Experimental Evidence of Epizootic Epitheliotropic Disease Virus (Salmoid Herpesvirus-3, Alloherpesviridae) Transmission via Contaminated Fomites and Subsequent Prevention Using a Disinfectant
Abstract
:1. Introduction
2. Results
2.1. EEDV Loads in Experimental Inocula and Net Treatment Solutions
2.2. Gross Disease Signs and Cumulative Mortality
2.3. Molecular Detection of EEDV
3. Discussion
4. Materials and Methods
4.1. Experimental Challenge via EEDV-Contaminated Fomites
4.1.1. Fish and Husbandry
4.1.2. Preparation of EEDV Inoculum
4.1.3. Disinfectant Solution Preparation
4.1.4. Experimental Challenge of Juvenile Lake Trout with EEDV
- Negative control (NC): NetA was soaked in 600 mL tank water containing 7 mL sterile EMEM for 5 min;
- Disinfected (Virkon® Aquatic): NetA was soaked in 600 mL water containing 7 mL of EEDV homogenate (final concentration of 2.25 × 105 virus copies/mL of water) for 5 min. Immediately following, NetA was soaked in 600 mL of 1% Virkon® Aquatic solution for 20 min (manufacturer recommended duration);
- EEDV-contaminated: NetA was soaked in 600 mL water containing 7 mL of EEDV homogenate (final concentration of 7.29 × 104 virus copies/mL of water) for 5 min. Immediately following, NetA was soaked in 600 mL of 1% EMEM: water solution for 20 min.
4.1.5. Water and Suspension Sampling
4.2. Molecular Detection and Quantification of EEDV
4.2.1. DNA Extraction
4.2.2. Quantitative PCR Analysis
4.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waltzek, T.B.; Kelley, G.O.; Alfaro, M.E.; Kurobe, T.; Davison, A.J.; Hedrick, R.P. Phylogenetic relationships in the family Alloherpesviridae. Dis. Aquat. Org. 2009, 84, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Bradley, T.M.; Medina, D.J.; Chang, P.W.; McClain, J. Epizootic epitheliotrophic disease of lake trout (Salvelinus namaycush): History and viral etiology. Dis. Aquat. Org. 1989, 7, 195–201. [Google Scholar] [CrossRef]
- Faisal, M.; Loch, T.P.; Shavalier, M.; VanDeuren, M.G.; Standish, I.; Winters, A.; Glenney, G.; Aho, J.; Wolgamood, M.; VanAmberg, J.; et al. Resurgence of salmonid herpesvirus-3 infection (epizootic epitheliotropic disease) in hatchery-propagated lake trout in michigan. J. Aquat. Anim. Health 2019, 31, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Faisal, M.; Samaha, H.; Loch, T.P. Chapter 9—Planning a fish-health program. In Fish Diseases; Jeney, G., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 221–248. [Google Scholar]
- Pham, P.H.; Jung, J.; Lumsden, J.S.; Dixon, B.; Bols, N.C. The potential of waste items in aquatic environments to act as fomites for viral haemorrhagic septicaemia virus. J. Fish Dis. 2012, 35, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaka, T.; Yoshimizu, M.; Ezura, Y. Adsorption and infectivity of infectious hematopoietic necrosis virus (IHNV) with various solids. J. Aquat. Anim. Health 2000, 12, 64–68. [Google Scholar] [CrossRef]
- Oidtmann, B.; Dixon, P.; Way, K.; Joiner, C.; Bayley, A.E. Risk of waterborne virus spread—Review of survival of relevant fish and crustacean viruses in the aquatic environment and implications for control measures. Rev. Aquac. 2018, 10, 641–669. [Google Scholar] [CrossRef] [Green Version]
- Faisal, M.; Purbayu, M.; Shavalier, M.A.; Marsh, T.L.; Loch, T.P. Shedding of the salmonid herpesvirus-3 by infected lake trout (Salvelinus namaycush). Viruses 2019, 11, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torgersen, Y.; Håstein, T. Disinfection in aquaculture. Rev. Sci. Tech. 1995, 14, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.; Martró, E.; Matas, L.; Martín, M.; Ausina, V. Assessment of in-vitro efficacy of 1% Virkon® against bacteria, fungi, viruses and spores by means of AFNOR guidelines. J. Hosp. Infect. 2000, 46, 203–209. [Google Scholar] [CrossRef]
- Stockton-Fiti, K.A.; Moffitt, C.M. Safety and efficacy of Virkon® aquatic as a control tool for invasive Molluscs in aquaculture. Aquaculture 2017, 480, 71–76. [Google Scholar] [CrossRef]
- Paetzold, S.C.; Davidson, J. Aquaculture fouling: Efficacy of potassium monopersulphonate triple salt based disinfectant (Virkon® Aquatic) against Ciona intestinalis. Biofouling 2011, 27, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Rohaim, M.A.; El- Naggar, R.F.; Gamal, A.M.; Elshaimaa, I.; Hamoud, M.M.; Moubarak, S.T.; Metwally, A.M.; Zaki, M.M.; Nasr, S.A.E.; Elsaid, S.; et al. Efficacy of disinfectants against egyptian H5N1 avian influenza virus. Br. J. Virol. 2015, 2, 80–87. [Google Scholar] [CrossRef]
- Bieker, J.M. Chemical Inactivation of Viruses. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2006. [Google Scholar]
- Scioli, D.; Pizzella, T.; Vollaro, L.; Nardiello, S.; De Feo, L. The action of VIRKON No Foam on the hepatitis B virus. Eur. J. Epidemiol. 1997, 13, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Tsujimura, K.; Murase, H.; Bannai, H.; Nemoto, M.; Yamanaka, T.; Kondo, T. Efficacy of five commercial disinfectants and one anionic surfactant against equine herpesvirus type 1. J. Vet. Med. Sci. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, P.T.K.; Cipriano, R.C. Fish. Viruses and Bacteria: Pathobiology and Protection; CABI: Boston, MA, USA, 2017. [Google Scholar]
- Gasparini, R.; Pozzi, T.; Magnelli, R.; Fatighenti, D.; Giotti, E.; Poliseno, G.; Pratelli, M.; Severini, R.; Bonanni, P.; De Feo, L. Evaluation of in vitro efficacy of the disinfectant Virkon. Eur. J. Epidemiol. 1995, 11, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Bryan, L.K.; Baldwin, C.A.; Gray, M.J.; Miller, D.L. Efficacy of select disinfectants at inactivating Ranavirus. Dis. Aquat. Org. 2009, 84, 89–94. [Google Scholar] [CrossRef] [PubMed]
- McCormick, L.; Maheshwari, G. Inactivation of adenovirus types 5 and 6 by Virkon® S. Antivir. Res. 2004, 64, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Hick, P.; Evans, O.; Looi, R.; English, C.; Whittington, R.J. Stability of ostreid herpesvirus-1 (OsHV-1) and assessment of disinfection of seawater and oyster tissues using a bioassay. Aquaculture 2016, 450, 412–421. [Google Scholar] [CrossRef]
- Shavalier, M.; Faisal, M.; Loch, T.P.; Fitzgerald, S.D.; Thaiwong, T.; Kiupel, M. Disease progression in lake trout (salvelinus namaycush) experimentally infected with epizootic epitheliotropic disease virus (Salmonid Herpesvirus-3). Vet. Pathol. 2020, 57, 687–699. [Google Scholar] [CrossRef]
- Purbayu, M.A. Elucidating the Properties of Epizootic Epitheliotropic Disease Virus (Salmonid Herpesvirus-3) Transmission to Facilitate Improved Disease Control. Masters Thesis, Michigan State University, East Lansing, MI, USA, 2018. [Google Scholar]
- Glenney, G.W.; Barbash, P.A.; Coll, J.A. A quantitative polymerase chain reaction assay for the detection and quantification of epizootic epitheliotropic disease virus (EEDV.; Salmonid Herpesvirus 3). J. Aquat. Anim. Health 2016, 28, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Microsoft Excel; Version 16.37, for Mac; Microsoft: Redmond, WA, USA, 2020.
Suspension | Virus Load (Virus Copies/mL) |
---|---|
Virus suspension prior to net soaking (EEDV-contaminated group) | 7.29 × 104 |
Virus suspension prior to net soaking (disinfected groups) | 2.25 × 105 |
EMEM solution prior to net soaking (negative control group) | 0 |
EMEM after net soaking (EEDV-contaminated group) | 1.77 × 105 |
1% Virkon® Aquatic after net soaking (disinfected groups) | 1.85 × 104 |
EMEM after net soaking (negative control group) | 0 |
Challenge Group | Mortalities | Number PCR-Positive | EEDV Viral Load Range (Copies/mg) |
---|---|---|---|
Negative control | 0/20 | 0/20 | 0 |
EEDV-contaminated | 16/20 | 18/20 | 2.16 × 107–7.58 × 108 * |
Disinfected | |||
Replicate 1 | 1/20 | 0/20 | 0 |
Replicate 2 | 1/20 | 0/20 | 0 |
Replicate 3 | 0/20 | 0/20 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purbayu, M.A.; Shavalier, M.A.; Faisal, M.; Loch, T.P. Experimental Evidence of Epizootic Epitheliotropic Disease Virus (Salmoid Herpesvirus-3, Alloherpesviridae) Transmission via Contaminated Fomites and Subsequent Prevention Using a Disinfectant. Pathogens 2021, 10, 724. https://doi.org/10.3390/pathogens10060724
Purbayu MA, Shavalier MA, Faisal M, Loch TP. Experimental Evidence of Epizootic Epitheliotropic Disease Virus (Salmoid Herpesvirus-3, Alloherpesviridae) Transmission via Contaminated Fomites and Subsequent Prevention Using a Disinfectant. Pathogens. 2021; 10(6):724. https://doi.org/10.3390/pathogens10060724
Chicago/Turabian StylePurbayu, Mochamad A., Megan A. Shavalier, Mohamed Faisal, and Thomas P. Loch. 2021. "Experimental Evidence of Epizootic Epitheliotropic Disease Virus (Salmoid Herpesvirus-3, Alloherpesviridae) Transmission via Contaminated Fomites and Subsequent Prevention Using a Disinfectant" Pathogens 10, no. 6: 724. https://doi.org/10.3390/pathogens10060724
APA StylePurbayu, M. A., Shavalier, M. A., Faisal, M., & Loch, T. P. (2021). Experimental Evidence of Epizootic Epitheliotropic Disease Virus (Salmoid Herpesvirus-3, Alloherpesviridae) Transmission via Contaminated Fomites and Subsequent Prevention Using a Disinfectant. Pathogens, 10(6), 724. https://doi.org/10.3390/pathogens10060724