Genomic Analyses of Globodera pallida, A Quarantine Agricultural Pathogen in Idaho
Abstract
:1. Introduction
2. Results
2.1. Sequence Yield and Read Mapping
2.2. Effect of Coverage Threshold on Number of SNPs
2.3. Genetic Differentiation Among G. pallida Field Populations in Idaho
2.4. Comparisons with Greenhouse and Scotland G. pallida Populations
2.5. Patterns of Genome Wide Polymorphisms before and after Fumigation
3. Discussion
4. Materials and Methods
4.1. Globodera pallida Populations and Sampling
4.2. DNA Extraction, Library Preparation and Genome Sequencing
4.3. Genome Assembly and Quality Control
4.4. SNP Identification and Population Genomic Analyses
4.5. SNP Outliers and Coding Regions of the Genome
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abad, P.; Gouzy, J.; Aury, J.M.; Castagnone-Sereno, P.; Danchin, E.G.J.; Deleury, E.; Perfus-Barbeoch, L.; Anthouard, V.; Artiguenave, F.; Blok, V.C.; et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 2008, 26, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Bird, D.M.; Kaloshian, I. Are roots special? Nematodes have their say. Physiol. Mol. Plant Pathol. 2003, 62, 115–123. [Google Scholar] [CrossRef]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-Lopez, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [PubMed]
- Brodie, B.B.; Mai, W.F. Control of the golden nematode in the United-States. Annu. Rev. Phytopathol. 1989, 27, 443–461. [Google Scholar] [CrossRef]
- Contina, J.B.; Dandurand, L.M.; Knudsen, G.R. A predictive risk model analysis of the potato cyst nematode Globodera pallida in Idaho. Plant Dis. 2019, 103, 3117–3128. [Google Scholar] [CrossRef] [PubMed]
- Dandurand, L.M.; Zasada, I.A.; Wang, X.H.; Mimee, B.; De Jong, W.; Novy, R.; Whitworth, J.; Kuhl, J.C. Current status of potato cyst nematodes in North America. Annu. Rev. Phytopathol. 2019, 57, 117–133. [Google Scholar] [CrossRef]
- Hafez, S.L.; Sundararaj, P. First report of the pale cyst nematode, Globodera pallida, in the United States. Plant Dis. 2007, 91, 325. [Google Scholar] [CrossRef]
- Pale Cyst Nematode Quarantine and Regulations; Federal Information & News Dispatch, LLC.: Washington, DC, USA, 2009; Volume 74, p. 19374.
- Hockland, S.; Niere, B.; Grenier, E.; Blok, V.; Phillips, M.; Den Nijs, L.; Anthoine, G.; Pickup, J.; Viaene, N. An evaluation of the implications of virulence in non-European populations of Globodera pallida and G. rostochiensis for potato cultivation in Europe. Nematology 2012, 14, 1–13. [Google Scholar] [CrossRef]
- Plantard, O.; Picard, D.; Valette, S.; Scurrah, M.; Grenier, E.; Mugniery, D. Origin and genetic diversity of Western European populations of the potato cyst nematode (Globodera pallida) inferred from mitochondrial sequences and microsatellite loci. Mol. Ecol. 2008, 17, 2208–2218. [Google Scholar] [CrossRef]
- Contina, J.B.; Dandurand, L.M.; Knudsen, G.R. A spatial analysis of the potato cyst nematode Globodera pallida in Idaho. Phytopathology 2018, 108, 988–1001. [Google Scholar] [CrossRef] [Green Version]
- Duceppe, M.O.; Lafond-Lapalme, J.; Palomares-Rius, J.E.; Sabeh, M.; Blok, V.; Moffett, P.; Mimee, B. Analysis of survival and hatching transcriptomes from potato cyst nematodes, Globodera rostochiensis and G. pallida. Sci. Rep. 2017, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, J.L.; Novy, R.G.; Zasada, I.A.; Wang, X.H.; Dandurand, L.M.; Kuhl, J.C. Resistance of potato breeding clones and cultivars to three species of potato cyst nematode. Plant Dis. 2018, 102, 2120–2128. [Google Scholar] [CrossRef] [Green Version]
- Stapley, J.; Reger, J.; Feulner, P.G.D.; Smadja, C.; Galindo, J.; Ekblom, R.; Bennison, C.; Ball, A.D.; Beckerman, A.P.; Slate, J. Adaptation genomics: The next generation. Trends Ecol. Evol. 2010, 25, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Weigand, H.; Leese, F. Detecting signatures of positive selection in non-model species using genomic data. Zool. J. Linn. Soc. 2018, 184, 528–583. [Google Scholar] [CrossRef]
- Turner, T.L.; Bourne, E.C.; Von Wettberg, E.J.; Hu, T.T.; Nuzhdin, S.V. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat. Genet. 2010, 42, 260–264. [Google Scholar] [CrossRef]
- Guo, B.C.; Li, Z.T.; Merila, J. Population genomic evidence for adaptive differentiation in the Baltic Sea herring. Mol. Ecol. 2016, 25, 2833–2852. [Google Scholar] [CrossRef]
- De Villemereuil, P.; Gaggiotti, O.E. A new Fst-based method to uncover local adaptation using environmental variables. Methods Ecol. Evol. 2015, 6, 1248–1258. [Google Scholar] [CrossRef] [Green Version]
- Hoban, S.; Kelley, J.L.; Lotterhos, K.E.; Antolin, M.F.; Bradburd, G.; Lowry, D.B.; Poss, M.L.; Reed, L.K.; Storfer, A.; Whitlock, M.C. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 2016, 188, 379–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, S. The interpretation of population-structure by F-statistics with special regard to systems of mating. Evolution 1965, 19, 395–420. [Google Scholar] [CrossRef]
- Barsh, G.S.; Copenhaver, G.P.; Gibson, G.; Williams, S.M. Guidelines for Genome-Wide Association Studies. PLoS Genet. 2012, 8, 1002812. [Google Scholar] [CrossRef] [PubMed]
- Hupalo, D.N.; Bradic, M.; Carlton, J.M. The impact of genomics on population genetics of parasitic diseases. Curr. Opin. Microbiol. 2015, 23, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Wright, S. Evolution and the Genetics of Populations, Volume 4: Variability Within and Among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1978. [Google Scholar]
- Hartl, D.L.; Clark, A.G. Principles of Population Genetics, 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2007. [Google Scholar]
- VonHoldt, B.M.; Cahill, J.A.; Fan, Z.X.; Gronau, I.; Robinson, J.; Pollinger, J.P.; Shapiro, B.; Wall, J.; Wayne, R.K. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xie, Y.; Zhang, Z.H.; Wang, C.D.; Sun, Y.; Gu, X.B.; Wang, S.X.; Peng, X.R.; Yang, G.Y. Analysis of the genetic diversity of the nematode parasite Baylisascaris schroederi from wild giant pandas in different mountain ranges in China. Parasites Vectors 2013, 6. [Google Scholar] [CrossRef] [Green Version]
- Mimee, B.; Duceppe, M.O.; Veronneau, P.Y.; Lafond-Lapalme, J.; Jean, M.; Belzile, F.; Belair, G. A new method for studying population genetics of cyst nematodes based on Pool-Seq and genomewide allele frequency analysis. Mol. Ecol. Resour. 2015, 15, 1356–1365. [Google Scholar] [CrossRef]
- Ferris, H.; Jetter, K.M.; Zasada, I.A.; Chitambar, J.J.; Venette, R.C.; Klonsky, K.M.; Becker, J.O. Risk assessment of plant-parasitic nematodes. In Exotic Pests and Diseases: Biology and Economics for Biosecurity; Summer, D.A., Buck, F.H., Jr., Eds.; Iowa State University Press: Ames, IA, USA, 2003; pp. 99–119. [Google Scholar]
- Lu, S.W.; Chen, S.Y.; Wang, J.Y.; Yu, H.; Chronis, D.; Mitchum, M.G.; Wang, X.H. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. Mol. Plant-Microbe Interact. 2009, 22, 1128–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.L. The Biology of Nematodes; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Estes, S.; Phillips, P.C.; Denver, D.R. Fitness recovery and compensatory evolution in natural mutant lines of C. elegans. Evolution 2011, 65, 2335–2344. [Google Scholar] [CrossRef]
- Eoche-Bosy, D.; Gauthier, J.; Juhel, A.S.; Esquibet, M.; Fournet, S.; Grenier, E.; Montarry, J. Experimentally evolved populations of the potato cyst nematode Globodera pallida allow the targeting of genomic footprints of selection due to host adaptation. Plant Pathol. 2017, 66, 1022–1030. [Google Scholar] [CrossRef]
- Akey, J.M.; Zhang, G.; Zhang, K.; Jin, L.; Shriver, M.D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 2002, 12, 1805–1814. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, M.A. Adaptation and speciation: What can Fst tell us? Trends Ecol. Evol. 2005, 20, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Fenwick, D.W. Methods for the recovery and counting of cysts of Heterodera schachtii from Soil. J. Helminthol. 1940, 18, 155–172. [Google Scholar] [CrossRef]
- Skantar, A.M.; Handoo, Z.A.; Carta, L.K.; Chitwood, D.J. Morphological and molecular identification of Globodera pallida associated with potato in Idaho. J. Nematol. 2007, 39, 133–144. [Google Scholar] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 genome project data processing subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.A.; Rutledge, G.A.; Kezos, J.N.; Greenspan, Z.S.; Talbott, A.; Matty, S.; Arain, H.; Mueller, L.D.; Rose, M.R.; Shahrestani, P. Effects of evolutionary history on genome wide and phenotypic convergence in Drosophila populations. BMC Genom. 2018, 19, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kofler, R.; Pandey, R.V.; Schlotterer, C. PoPoolation2: Identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 2011, 27, 3435–3436. [Google Scholar] [CrossRef] [Green Version]
- Mantel, N. Chi-Square Tests with One Degree of Freedom; Extensions of the Mantel-Haenszel procedure. J. Am. Stat. Assoc. 1963, 58, 690–700. [Google Scholar] [CrossRef]
Category | Specific Survey | Populations Analyzed |
---|---|---|
Spatial genetic differentiation | Genetic differentiation among G. pallida populations from infested fields prior to fumigation (Survey I) | BIN25-0 BIN26-0 BIN54-0 BON64-0 |
Genetic differentiation among Idaho field populations detected in 2007 and 2014 (Survey II) | BIN25-0 BIN26-0 BIN54-0 BON64-0 BIN258-0 | |
Genetic differentiation among field and greenhouse-reared Idaho populations (Survey III) | BIN25-0 BIN26-0 BIN54-0 BON64-0 Greenhouse | |
Genetic differentiation among Idaho and Scottish G. pallida populations (Survey IV) | BIN25-0 BIN26-0 BIN54-0 BON64-0 Luffness | |
Temporal genetic differentiation | Patterns of genome-wide polymorphisms of pre- and post-fumigation populations (Surveys V- A, B, C) | BIN25-0 BIN25-1 |
BIN54-0 BIN54-1 | ||
BIN258-0 BIN258-1 |
Populations | Number of Pairwise Comparisons | Minimum Coverage | Number of SNPs |
---|---|---|---|
Survey I: BIN25-0_BIN26-0_BIN54-0_BON64-0 (16) | 120 | 30 | 198 |
20 | 1246 | ||
10 | 50,508 | ||
Survey II: BIN25-0_BIN26-0_BIN54-0_BON64-0_BIN258-0 (20) | 190 | 30 | 6 |
20 | 125 | ||
10 | 16,890 | ||
Survey III: BIN25-0_BIN26-0_BIN54-0_BON64-0_GH (20) | 190 | 40 | 100 |
30 | 3361 | ||
20 | 3361 | ||
Survey IV: BIN25-0_BIN26-0_BIN54-0_BON64-0_Luff (5) | 15 | 70 | 302 |
60 | 1313 | ||
10 | 1,240,364 | ||
Survey V-A: BIN25-0 vs BIN25-1 (8) | 28 | 30 | 255 |
20 | 1008 | ||
10 | 6076 | ||
Survey V-B: BIN54-0 vs BIN54-1 (8) | 28 | 60 | 249 |
50 | 552 | ||
20 | 18,729 | ||
Survey V-C: BIN258-0 vs BIN258-1 (8) | 28 | 60 | 242 |
50 | 653 | ||
20 | 17,941 | ||
10 | 92,847 |
Infected Field | Time Point | Date of Cyst Collection | Number of Replicates |
---|---|---|---|
BIN25-0 | pre-fumigation | May 2007 | 4 |
BIN25-1 | post-fumigation-1 | Aug 2007 | 4 |
BIN25-3 | post-fumigation-3 | Jun 2008 | 4 |
BIN25-7 | post-fumigation-7 | Apr 2010 | 4 |
BIN25-10 | post-fumigation-10 | Oct 2012 | 4 |
BIN26-0 | pre-fumigation | May 2007 | 4 |
BIN54-0 | pre-fumigation | Apr 2007 | 4 |
BIN54-1 | post-fumigation-1 | Jul 2007 | 4 |
BIN54-11 | post-fumigation-11 | Oct 2012 | 4 |
BON64-0 | pre-fumigation | May 2007 | 4 |
BIN258-0 | pre-fumigation | May 2014 | 4 |
BIN258-1 | post-fumigation-1 | Aug 2015 | 4 |
Greenhouse | Control | Jan 2017 | 4 |
Luffness | Sample from Scotland | - | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasala, S.K.; Howe, D.K.; Dandurand, L.-M.; Zasada, I.A.; Denver, D.R. Genomic Analyses of Globodera pallida, A Quarantine Agricultural Pathogen in Idaho. Pathogens 2021, 10, 363. https://doi.org/10.3390/pathogens10030363
Wasala SK, Howe DK, Dandurand L-M, Zasada IA, Denver DR. Genomic Analyses of Globodera pallida, A Quarantine Agricultural Pathogen in Idaho. Pathogens. 2021; 10(3):363. https://doi.org/10.3390/pathogens10030363
Chicago/Turabian StyleWasala, Sulochana K., Dana K. Howe, Louise-Marie Dandurand, Inga A. Zasada, and Dee R. Denver. 2021. "Genomic Analyses of Globodera pallida, A Quarantine Agricultural Pathogen in Idaho" Pathogens 10, no. 3: 363. https://doi.org/10.3390/pathogens10030363
APA StyleWasala, S. K., Howe, D. K., Dandurand, L. -M., Zasada, I. A., & Denver, D. R. (2021). Genomic Analyses of Globodera pallida, A Quarantine Agricultural Pathogen in Idaho. Pathogens, 10(3), 363. https://doi.org/10.3390/pathogens10030363