10 | 0 | 47 |
(11.3%) | (1.8%) | (15.1%) | (9.4%) | (7.5%) | (18.8%) | (88.6%) | |||||
(2.7–19.8%) | (0–5.3%) | (5.9–25.6%) | (1.5–17.2%) | (0.2–14.1%) | (8.2–29.3%) | (80–97.1%) | |||||
I. ricinus (n = 13) | 1 | 5 | 0 | 0 | 0 | 5 | 2 | 0 | 6 | 0 | 11 |
(7.6%) | (38.4%) | (38.4%) | (15.3%) | (46.1%) | (84.6%) | ||||||
(0–22%) | (12–64.8%) | (12–64.8%) | (0–34.8%) | (19–73.1%) | (64.9–100%) | ||||||
Total (n = 235) | 16 | 16 | 1 | 27 | 11 | 5 | 2 | 16 | 42 | 6 | 148 |
6.8% | 6.8% | 0.4% | 11.5% | 4.6% | 2.1% | 0.8% | 6.8% | 17.8% | 2.5% | 62.9% | |
(3.5–10%) | (3.5–10%) | (0–1.2%) | (7.4–15.5%) | (1.9–7.2%) | (0.2–3.9%) | (0–1.9%) | (3.5–10%) | (13–22.6%) | (0.5–4.4%) | (56.7–69%) |
Genus | Species | Numbers | |
---|---|---|---|
Bacteria | Borrelia | B. burgdorferi senso stricto, B. garinii, B. afzelii, B. valaisiana, B. lusitaniae, B. spielmanii, B. bissettii, B. miyamotoi. | 8 |
Anaplasma | A. marginale, A. platys, A. phagocytophilum, A.ovis, A. centrale, A. bovis. | 6 | |
Ehrlichia | E. ruminantium, Neoehrlichia mikurensis. | 2 | |
Rickettsia | R. conorii, R. slovaca, R. massiliae, R. prowazekii, R. aeschlimannii, R. andeanae, R. typhi, R. akari | 8 | |
Bartonella | B. henselae | 1 | |
Francisella | F. tularensis, Francisella-like endosymbionts. | 2 | |
Coxiella | C. burnettii. | 1 | |
Parasites | Babesia | B. microti, B. ovis, B. bigemina, B. bovis, B. caballi, B. divergens. | 6 |
Theileria | T. mutans, T. velifera. | 2 | |
Hepatozoon | Hepatozoon spp. | ||
Total | 10 | 36 |
Pathogen | Target Gene | Primers (F, R; 5′-3′) and Probe (P) | Length (bp) |
---|---|---|---|
Borrelia burgdorferi s.s. | rpoB | F-GCTTACTCACAAAAGGCGTCTT | 83 |
R-GCACATCTCTTACTTCAAATCCT | |||
P-AATGCTCTTGGACCAGGAGGACTTTCA | |||
Borrelia garinii | rpoB | F-TGGCCGAACTTACCCACAAAA | 88 |
R-ACATCTCTTACTTCAAATCCTGC | |||
P-TCTATCTCTTGAAAGTCCCCCTGGTCC | |||
Borrelia afzelii | fla | F-GGAGCAAATCAAGATGAAGCAAT | 116 |
R-TGAGCACCCTCTTGAACAGG | |||
P-TGCAGCCTGAGCAGCTTGAGCTCC | |||
Borrelia valaisiana | ospA | F-ACTCACAAATGACAGATGCTGAA | 135 |
R-GCTTGCTTAAAGTAACAGTACCT | |||
P-TCCGCCTACAAGATTTCCTGGAAGCTT | |||
Borrelia lusitaniae | rpoB | F-CGAACTTACTCATAAAAGGCGTC | 87 |
R-TGGACGTCTCTTACTTCAAATCC | |||
P-TTAATGCTCTCGGGCCTGGGGGACT | |||
Borrelia spielmanii | fla | F-ATCTATTTTCTGGTGAGGGAGC | 71 |
R-TCCTTCTTGTTGAGCACCTTC | |||
P-TTGAACAGGCGCAGTCTGAGCAGCTT | |||
Borrelia bissettii | rpoB | F-GCAACCAGTCAGCTTTCACAG | 118 |
R-CAAATCCTGCCCTATCCCTTG | |||
P-AAAGTCCTCCCGGCCCAAGAGCATTAA | |||
Borrelia miyamotoi | glpQ | F-CACGACCCAGAAATTGACACA | 94 |
R-GTGTGAAGTCAGTGGCGTAAT | |||
P-TCGTCCGTTTTCTCTAGCTCGATTGGG | |||
Borreliaspp. | 23S rRNA | F-GAGTCTTAAAAGGGCGATTTAGT | 73 |
R-CTTCAGCCTGGCCATAAATAG | |||
P-AGATGTGGTAGACCCGAAGCCGAGT | |||
Anaplasma marginale | msp1 | F-CAGGCTTCAAGCGTACAGTG | 85 |
R-GATATCTGTGCCTGGCCTTC | |||
P-ATGAAAGCCTGGAGATGTTAGACCGAG | |||
Anaplasma platys | groEL | F-TTCTGCCGATCCTTGAAAACG | 75 |
R-CTTCTCCTTCTACATCCTCAG | |||
P-TTGCTAGATCCGGCAGGCCTCTGC | |||
Anaplasma phagocytophilum | msp2 | F-GCTATGGAAGGCAGTGTTGG | 77 |
R-GTCTTGAAGCGCTCGTAACC | |||
P-AATCTCAAGCTCAACCCTGGCACCAC | |||
Anaplasma ovis | msp4 | F-TCATTCGACATGCGTGAGTCA | 92 |
R-TTTGCTGGCGCACTCACATC | |||
P-AGCAGAGAGACCTCGTATGTTAGAGGC | |||
Anaplasma centrale | groEL | F-AGCTGCCCTGCTATACACG | 79 |
R-GATGTTGATGCCCAATTGCTC | |||
P-CTTGCATCTCTAGACGAGGTAAAGGGG | |||
Anaplasma bovis | groEL | F-GGGAGATAGTACACATCCTTG | 73 |
R-CTGATAGCTACAGTTAAGCCC | |||
P-AGGTGCTGTTGGATGTACTGCTGGACC | |||
Anaplasmaspp. | 16S rRNA | F-CTTAGGGTTGTAAAACTCTTTCAG | 160 |
R-CTTTAACTTACCAAACCGCCTAC | |||
P-ATGCCCTTTACGCCCAATAATTCCGAACA | |||
Ehrlichiaspp. | 16S rRNA | F-GCAACGCGAAAAACCTTACCA | 98 |
R-AGCCATGCAGCACCTGTGT | |||
P-AAGGTCCAGCCAAACTGACTCTTCCG | |||
Ehrlichia ruminantium | gltA | F-CCAGAAAACTGATGGTGAGTTAG | 116 |
R-AGCCTACATCAGCTTGAATGAAG | |||
P-AGTGTAAACTTGCTGTTGCTAAGGTAGCATG | |||
Neoehrlichia mikurensis | groEL | F-AGAGACATCATTCGCATTTTGGA | 96 |
R-TTCCGGTGTACCATAAGGCTT | |||
P-AGATGCTGTTGGATGTACTGCTGGACC | |||
Rickettsia conorii | 23S-5S ITS | F-CTCACAAAGTTATCAGGTTAAATAG | 118 |
R-CGATACTCAGCAAAATAATTCTCG | |||
P-CTGGATATCGTGGCAGGGCTACAGTAT | |||
Rickettsia slovaca | 23S-5S ITS | F-GTATCTACTCACAAAGTTATCAGG | 138 |
R-CTTAACTTTTACTACAATACTCAGC | |||
P-TAATTTTCGCTGGATATCGTGGCAGGG | |||
Rickettsia massiliae | 23S-5S ITS | F-GTTATTGCATCACTAATGTTATACTG | 128 |
R-GTTAATGTTGTTGCACGACTCAA | |||
P-TAGCCCCGCCACGATATCTAGCAAAAA | |||
Rickettsia prowazekii | gltA | F-CAAGTATCGGTAAAGATGTAATCG | 151 |
R-TATCCTCGATACCATAATATGCC | |||
P-ATATAAGTAGGGTATCTGCGGAAGCCGAT | |||
Rickettsia aeschlimannii | ITS | F-CTCACAAAGTTATCAGGTTAAATAG | 134 |
R-CTTAACTTTTACTACGATACTTAGCA | |||
P-TAATTTTTGCTGGATATCGTGGCGGGG | |||
Rickettsiaandeanae | OmpB | F-GGCGGACAGGTAACTTTTGG | 165 |
R-AAGGATCATAGTATCAGGAACTG | |||
P- ACACATAGTTGACGTTGGTACAGACGGTAC | |||
Rickettsiatyphi | OmpB | F-CAGGTCATGGTATTACTGCTCA | 133 |
R-GCAGCAGTAAAGTCTATTGATCC | |||
P-ACAAGCTGCTACTACAAAAAGTGCTCAAAATG | |||
Rickettsiaakari | OmpB | F-GTGCTGTTGCAGGTGGTAC | 101 |
R-TAAAGTAATACCGTGTAATGCAGC | |||
P-ATTACCAGCACCGTTACCTATATCACCGG | |||
Rickettsiaspp. | gltA | F-GTCGCAAATGTTCACGGTACTT | 78 |
R-TCTTCGTGCATTTCTTTCCATTG | |||
P-TGCAATAGCAAGAACCGTAGGCTGGATG | |||
Bartonella henselae | pap31 | F-CCGCTGATCGCATTATGCCT | 107 |
R-AGCGATTTCTGCATCATCTGCT | |||
P-ATGTTGCTGGTGGTGTTTCCTATGCAC | |||
Bartonellaspp. | ssrA | F-CGTTATCGGGCTAAATGAGTAG | 118 |
R-ACCCCGCTTAAACCTGCGA | |||
P-TTGCAAATGACAACTATGCGGAAGCACGTC | |||
Francisella tularensis | tul4 | F-ACCCACAAGGAAGTGTAAGATTA | 76 |
R-GTAATTGGGAAGCTTGTATCATG | |||
P-AATGGCAGGCTCCAGAAGGTTCTAAGT | |||
Francisella-like endosymbionts | fopA | F-GGCAAATCTAGCAGGTCAAGC | 91 |
R-CAACACTTGCTTGAACATTTCTAG | |||
P-AACAGGTGCTTGGGATGTGGGTGGTG | |||
Coxiella burnettii | IS1111 | F-TGGAGGAGCGAACCATTGGT | 86 |
R-CATACGGTTTGACGTGCTGC | |||
P-ATCGGACGTTTATGGGGATGGGTATCC | |||
Coxiella burnettii | idc | F-AGGCCCGTCCGTTATTTTACG | 74 |
R-CGGAAAATCACCATATTCACCTT | |||
P-TTCAGGCGTTTTGACCGGGCTTGGC | |||
Babesia microti | CCTeta | F-ACAATGGATTTTCCCCAGCAAAA | 145 |
R-GCGACATTTCGGCAACTTATATA | |||
P-TACTCTGGTGCAATGAGCGTATGGGTA | |||
Babesia ovis | 18SrRNA | F-TCTGTGATGCCCTTAGATGTC | 92 |
R-GCTGGTTACCCGCGCCTT | |||
P-TCGGAGCGGGGTCAACTCGATGCAT | |||
Babesia bigemina | 18SrRNA | F-ATTCCGTTAACGAACGAGACC | 99 |
R-TTCCCCCACGCTTGAAGCA | |||
P-CAGGAGTCCCTCTAAGAAGCAAACGAG | |||
Babesia bovis | CCTeta | F-GCCAAGTAGTGGTAGACTGTA | 100 |
R-GCTCCGTCATTGGTTATGGTA | |||
P-TAAAGACAACACTGGGTCCGCGTGG | |||
Babesia caballi | Rap1 | F-GTTGTTCGGCTGGGGCATC | 94 |
R-CAGGCGACTGACGCTGTGT | |||
P-TCTGTCCCGATGTCAAGGGGCAGGT | |||
Babesia divergens | hsp70 | F-CTCATTGGTGACGCCGCTA | 83 |
R-CTCCTCCCGATAAGCCTCTT | |||
P-AGAACCAGGAGGCCCGTAACCCAGA | |||
Theileria mutans | ITS | F-CCTTATTAGGGGCTACCGTG | 119 |
R-GTTTCAAATTTGAAGTAACCAAGTG | |||
P-ATCCGTGAAAAACGTGCCAAACTGGTTAC | |||
Theileria velifera | 18S rRNA | F-TGTGGCTTATCTGGGTTCGC | 151 |
R-CCATTACTTTGGTACCTAAAACC | |||
P-TTGCGTTCCCGGTGTTTTACTTTGAGAAAG | |||
Theileriaspp. | 18S | F-TGAACGAGGAATGCCTAGTATG | 104 |
R-CACCGGATCACTCGATCGG | |||
P-TAGGAGCGACGGGCGGTGTGTAC | |||
Hepatozoonspp. | 18S rRNA | F-ATTGGCTTACCGTGGCAGTG | 175 |
R-AAAGCATTTTAACTGCCTTGTATTG | |||
P-ACGGTTAACGGGGGATTAGGGTTCGAT | |||
Tick species | 16SrRNA | F-AAATACTCTAGGGATAACAGCGT | 99 |
R-TCTTCATCAAACAAGTATCCTAATC | |||
P-CAACATCGAGGTCGCAAACCATTTTGTCTA | |||
Rhipicephalussanguineus | ITS2 | F-TTGAACGCTACGGCAAAGCG | 110 |
R-CCATCACCTCGGTGCAGTC | |||
P-ACAAGGGCCGCTCGAAAGGCGAGA | |||
Ixodes ricinus | ITS2 | F-CGAAACTCGATGGAGACCTG | 77 |
R-ATCTCCAACGCACCGACGT | |||
P-TTGTGGAAATCCCGTCGCACGTTGAAC | |||
Escherichia coli | eae | F-CATTGATCAGGATTTTTCTGGTGATA | 102 |
R-CTCATGCGGAAATAGCCGTTA | |||
P-ATAGTCTCGCCAGTATTCGCCACCAATACC |
Pathogen | Target Gene | Primer Name | Sequence (5′-3′) | Amplicon Size (bp) | T | Reference |
---|---|---|---|---|---|---|
Borreliaspp. | FlaB | FlaB280 F | GCAGTTCARTCAGGTAACGG | 645 | 55 | [50] |
FlaL R | GCAATCATAGCCATTGCAGATTGT | |||||
FlaB_737F | GCATCAACTGTRGTTGTAACATTAACAGG | |||||
FlaLL R | ACATATTCAGATGCAGACAGAGGT | 407 | ||||
Anaplasmaspp. | 16S rRNA | EHR1 F | GAACGAACGCTGGCGGCAAGC | 693 | 60 | [51] |
EHR2 R | AGTA(T/C)CG(A/G)ACCAGATAGCCGC | |||||
EHR3 F | TGCATAGGAATCTACCTAGTAG | |||||
EHR2 R | AGTA(T/C)CG(A/G)ACCAGATAGCCGC | 629 | 55 | |||
Rickettsiaspp. | gltA | Rsfg877 | GGG GGC CTG CTC ACG GCG G | 381 | 56 | [52] |
Rsfg1258 | ATT GCA AAA AGT ACA GTG AAC A | |||||
Bartonellaspp. | ftsZ | 257 F | GCCTTCAAGGAGTTGATTTTGTTGTTGCCA | 580 | 55 | [53] |
258 R | ACGACCCATTTCATGCATAACAGAAC | |||||
Babesia/ Theileria /Hepatozoonspp. | 18S rRNA | BTH 18S 1st F | GTGAAACTGCGAATGGCTCATTAC | 1500 | 58 | [54] |
BTH 18S 1st R | AAGTGATAAGGTTCACAAAACTTCCC | |||||
BTH 18S 2nd F | GGCTCATTACAACAGTTATAGTTTATTTG | |||||
BTH 18S 2nd R | CGGTCCGAATAATTCACCGGAT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boularias, G.; Azzag, N.; Galon, C.; Šimo, L.; Boulouis, H.-J.; Moutailler, S. High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. Pathogens 2021, 10, 362. https://doi.org/10.3390/pathogens10030362
Boularias G, Azzag N, Galon C, Šimo L, Boulouis H-J, Moutailler S. High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. Pathogens. 2021; 10(3):362. https://doi.org/10.3390/pathogens10030362
Chicago/Turabian StyleBoularias, Ghania, Naouelle Azzag, Clemence Galon, Ladislav Šimo, Henri-Jean Boulouis, and Sara Moutailler. 2021. "High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria" Pathogens 10, no. 3: 362. https://doi.org/10.3390/pathogens10030362
APA StyleBoularias, G., Azzag, N., Galon, C., Šimo, L., Boulouis, H. -J., & Moutailler, S. (2021). High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. Pathogens, 10(3), 362. https://doi.org/10.3390/pathogens10030362