First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1
Abstract
:1. Introduction
2. Results
2.1. Sj-riok-1 Encodes a Protein with Features Characteristic of RIOK-1
2.2. Transcription in Different Developmental Stages
2.3. Significant Knockdown of Transcription by RNAi in Both Sexes, and Subtle Morphological Change in the Ovary
2.4. Toyocamycin Affects Viability and Induces Pathological Changes in the Reproductive Tracts
3. Discussion
4. Materials and Methods
4.1. Procurement of the Parasite
4.2. Cloning of Sj-Riok-1 cDNA from S. japonicum, and Informatic Analyses
4.3. qPCR to Assess Transcript Levels of Different Developmental Stages and from In Vitro Paring Experiment
4.4. Double-Stranded RNA Interference (RNAi)
4.5. Treatment with Toyocamycin
4.6. Microscopic Examination of Worms and Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hanks, S.K.; Quinn, A.M.; Hunter, T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 1988, 241, 42–52. [Google Scholar] [CrossRef]
- Rauch, J.; Volinsky, N.; Romano, D.; Kolch, W. The secret life of kinases: Functions beyond catalysis. Cell Commun. Signal. 2011, 9, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef] [Green Version]
- LaRonde-LeBlanc, N.; Wlodawer, A. The RIO kinases: An atypical protein kinase family required for ribosome biogenesis and cell cycle progression. Biochim. Biophys. Acta 2005, 1754, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Breugelmans, B.; Ansell, B.R.E.; Young, N.D.; Amani, P.; Stroehlein, A.J.; Sternberg, P.W.; Jex, A.R.; Boag, P.R.; Hofmann, A.; Gasser, R.B. Flatworms have lost the right open reading frame kinase 3 gene during evolution. Sci. Rep. 2015, 5, 9417. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.E.; Boag, P.R.; Hofmann, A.; Cantacessi, C.; Wang, C.K.; Taylor, P.; Hu, M.; Sindhu, Z.-U.-D.; Loukas, A.; Sternberg, P.W.; et al. Atypical (RIO) protein kinases from Haemonchus contortus—Promise as new targets for nematocidal drugs. Biotechnol. Adv. 2011, 29, 338–350. [Google Scholar] [CrossRef] [Green Version]
- Breugelmans, B.; Jex, A.R.; Korhonen, P.K.; Mangiola, S.; Young, N.D.; Sternberg, P.W.; Boag, P.R.; Hofmann, A.; Gasser, R.B. Bioinformatic exploration of RIO protein kinases of parasitic and free-living nematodes. Int. J. Parasitol. 2014, 44, 827–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, T.K.; Novakovic, S.; Raymant, G.; Bertram, S.E.; Esmaillie, R.; Nadarajan, S.; Breugelmans, B.; Hofmann, A.; Gasser, R.B.; Colaiácovo, M.P.; et al. Investigating the role of RIO protein kinases in Caenorhabditis elegans. PLoS ONE 2015, 10, e0117444. [Google Scholar] [CrossRef] [Green Version]
- Ashrafi, K.; Chang, F.Y.; Watts, J.L.; Fraser, A.G.; Kamath, R.S.; Ahringer, J.; Ruvkun, G. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 2003, 421, 268–272. [Google Scholar] [CrossRef]
- Sönnichsen, B.; Koski, L.B.; Walsh, A.; Marschall, P.; Neumann, B.; Brehm, M.; Alleaume, A.-M.; Artelt, J.; Bettencourt, P.; Cassin, E.; et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 2005, 434, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Wang, P.; Zhou, J.; Wu, D.; Shi, H.; Huo, K. RIOK3 interacts with caspase-10 and negatively regulates the NF-κB signaling pathway. Mol. Cell. Biochem. 2009, 332, 113–120. [Google Scholar] [CrossRef]
- Baumas, K.; Soudet, J.; Caizergues-Ferrer, M.; Faubladier, M.; Henry, Y.; Mougin, A. Human RioK3 is a novel component of cytoplasmic pre-40S pre-ribosomal particles. RNA Biol. 2012, 9, 162–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, R.D.; Fenton, T.R.; Gomez, G.G.; Wykosky, J.; Vandenberg, S.R.; Babic, I.; Iwanami, A.; Yang, H.; Cavenee, W.K.; Mischel, P.S.; et al. A kinome-wide RNAi screen in Drosophila glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma. PLoS Genet. 2013, 9, e1003253. [Google Scholar] [CrossRef] [Green Version]
- Rollinson, D.; Knopp, S.; Levitz, S.; Stothard, J.R.; Tchuem Tchuenté, L.-A.; Garba, A.; Mohammed, K.A.; Schur, N.; Person, B.; Colley, D.G.; et al. Schistosomiasis: Number of people treated worldwide in 2013. Relev. Epidemiol. Hebd. 2015, 90, 25–32. [Google Scholar] [CrossRef]
- McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.-N. Schistosomiasis. Nat. Rev. Dis. Prim. 2018, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef]
- Cioli, D.; Pica-Mattoccia, L.; Basso, A.; Guidi, A. Schistosomiasis control: Praziquantel forever? Mol. Biochem. Parasitol. 2014, 195, 23–29. [Google Scholar] [CrossRef]
- Xiao, S.H.; Catto, B.A.; Webster, L.T. Effects of praziquantel on different developmental stages of Schistosoma mansoni in vitro and in vivo. J. Infect. Dis. 1985, 151, 1130–1137. [Google Scholar] [CrossRef]
- Pica-Mattoccia, L.; Cioli, D. Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in vitro praziquantel treatment. Int. J. Parasitol. 2004, 34, 527–533. [Google Scholar] [CrossRef]
- Grevelding, C.G.; Langner, S.; Dissous, C. Kinases: Molecular stage directors for Schistosome development and differentiation. Trends Parasitol. 2018, 34, 246–260. [Google Scholar] [CrossRef]
- de Andrade, L.F.; Mourão, M.d.M.; Geraldo, J.A.; Coelho, F.S.; Silva, L.L.; Neves, R.H.; Volpini, A.; Machado-Silva, J.R.; Araujo, N.; Nacif-Pimenta, R.; et al. Regulation of Schistosoma mansoni development and reproduction by the mitogen-activated protein kinase signaling pathway. PLoS Negl. Trop. Dis. 2014, 8, e2949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, A.J.; Ressurreição, M.; Rothermel, R. Exploring the function of protein kinases in schistosomes: Perspectives from the laboratory and from comparative genomics. Front. Genet. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, S.; Quack, T.; Burmeister, C.; Buro, C.; Long, T.; Dissous, C.; Grevelding, C.G. Schistosoma mansoni: Signal transduction processes during the development of the reproductive organs. Parasitology 2010, 137, 497–520. [Google Scholar] [CrossRef]
- Kiburu, I.N.; LaRonde-LeBlanc, N. Interaction of Rio1 kinase with Toyocamycin reveals a conformational switch that controls oligomeric state and catalytic activity. PLoS ONE 2012, 7, e37371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, W.; Lok, J.B.; Stoltzfus, J.D.; Gasser, R.B.; Fang, F.; Lei, W.-Q.; Fang, R.; Zhou, Y.-Q.; Zhao, J.-L.; Hu, M. Toward understanding the functional role of Ss-RIOK-1, a RIO protein kinase-encoding gene of Strongyloides stercoralis. PLoS Negl. Trop. Dis. 2014, 8, e3062. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Zhou, H.; Lok, J.B.; Lei, W.; He, S.; Gasser, R.B.; Zhou, R.; Fang, R.; Zhou, Y.; Zhao, J.; et al. Functional genomic exploration reveals that Ss-RIOK-1 is essential for the development and survival of Strongyloides stercoralis larvae. Int. J. Parasitol. 2017, 47, 933–940. [Google Scholar] [CrossRef]
- Nag, S.; Prasad, K.; Bhowmick, A.; Deshmukh, R.; Trivedi, V. PfRIO-2 kinase is a potential therapeutic target of antimalarial protein kinase inhibitors. Curr. Drug Discov. Technol. 2013, 10, 85–91. [Google Scholar] [CrossRef]
- Vanrobays, E.; Gleizes, P.E.; Bousquet-Antonelli, C.; Noaillac-Depeyre, J.; Caizergues-Ferrer, M.; Gélugne, J.P. Processing of 20S pre-rRNA to 18S ribosomal RNA in yeast requires Rrp10p, an essential non-ribosomal cytoplasmic protein. EMBO J. 2001, 20, 4204–4213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angermayr, M.; Roidl, A.; Bandlow, W. Yeast Rio1p is the founding member of a novel subfamily of protein serine kinases involved in the control of cell cycle progression. Mol. Microbiol. 2002, 44, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Granneman, S.; Petfalski, E.; Swiatkowska, A.; Tollervey, D. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J. 2010, 29, 2026–2036. [Google Scholar] [CrossRef]
- Widmann, B.; Wandrey, F.; Badertscher, L.; Wyler, E.; Pfannstiel, J.; Zemp, I.; Kutay, U. The kinase activity of human Rio1 is required for final steps of cytoplasmic maturation of 40S subunits. Mol. Biol. Cell 2012, 23, 22–35. [Google Scholar] [CrossRef]
- Geerlings, T.H.; Faber, A.W.; Bister, M.D.; Vos, J.C.; Raué, H.A. Rio2p, an evolutionarily conserved, low abundant protein kinase essential for processing of 20 S pre-rRna in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 22537–22545. [Google Scholar] [CrossRef] [Green Version]
- Ceron, J.; Rual, J.-F.; Chandra, A.; Dupuy, D.; Vidal, M.; van den Heuvel, S. Large-scale RNAi screens identify novel genes that interact with the C. elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity. BMC Dev. Biol. 2007, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Simpson, K.J.; Selfors, L.M.; Bui, J.; Reynolds, A.; Leake, D.; Khvorova, A.; Brugge, J.S. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat. Cell Biol. 2008, 10, 1027–1038. [Google Scholar] [CrossRef]
- Strunk, B.S.; Loucks, C.R.; Su, M.; Vashisth, H.; Cheng, S.; Schilling, J.; Brooks, C.L.; Karbstein, K.; Skiniotis, G. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 2011, 333, 1449–1453. [Google Scholar] [CrossRef] [Green Version]
- Esser, D.; Siebers, B. Atypical protein kinases of the RIO family in archaea. Biochem. Soc. Trans. 2013, 41, 399–404. [Google Scholar] [CrossRef]
- Ferreira-Cerca, S.; Kiburu, I.; Thomson, E.; Laronde, N.; Hurt, E. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res. 2014, 42, 8635–8647. [Google Scholar] [CrossRef] [Green Version]
- Vanrobays, E.; Gelugne, J.; Gleizes, P.; Caizergues-Ferrer, M. Late cytoplasmic maturation of the small ribosomal subunit requires RIO proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 2003, 23, 2083–2095. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.; Alessi, D.R. Kinase drug discovery—What’s next in the field? ACS Chem. Biol. 2013, 8, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keiser, J.; Utzinger, J. Food-borne trematodiases. Clin. Microbiol. Rev. 2009, 22, 466–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, J.Y. Praziquantel treatment in trematode and cestode infections: An update. Infect. Chemother. 2013, 45, 32–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, N.D.; Jex, A.R.; Li, B.; Liu, S.; Yang, L.; Xiong, Z.; Li, Y.; Cantacessi, C.; Hall, R.S.; Xu, X.; et al. Whole-genome sequence of Schistosoma haematobium. Nat. Genet. 2012, 44, 221–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Sessler, F.; Holroyd, N.; Hahnel, S.; Quack, T.; Berriman, M.; Grevelding, C.G. Schistosome sex matters: A deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay. Sci. Rep. 2016, 6, 31150. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; He, X.; Grevelding, C.G.; Ye, Q.; Li, Y.; Gasser, R.B.; Dissous, C.; Mughal, M.N.; Zhou, Y.-Q.; Zhao, J.-L.; et al. The RIO protein kinase-encoding gene Sj-riok-2 is involved in key reproductive processes in Schistosoma japonicum. Parasit. Vectors 2017, 10, 604. [Google Scholar] [CrossRef] [Green Version]
- Bairoch, A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res. 1993, 21, 3097–3103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, R.D.; Mistry, J.; Tate, J.; Coggill, P.; Heger, A.; Pollington, J.E.; Gavin, O.L.; Gunasekaran, P.; Ceric, G.; Forslund, K.; et al. The Pfam protein families database. Nucleic Acids Res. 2010, 38, D211–D222. [Google Scholar] [CrossRef]
- Voss, H.; Benes, V.; Andrade, M.A.; Valencia, A.; Rechmann, S.; Teodoru, C.; Schwager, C.; Paces, V.; Sander, C.; Ansorge, W. DNA sequencing and analysis of 130 kb from yeast chromosome XV. Yeast 1997, 13, 655–672. [Google Scholar] [CrossRef]
- Klein, S.L.; Strausberg, R.L.; Wagner, L.; Pontius, J.; Clifton, S.W.; Richardson, P. Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev. Dyn. 2002, 225, 384–391. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Blackiston, D.J.; Rea, A.C.; Dore, T.M.; Levin, M. Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions. Int. J. Dev. Biol. 2014, 58, 799–809. [Google Scholar] [CrossRef]
- LaRonde-LeBlanc, N.; Wlodawer, A. A family portrait of the RIO kinases. J. Biol. Chem. 2005, 280, 37297–37300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaRonde-LeBlanc, N.; Guszczynski, T.; Copeland, T.; Wlodawer, A. Structure and activity of the atypical serine kinase Rio1. FEBS J. 2005, 272, 3698–3713. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Kaul, S.; Rounsley, S.; Shea, T.P.; Benito, M.I.; Town, C.D.; Fujii, C.Y.; Mason, T.; Bowman, C.L.; Barnstead, M.; et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 1999, 402, 761–765. [Google Scholar] [CrossRef]
- Elkon, R.; Milon, B.; Morrison, L.; Shah, M.; Vijayakumar, S.; Racherla, M.; Leitch, C.C.; Silipino, L.; Hadi, S.; Weiss-Gayet, M.; et al. RFX transcription factors are essential for hearing in mice. Nat. Commun. 2015, 6, 8549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, J.M.; Trask, B.J. V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet. 2007, 23, 212–215. [Google Scholar] [CrossRef]
- Guderian, G.; Peter, C.; Wiesner, J.; Sickmann, A.; Schulze-Osthoff, K.; Fischer, U.; Grimmler, M. RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J. Biol. Chem. 2011, 286, 1976–1986. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Matsumoto, T.; Yamamoto, K.; Sakata, K.; Baba, T.; Katayose, Y.; Wu, J.; Niimura, Y.; Cheng, Z.; Nagamura, Y.; et al. The genome sequence and structure of rice chromosome 1. Nature 2002, 420, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Matthews, B.B.; Dos Santos, G.; Crosby, M.A.; Emmert, D.B.; St Pierre, S.E.; Sian Gramates, L.; Zhou, P.; Schroeder, A.J.; Falls, K.; Strelets, V.; et al. Gene model annotations for Drosophila melanogaster: Impact of high-throughput data. G3 Genes Genomes Genet. 2015, 5, 1721–1736. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Czech, B.; Crunk, A.; Wallace, A.; Mitreva, M.; Hannon, G.J.; Davis, R.E. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res. 2011, 21, 1462–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.; Laronde-Leblanc, N.; Sternberg, P.W.; Gasser, R.B. Tv-RIO1—An atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus. Parasit. Vectors 2008, 1, 34. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, W.; Huang, Y.; Sun, J.; Men, J.; Liu, H.; Luo, F.; Guo, L.; Lv, X.; Deng, C.; et al. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol. 2011, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Zhang, W.; Zhang, L.; Zhang, Z.; Li, J.; Lu, G.; Zhu, Y.; Wang, Y.; Huang, Y.; Liu, J.; et al. The genome of the hydatid tapeworm Echinococcus granulosus. Nat. Genet. 2013, 45, 1168–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protasio, A.V.; Tsai, I.J.; Babbage, A.; Nichol, S.; Hunt, M.; Aslett, M.A.; de Silva, N.; Velarde, G.S.; Anderson, T.J.C.; Clark, R.C.; et al. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis. 2012, 6, e1455. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, B.; Bickle, Q.; Yousif, F.; Fakorede, F.; Mouries, M.-A.; Nwaka, S. Schistosomes: Challenges in compound screening. Expert Opin. Drug Discov. 2007, 2, S53–S61. [Google Scholar] [CrossRef] [PubMed]
Species | Accession Numbers | References |
---|---|---|
Saccharomyces cerevisiae 1 | CAA99317.1 | [47] |
Xenopus laevis | NP_001116165.1 | [48] |
Xenopus tropicalis | XP_004915351.1 | [49] |
Homo sapiens 2 | NP_113668.2 | [50] |
Archaeoglobus fulgidus 2 | NP_73535983 | [51] |
Arabidopsis thaliana 2 | NP_180071.1 | [52] |
Danio rerio 2 | NP_998160.1 | [53] |
Rattus norvegicus | NP_001092981.1 | [54] |
Mus musculus | NP_077204.2 | [55] |
Oryza sativa | BAC79649.1 | [56] |
Arabidopsis thaliana 2 | NP_180071.1 | [52] |
Drosophila melanogaster | NP_648489.1 | [57] |
Ascaris suum | ERG87084.1 | [58] |
Trichostrongylus vitrinus | CAR64255.1 | [59] |
Haemonchus contortus 2 | ADW23592.1 | [6] |
Caenorhabditis elegans 2 | CCD67367.1 | [8] |
Clonorchis sinensis 2 | GAA42679.2 | [60] |
Echinococcus granulosus 2 | EUB62820.1 | [61] |
Schistosoma haematobium 2 | XP_012792680.1 | [42] |
Schistosoma mansoni 2 | CCD59229.1 | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mughal, M.N.; Ye, Q.; Zhao, L.; Grevelding, C.G.; Li, Y.; Di, W.; He, X.; Li, X.; Gasser, R.B.; Hu, M. First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1. Pathogens 2021, 10, 862. https://doi.org/10.3390/pathogens10070862
Mughal MN, Ye Q, Zhao L, Grevelding CG, Li Y, Di W, He X, Li X, Gasser RB, Hu M. First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1. Pathogens. 2021; 10(7):862. https://doi.org/10.3390/pathogens10070862
Chicago/Turabian StyleMughal, Mudassar N., Qing Ye, Lu Zhao, Christoph G. Grevelding, Ying Li, Wenda Di, Xin He, Xuesong Li, Robin B. Gasser, and Min Hu. 2021. "First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1" Pathogens 10, no. 7: 862. https://doi.org/10.3390/pathogens10070862
APA StyleMughal, M. N., Ye, Q., Zhao, L., Grevelding, C. G., Li, Y., Di, W., He, X., Li, X., Gasser, R. B., & Hu, M. (2021). First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1. Pathogens, 10(7), 862. https://doi.org/10.3390/pathogens10070862