Three Immunocompetent Small Animal Models That Do Not Support Zika Virus Infection
Abstract
:1. Introduction
2. Results
2.1. Multimammate Mice (Mastomys natalensis) Are Not Susceptible to ZIKV
2.2. New Zealand White Rabbits Are Not Susceptible to ZIKV
2.3. Mature Hartley Are Not Susceptible to ZIKV by Mosquito Bite
3. Discussion
4. Materials and Methods
4.1. Virus and Cells
4.2. Ethics Statement and Animals
4.3. ZIKV Subcutaneously Inoculation into Animals
4.4. Mosquito Infections of Guinea Pigs
4.5. Intravaginal Inoculation of Female Rabbits
4.6. Sample Collection: Urine, Rectal Swab, Oral Swabs, Semen, and Blood
4.7. Body Weight and Temperature
4.8. Euthanasia, Blood Collection and Necropsy
4.9. RNA Extractions
4.10. qRT-PCR
4.11. Plaque Reduction Neutralization Test (PRNTs)
4.12. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Besnard, M.; Lastère, S.; Teissier, A.; Cao-Lormeau, V.M.; Musso, D. Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Eurosurveillance 2014, 19, 20751. [Google Scholar] [CrossRef] [Green Version]
- Foy, B.D.; Kobylinski, K.C.; Foy, J.L.C.; Blitvich, B.J.; da Rosa, A.T.; Haddow, A.D.; Lanciotti, R.S.; Tesh, R.B. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg. Infect. Dis. 2011, 17, 880–882. [Google Scholar] [CrossRef] [PubMed]
- Musso, D.; Nhan, T.; Robin, E.; Roche, C.; Bierlaire, D.; Zisou, K.; Yan, A.S.; Cao-Lormeau, V.-M.; Broult, J. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Eurosurveillance 2014, 19, 20761. [Google Scholar] [CrossRef] [Green Version]
- Musso, D.; Roche, C.; Robin, E.; Nhan, T.; Teissier, A.; Cao-Lormeau, V.-M. Potential Sexual Transmission of Zika Virus. Emerg. Infect. Dis. 2015, 21, 359–361. [Google Scholar] [CrossRef]
- Ventura, C.V.; Maia, M.; Bravo-Filho, V.; Góis, A.L.; Belfort, R., Jr. Zika virus in Brazil and macular atrophy in a child with microcephaly. Lancet 2016, 387, 228. [Google Scholar] [CrossRef] [Green Version]
- Faria, N.R.; da Silva Azevedo, R.D.S.; Kraemer, M.U.G.; Souza, R.; Cunha, M.S.; Hill, S.C.; Thézé, J.; Bonsall, M.B.; Bowden, T.A.; Rissanen, I.; et al. Zika virus in the Americas: Early epidemiological and genetic findings. Science 2016, 352, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mlakar, J.; Korva, M.; Tul, N.; Popović, M.; Poljšak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Resman Rus, K.; Vesnaver Vipotnik, T.; Fabjan Vodušek, V.; et al. Zika Virus Associated with Microcephaly. N. Engl. J. Med. 2016, 374, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Cugola, F.R.; Fernandes, I.R.; Russo, F.B.; Freitas, B.C.; Dias, J.L.M.; Guimarães, K.P.; Benazzato, C.; Almeida, N.; Pignatari, F.B.R.G.C.; Romero, S.; et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016, 534, 267–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowall, S.D.; Graham, V.A.; Rayner, E.; Atkinson, B.; Hall, G.; Watson, R.J.; Bosworth, A.; Bonney, L.C.; Kitchen, S.; Hewson, R. A susceptible mouse model for Zika virus infection. PLoS Negl. Trop. Dis. 2016, 10, e0004658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazear, H.M.; Govero, J.; Smith, A.M.; Platt, D.J.; Fernandez, E.; Miner, J.J.; Diamond, M.S. A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe 2016, 19, 720–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayner, J.O.; Kalkeri, R.; Goebel, S.; Cai, Z.; Green, B.; Lin, S.; Snyder, B.; Hagelin, K.; Walters, K.B.; Koide, F. Comparative Pathogenesis of Asian and African-Lineage Zika Virus in Indian Rhesus Macaque’s and Development of a Non-Human Primate Model Suitable for the Evaluation of New Drugs and Vaccines. Viruses 2018, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef]
- Nazerai, L.; Christensen, J.P.; Thomsen, A.R. A ‘Furry-Tale’ of Zika Virus Infection: What Have We Learned from Animal Models? Viruses 2019, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Bradley, M.P.; Nagamine, C.M. Animal Models of Zika Virus. Comp. Med. 2017, 67, 242–252. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482516/ (accessed on 27 April 2020). [PubMed]
- Koide, F.; Goebel, S.; Snyder, B.; Walters, K.B.; Gast, A.; Hagelin, K.; Kalkeri, R.; Rayner, J. Development of a Zika Virus Infection Model in Cynomolgus Macaques. Front. Microbiol. 2016, 7, 2028. [Google Scholar] [CrossRef] [PubMed]
- Dudley, D.M.; Aliota, M.; Mohr, E.L.; Weiler, A.M.; Lehrer-Brey, G.; Weisgrau, K.L.; Mohns, M.S.; Breitbach, M.E.; Rasheed, M.N.; Newman, C.M.; et al. A rhesus macaque model of Asian-lineage Zika virus infection. Nat. Commun. 2016, 7, 12204. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Martín, C.S.-S.; Bouquet, J.; Li, T.; Yagi, S.; Tamhankar, M.; Hodara, V.L.; Parodi, L.M.; Somasekar, S.; Yu, G.; et al. Experimental Zika Virus Inoculation in a New World Monkey Model Reproduces Key Features of the Human Infection. Sci. Rep. 2017, 7, 17126. [Google Scholar] [CrossRef] [Green Version]
- Vanchiere, J.A.; Nehete, P.N.; Abee, C.R.; Wilkerson, G.K.; Weaver, S.C.; Brady, A.G.; Vasilakis, N.; Roundy, C.M.; Baze, W.B.; Williams, L.E.; et al. Experimental Zika Virus Infection of Neotropical Primates. Am. J. Trop. Med. Hyg. 2018, 98, 173–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, C.; Gaspar, A.; Knight, A.; Vicente, L. Ethical and Scientific Pitfalls Concerning Laboratory Research with Non-Human Primates, and Possible Solutions. Animals 2018, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.-N.; Tian, M.; Deng, Y.-Q.; Hao, J.-N.; Wang, H.-J.; Huang, X.-Y.; Li, X.-F.; Wang, Y.-G.; Zhao, L.-Z.; Zhang, F.-C.; et al. Characterization of the contemporary Zika virus in immunocompetent mice. Hum. Vaccines Immunother. 2016, 12, 3107–3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorman, M.J.; Caine, E.A.; Zaitsev, K.; Begley, M.; Weger-Lucarelli, J.; Uccellini, M.B.; Tripathi, S.; Morrison, J.; Yount, B.L.; Dinnon, K.H.; et al. An Immunocompetent Mouse Model of Zika Virus Infection. Cell Host Microbe 2018, 23, 672–685. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Young, M.P.; Mamidi, A.; Regla-Nava, J.A.; Kim, K.; Shresta, S. A Mouse Model of Zika Virus Sexual Transmission and Vaginal Viral Replication. Cell Rep. 2016, 17, 3091–3098. [Google Scholar] [CrossRef] [Green Version]
- Clancy, C.S.; Van Wettere, A.J.; Morrey, J.D.; Julander, J.G. Coitus-Free Sexual Transmission of Zika Virus in a Mouse Model. Sci. Rep. 2018, 8, 15379. [Google Scholar] [CrossRef] [Green Version]
- Aliota, M.; Caine, E.A.; Walker, E.C.; Larkin, K.E.; Camacho, E.; Osorio, J.E. Characterization of Lethal Zika Virus Infection in AG129 Mice. PLoS Negl. Trop. Dis. 2016, 10, e0004682. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.L.; Tesh, R.B.; Azar, S.R.; Muruato, A.E.; Hanley, K.A.; Auguste, A.; Langsjoen, R.; Paessler, S.; Vasilakis, N.; Weaver, S. Characterization of a Novel Murine Model to Study Zika Virus. Am. J. Trop. Med. Hyg. 2016, 94, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Winkler, C.W.; E Peterson, K. Using immunocompromised mice to identify mechanisms of Zika virus transmission and pathogenesis. Immunology 2018, 153, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.-Q.; Zhang, N.-N.; Li, X.-F.; Wang, Y.-Q.; Tian, M.; Qiu, Y.-F.; Fan, J.-W.; Hao-Long, D.; Huang, X.-Y.; Dong, H.-L.; et al. Intranasal infection and contact transmission of Zika virus in guinea pigs. Nat. Commun. 2017, 8, 1648. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Krause, K.K.; Azouz, F.; Nakano, E.; Nerurkar, V.R. A guinea pig model of Zika virus infection. Virol. J. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saver, A.E.; Crawford, S.A.; Joyce, J.D.; Bertke, A.S. Route of Infection Influences Zika Virus Shedding in a Guinea Pig Model. Cells 2019, 8, 1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierle, C.J.; Fernández-Alarcón, C.; Hernandez-Alvarado, N.; Zabeli, J.C.; Janus, B.C.; Putri, D.; Schleiss, M.R. Assessing Zika virus replication and the development of Zika-specific antibodies after a mid-gestation viral challenge in guinea pigs. PLoS ONE 2017, 12, e0187720. [Google Scholar] [CrossRef]
- Suen, W.W.; Imoda, M.; Thomas, A.W.; Nasir, N.N.; Tearnsing, N.; Wang, W.; Bielefeldt-Ohmann, H. An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile Virus. Pathogens 2019, 8, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diagne, M.M.; Ndione, M.H.D.; Di Paola, N.; Fall, G.; Bedekelabou, A.P.; Sembène, P.M.; Faye, O.; Zanotto, P.M.D.A.; Sall, A.A. Usutu Virus Isolated from Rodents in Senegal. Viruses 2019, 11, 181. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.L.; Rossi, A.; Beamer, G.L.; Gatti, D.M.; Kramnik, I.; Elkins, K.L. The Diversity Outbred Mouse Population Is an Improved Animal Model of Vaccination against Tuberculosis That Reflects Heterogeneity of Protection. mSphere 2020, 5, e00097-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, R.; Achilli, F.; Festing, M.F.W.; Fisher, E.M.C. The origins and uses of mouse outbred stocks. Nat. Genet. 2005, 37, 1181–1186. [Google Scholar] [CrossRef]
- Morrison, J.L.; Botting, K.J.; Darby, J.R.T.; David, A.L.; Dyson, R.M.; Gatford, K.L.; Gray, C.; Herrera, E.A.; Hirst, J.J.; Kim, B.; et al. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J. Physiol. 2018, 596, 5535–5569. [Google Scholar] [CrossRef]
- Ragan, I.K.; Blizzard, E.L.; Gordy, P.; Bowen, R.A. Investigating the Potential Role of North American Animals as Hosts for Zika Virus. Vector-Borne Zoonotic Dis. 2017, 17, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Günther, S.; Hoofd, G.; Charrel, R.; Röser, C.; Becker-Ziaja, B.; Lloyd, G.; Sabuni, C.; Verhagen, R.; Van Der Groen, G.; Kennis, J.; et al. Mopeia Virus–related Arenavirus in Natal Multimammate Mice, Morogoro, Tanzania. Emerg. Infect. Dis. 2009, 15, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Cuypers, L.N.; E Baird, S.J.; Hánová, A.; Locus, T.; Katakweba, A.S.; Gryseels, S.; Bryja, J.; Leirs, H.; de Bellocq, J.G. Three arenaviruses in three subspecific natal multimammate mouse taxa in Tanzania: Same host specificity, but different spatial genetic structure? Virus Evol. 2020, 6, veaa039. [Google Scholar] [CrossRef] [PubMed]
- Hasche, D.; Rösl, F. Mastomys Species as Model Systems for Infectious Diseases. Viruses 2019, 11, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, L.A.; Lim, P.-Y.; Styer, L.M.; Kramer, L.D.; Bernard, K.A. Parameters of Mosquito-Enhanced West Nile Virus Infection. J. Virol. 2016, 90, 292–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Styer, L.M.; Lim, P.-Y.; Louie, K.L.; Albright, R.G.; Kramer, L.D.; Bernard, K.A. Mosquito Saliva Causes Enhancement of West Nile Virus Infection in Mice. J. Virol. 2011, 85, 1517–1527. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Mota, J.; Sukupolvi-Petty, S.; Diamond, M.S.; Rico-Hesse, R. Mosquito Bite Delivery of Dengue Virus Enhances Immunogenicity and Pathogenesis in Humanized Mice. J. Virol. 2012, 86, 7637–7649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pingen, M.; Bryden, S.R.; Pondeville, E.; Schnettler, E.; Kohl, A.; Merits, A.; Fazakerley, J.K.; Graham, G.J.; McKimmie, C.S. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity 2016, 44, 1455–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puiprom, O.; Vargas, R.E.M.; Potiwat, R.; Chaichana, P.; Ikuta, K.; Ramasoota, P.; Okabayashi, T. Characterization of chikungunya virus infection of a human keratinocyte cell line: Role of mosquito salivary gland protein in suppressing the host immune response. Infect. Genet. Evol. 2013, 17, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Dudley, D.M.; Newman, C.M.; Lalli, J.; Stewart, L.M.; Koenig, M.R.; Weiler, A.M.; Semler, M.R.; Barry, G.L.; Zarbock, K.R.; Mohns, M.S.; et al. Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques. Nat. Commun. 2017, 8, 2096. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Sorensen, M.; Markle, E.; Clarkson, T.; Knight, A.; Savran, M.; Foy, B. Characterizing and Quantifying Arbovirus Transmission by Aedes aegypti Using Forced Salivation and Analysis of Bloodmeals. Insects 2021, 12, 304. [Google Scholar] [CrossRef]
- Sakkas, H.; Bozidis, P.; Giannakopoulos, X.; Sofikitis, N.; Papadopoulou, C. An Update on Sexual Transmission of Zika Virus. Pathogens 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Bonwitt, J.; Saez, A.M.; Lamin, J.; Ansumana, R.; Dawson, M.; Buanie, J.; Lamin, J.; Sondufu, D.; Borchert, M.; Sahr, F.; et al. At Home with Mastomys and Rattus: Human-Rodent Interactions and Potential for Primary Transmission of Lassa Virus in Domestic Spaces. Am. J. Trop. Med. Hyg. 2017, 96, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Kemp, G.E. Viruses Other than Arenaviruses from West African Wild Mammals Factors Affecting Transmission to Man and Domestic Animals. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2366648/pdf/bullwho00466-0220.pdf (accessed on 30 April 2020).
- International Union for Conservation of Nature and Natural Resources; IUCN Conservation Monitoring Centre; World Conservation Monitoring Centre; Species Survival Commission, International Council for Bird Preservation, BirdLife International. IUCN Red List of Threatened Animals; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 1996; Available online: https://www.iucnredlist.org/species/12868/115107375 (accessed on 22 February 2021).
- Marzi, A.; Emanuel, J.; Callison, J.; McNally, K.L.; Arndt, N.; Chadinha, S.; Martellaro, C.; Rosenke, R.; Scott, D.P.; Safronetz, D.; et al. Lethal Zika Virus Disease Models in Young and Older Interferon α/β Receptor Knock Out Mice. Front. Cell. Infect. Microbiol. 2018, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Mor, G.; Cardenas, I. The Immune System in Pregnancy: A Unique Complexity. Am. J. Reprod. Immunol. 2010, 63, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.J.; Nasar, F.; Schellhase, C.W.; Norris, S.L.; Kimmel, A.; Valdez, S.M.; Wollen-Roberts, S.E.; Shamblin, J.D.; Sprague, T.R.; Lugo-Roman, L.A.; et al. Zika Virus Infection in Syrian Golden Hamsters and Strain 13 Guinea Pigs. Am. J. Trop. Med. Hyg. 2018, 98, 864–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.-N.; Zhang, L.; Deng, Y.-Q.; Feng, Y.; Ma, F.; Wang, Q.; Ye, Q.; Han, Y.; Sun, X.; Zhang, F.-C.; et al. Zika Virus Infection in Tupaia belangeri Causes Dermatological Manifestations and Confers Protection against Secondary Infection. J. Virol. 2019, 93, e01982-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubry, F.; Jacobs, S.; Darmuzey, M.; Lequime, S.; Delang, L.; Fontaine, A.; Jupatanakul, N.; Miot, E.F.; Dabo, S.; Manet, C.; et al. Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nat. Commun. 2021, 12, 916. [Google Scholar] [CrossRef]
- Udenze, D.; Trus, I.; Berube, N.; Gerdts, V.; Karniychuk, U. The African strain of Zika virus causes more severe in utero infection than Asian strain in a porcine fetal transmission model. Emerg. Microbes Infect. 2019, 8, 1098–1107. [Google Scholar] [CrossRef] [Green Version]
- Beaver, J.T.; Lelutiu, N.; Habib, R.; Skountzou, I. Evolution of Two Major Zika Virus Lineages: Implications for Pathology, Immune Response, and Vaccine Development. Front. Immunol. 2018, 9, 1640. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, K.K.; Swiney, B.S.; Williams, S.L.; Huffman, J.N.; Lucas, K.; Wang, S.H.; Kapral, K.M.; Li, A.; Dikranian, K.T. Zika Virus Infection in the Developing Mouse Produces Dramatically Different Neuropathology Dependent on Viral Strain. J. Neurosci. 2019, 40, 1145–1161. [Google Scholar] [CrossRef] [PubMed]
- Esser-Nobis, K.; Aarreberg, L.D.; Roby, J.A.; Fairgrieve, M.R.; Green, R.; Gale, M., Jr. Comparative Analysis of African and Asian Lineage-Derived Zika Virus Strains Reveals Differences in Activation of and Sensitivity to Antiviral Innate Immunity. J. Virol. 2019, 93, e00640-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neitmaan, A.; Jansen, S.; Lhken, R.; Leggewie, M.; Schmidt-Chanasit, J.; Tannich, E. Forced salivation as a method to Analyze Vector Competence of Mosquitoes. J. Vis. Exp. 2018, 138. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef]
Animal | n | Sex | Inoculation Route | Animals Per Inoculum Group | Euthanasia Timepoint | Samples Collected from Each Animal | ||||
---|---|---|---|---|---|---|---|---|---|---|
ZIKV 41525 | ZIKV PRVABC59 | Sham-Inoculated | Ante-Mortem Samples ** | Non-Reproductive Organs *** | Reproductive Organs | |||||
Multimammate mouse (Mastomys natalensis) | 6 | F | SC | 2 | 3 | 1 | 5 dpi | Blood, Saliva | Brain, heart, lungs, liver, spleen, kidney, bladder | Ovary |
6 | M | 2 | 3 | 1 | Testes, Seminal vesicles | |||||
New Zealand white rabbit (Oryctolagus cuniculus) | 2 | F | Ivag | 0 | 2 | 0 | Not euthanized | Blood, Saliva, Vaginal swab, Urine | N/A | |
6 | M | SC | 0 | 4 | 2 | 7 dpi, 28 dpi * | Blood, Saliva, Semen Urine | Testes, Seminal vesicles | ||
Hartley guinea pig (Cavia porcellus) | 8 | M | SC | 0 | 3 | 1 | 7 dpi | Blood, Saliva, Urine | Testes, Cowper’s gland | |
MB | 3 | 1 |
Animal ID | Species | Sex | Virus Inoculated |
---|---|---|---|
1 | M. natalensis | Male | Zika 41525 |
2 | M. natalensis | Male | Zika 41525 |
3 | M. natalensis | Male | Zika PRVACB59 |
4 | M. natalensis | Male | Zika PRVACB59 |
5 | M. natalensis | Male | Zika PRVACB59 |
6 | M. natalensis | Male | Mock |
7 | Mus musculus (A129 strain) | Male | Zika PRVACB59 |
8 | Mus musculus (A129 strain) | Male | Mock |
9 | M. natalensis | Female | Zika 41525 |
10 | M. natalensis | Female | Zika 41525 |
11 | M. natalensis | Female | Zika PRVACB59 |
12 | M. natalensis | Female | Zika PRVACB59 |
13 | M. natalensis | Female | Zika PRVACB59 |
14 | M. natalensis | Female | Mock |
15 | Mus musculus (A129 strain) | Female | Zika PRVACB59 |
16 | Mus musculus (A129 strain) | Female | Mock |
Animal ID | ZIKV Strain | Sex | Euthanized dpi |
---|---|---|---|
Rabbit 1 | Zika PRVACB59 | Male | 7 |
Rabbit 2 | Zika PRVACB59 | Male | 7 |
Rabbit 3 | Mock | Male | 7 |
Rabbit 4 | Zika PRVACB59 | Male | 28 |
Rabbit 5 | Zika PRVACB59 | Male | 28 |
Rabbit 6 | Mock | Male | 28 |
Rabbit 7 | Zika PRVACB59 | Female | N/A |
Rabbit 8 | Zika PRVACB59 | Female | N/A |
Animal ID | ZIKV Strain | Inoculation Route | Sex |
---|---|---|---|
Guinea Pig 1 | Zika PRVACB59 | SC | Male |
Guinea Pig 2 | Zika PRVACB59 | SC | Male |
Guinea Pig 3 | Zika PRVACB59 | SC | Male |
Guinea Pig 4 | Mock | SC | Male |
Guinea Pig 5 | Zika PRVACB59 | MB | Male |
Guinea Pig 6 | Zika PRVACB59 | MB | Male |
Guinea Pig 7 | Zika PRVACB59 | MB | Male |
Guinea Pig 8 | Mock | MB | Male |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, M.R.; Fagre, A.C.; Clarkson, T.C.; Markle, E.D.; Foy, B.D. Three Immunocompetent Small Animal Models That Do Not Support Zika Virus Infection. Pathogens 2021, 10, 971. https://doi.org/10.3390/pathogens10080971
Miller MR, Fagre AC, Clarkson TC, Markle ED, Foy BD. Three Immunocompetent Small Animal Models That Do Not Support Zika Virus Infection. Pathogens. 2021; 10(8):971. https://doi.org/10.3390/pathogens10080971
Chicago/Turabian StyleMiller, Megan R., Anna C. Fagre, Taylor C. Clarkson, Erin D. Markle, and Brian D. Foy. 2021. "Three Immunocompetent Small Animal Models That Do Not Support Zika Virus Infection" Pathogens 10, no. 8: 971. https://doi.org/10.3390/pathogens10080971
APA StyleMiller, M. R., Fagre, A. C., Clarkson, T. C., Markle, E. D., & Foy, B. D. (2021). Three Immunocompetent Small Animal Models That Do Not Support Zika Virus Infection. Pathogens, 10(8), 971. https://doi.org/10.3390/pathogens10080971