African Swine Fever in Wild Boar (Poland 2020): Passive and Active Surveillance Analysis and Further Perspectives
Abstract
:1. Introduction
2. Results
2.1. Passive Surveillance in 2020–ASF Outbreaks in Wild Boars (Found Dead)
2.2. Passive Surveillance—ASF Outbreaks in Wild Boars (Roadkilled)
2.3. Active Surveillance—ASF Outbreaks in Wild Boars (Hunted)
2.4. ASF-Positive Results Regarding Animal Status (Found Dead, Roadkilled, Hunted)
2.5. Comprehensive Model for ASF-Positive Wild Boars
3. Discussion
4. Materials and Methods
- passive surveillance (found dead), zones II–III;
- passive surveillance (road-killed), zones II–III;
- active surveillance (hunted), zones II–III;
- passive surveillance (found dead), zones I–0;
- active surveillance (hunted), zones I–0;
- passive surveillance (road-killed), zones I–0.
- zones II–III;
- zones 0–I.
- βi—regression coefficient for i = 0, …, n,
- xi—independent variables (measurable or qualitative) for i = 1,2, … n.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, X.; White, A.; Ruiz-Fons, F.; Gortazar, C. Modelling the transmission and persistence of African Swine Fever in wild boar in contrasting European scenarios. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OIE and FAO. Global Control of African Swine Fever. A GF-TADs Initiative—2020 Annual Report; OIE and FAO: Paris, France; Rome, Italy, 2021. [Google Scholar]
- European Food Safety Authority (EFSA); Desmecht, D.; Gortázar Schmidt, C.; Grigaliuniene, V.; Helyes, G.; Kantere, M.; Korytarova, D.; Linden, A.; Miteva, A.; Neghirla, I.; et al. Epidemiological analysis of African Swine Fever in the European Union (September 2019 to August 2020). EFSA J. 2021, 19, e06572. [Google Scholar] [CrossRef]
- OIE. Urgent Action Needed to Curb the Spread of African Swine Fever in the Americas. Available online: https://www.oie.int/en/urgent-action-needed-to-curb-the-spread-of-african-swine-fever-in-the-americas/ (accessed on 2 September 2021).
- Halasa, T.; Botner, A.; Mortensen, S.; Christensen, H.; Toft, N.; Boklund, A. Simulating the epidemiological and economic effects of an African swine fever epidemic in industrialized swine populations. Vet. Microbiol. 2016, 193, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Cackett, G.; Matelska, D.; Sykora, M.; Portugal, R.; Malecki, M.; Bahler, J.; Dixon, L.; Werner, F. The African Swine Fever virus transcriptome. J. Virol. 2020, 94, e00119–e00120. [Google Scholar] [CrossRef] [Green Version]
- Malogolovkin, A.; Kolbasov, D. Genetic and antigenic diversity of African Swine Fever virus. Virus Res. 2019, 271, 197673. [Google Scholar] [CrossRef] [PubMed]
- Vilem, A.; Nurmoja, I.; Niine, T.; Riit, T.; Nieto, R.; Viltrop, A.; Gallardo, C. Molecular characterization of African Swine Fever virus isolates in Estonia in 2014–2019. Pathogens 2020, 9, 582. [Google Scholar] [CrossRef]
- Blome, S.; Franzke, K.; Beer, M. African Swine Fever-A review of current knowledge. Virus Res. 2020, 287, 198099. [Google Scholar] [CrossRef] [PubMed]
- Pejsak, Z.; Niemczuk, K.; Frant, M.; Mazur, M.; Pomorska-Mól, M.; Ziętek-Barszcz, A.; Bocian, Ł.; Łyjak, M.; Borowska, D.; Woźniakowski, G. Four years of African swine fever in Poland. New insights into epidemiology and prognosis of future disease spread. Pol. J. Vet. Sci. 2018, 21, 835–841. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Boklund, A.; Cay, B.; Depner, K.; Földi, Z.; Guberti, V.; Masiulis, M.; Miteva, A.; More, S.; Olsevskis, E.; et al. Epidemiological analyses of African Swine Fever in the European Union (November 2017 until November 2018). EFSA J. 2018, 16, e05494. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Madden, D.W.; Wilson, W.C.; Trujillo, J.D.; Richt, J.A. African swine fever virus: An emerging dna arbovirus. Vet. Sci. 2020, 7, 215. [Google Scholar] [CrossRef] [PubMed]
- Busch, F.; Haumont, C.; Penrith, M.; Laddomada, A.; Dietze, K.; Globig, A.; Guberti, V.; Zani, L.; Depner, K. Evidence-based African swine fever policies: Do we address virus and host adequately? Vet. Sci. 2021, 8, 637487. [Google Scholar] [CrossRef]
- Juszkiewicz, M.; Walczak, M.; Mazur-Panasiuk, N.; Woźniakowski, G. Effectiveness of chemical compounds used against African Swine Fever virus in commercial available disinfectants. Pathogens 2020, 9, 878. [Google Scholar] [CrossRef] [PubMed]
- Cisek, A.A.; Dąbrowska, I.; Gregorczyk, K.P.; Wyżewski, Z. African swine fever virus: A new old enemy of Europe. Ann. Parasitol 2016, 62, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Rock, D.L. Challenges for African Swine Fever vaccine development—“perhaps the end of the beginning”. Vet. Mic. 2017, 206, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Rock, D.L. Thoughts on African Swine Fever vaccines. Viruses 2021, 13, 943. [Google Scholar] [CrossRef] [PubMed]
- Argilaguest, J.M.; Perez-Martin, E.; Nofrarias, M.; Gallardo, C.; Accensi, F.; Lacasta, A.; Mora, M.; Ballester, M.; Galindo-Gardiel, I.; Lopez-Soria, S.; et al. DNA vaccination partially protects against African Swine Fever virus lethal challenge in the absence of antibodies. PLoS ONE 2012, 7, e40942. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Pinero, J.; Gallardo, C.; Elizalde, M.; Robles, A.; Gómez, C.; Bishop, R.; Heath, L.; Couacy-Hymann, E.; Fasina, F.O.; Pelayo, V.; et al. Molecular diagnosis of African Swine Fever by a new real-time PCR using universal probe library. Transbound. Emerg. Dis. 2013, 60, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.A.; Condoleo, R.; Simons, R.R.L.; Gale, P.; Kelly, L.A.; Snary, E.L. The risk of infection by African Swine Fever virus in European Swine through boar movement and legal trade of pigs and pig meat. Vet. Sci. 2020, 6, 486. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, C.; Fernandez-Pinero, J.; Arias, M. African Swine Fever (ASF) diagnosis, an essential tool in the epidemiological investigation. Virus Res. 2019, 271, 197676. [Google Scholar] [CrossRef]
- OIE. Global Situation of ASF, 2016-2020. African Swine Fever. Available online: https://www.oie.int/app/uploads/2021/03/report-47-global-situation-asf.pdf (accessed on 12 August 2021).
- Sauter-Louis, C.; Forth, J.H.; Probst, C.; Staubach, C.; Hlinak, A.; Rudovsky, A.; Holland, D.; Schlieben, P.; Göldner, M.; Schatz, J.; et al. Joining the club: First detection of African swine fever in wild boar in Germany. Transbound. Emerg. Dis. 2021, 68, 1744–1752. [Google Scholar] [CrossRef]
- Frant, M.; Gal, A.; Bocian, Ł.; Ziętek-Barszcz, A.; Niemczuk, K.; Woźniakowski, G. African Swine Fever Virus (ASFV) in Poland in 2019—wild boars: Searching pattern. Agriculture 2021, 11, 45. [Google Scholar] [CrossRef]
- Mazur-Panasiuk, N.; Walczak, M.; Juszkiewicz, M.; Woźniakowski, G. The spillover of African Swine Fever in Western Poland revealed its estimated origin on the basis of O174L, K145R, MGF 505-5R and IGR I73R/I329L genomic sequences. Viruses 2020, 12, 1094. [Google Scholar] [CrossRef] [PubMed]
- Frant, M.; Lyjak, M.; Bocian, L.; Barszcz, A.; Niemczuk, K.; Wozniakowski, G. African Swine Fever virus (ASFV) in Poland: Prevalence in wild boar population (2017–2018). Vet. Med. Czech. 2020, 65, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.; Conraths, F.J.; Blome, S.; Staubach, C.; Sauter-Louis, C. African Swine Fever: Fast and furious or slow and steady? Viruses 2019, 11, 866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mačiulskis, P.; Masiulis, M.; Pridotkas, G.; Buitkuvienė, J.; Jurgelevičius, V.; Jacevičienė, I.; Zagrabskaitė, R.; Zani, L.; Pilevičienė, S. The African Swine Fever epidemic in wild boar (Sus scrofa) in Lithuania (2014–2018). Vet. Sci. 2020, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervasi, V.; Marcon, A.; Bellini, S.; Guberti, V. Evaluation of the efficiency of active and passive surveillance in the detection of African Swine Fever in wild boar. Vet. Sci. 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Pautienius, A.; Schulz, K.; Staubach, C.; Grigas, J.; Zagrabskaite, R.; Buitkuviene, J.; Stankevicius, R.; Streimikyte, Z.; Oberauskas, V.; Zienius, D.; et al. African Swine Fever in the Lithuanian wild boar population in 2018: A snapshot. Virol. J. 2020, 17, 1–8. [Google Scholar] [CrossRef]
- Schulz, K.; Oļševskis, E.; Staubach, C.; Lamberga, K.; Seržants, M.; Cvetkova, S.; Conraths, F.J.; Sauter-Louis, C. Epidemiological evaluation of Latvian control measures for African swine fever in wild boar on the basis of surveillance data. Sci. Rep. 2019, 9, 4189. [Google Scholar] [CrossRef]
- Nurmoja, I.; Schulz, K.; Staubach, C.; Sauter-Louis, C.; Depner, K.; Conraths, F.J.; Viltrop, A. Development of African Swine Fever epidemic among wild boar in Estonia—two different areas in the epidemiological focus. Sci. Rep. 2017, 7, 12562. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.; Conraths, F.J.; Staubach, C.; Viltrop, A.; Oļševskis, E.; Nurmoja, I.; Lamberga, K.; Sauter-Louis, C. To sample or not to sample? Detection of African Swine Fever in wild boar killed in road traffic accidents. Transbound. Emerg. Dis. 2020, 67, 1816–1819. [Google Scholar] [CrossRef]
- Balmoș, O.M.; Supeanu, A.; Tamba, P.; Cazan, C.D.; Ionică, A.M.; Ungur, A.; Motiu, M.; Manita, F.A.; Ancuceanu, B.C.; Bărbuceanu, F.; et al. Entomological survey to study the possible involvement of arthropod vectors in the transmission of African swine fever virus in Romania. EFSA Support. Publ. 2021, 18, 6460E. [Google Scholar] [CrossRef]
- Nurmoja, I.; Mõtus, K.; Kristian, M.; Niine, T.; Schulz, K.; Depner, K.; Viltrop, A. Epidemiological analysis of the 2015–2017 African Swine Fever outbreaks in Estonia. Prev. Vet. Med. 2020, 181, 104556. [Google Scholar] [CrossRef] [PubMed]
- Rosell, C.; Minuartia, B.; Navàs, F.; Romero, S.; De L’Empordà, G.P.N.D.A. Reproduction of wild boar in a cropland and coastal wetland area: Implications for management. Anim. Biodivers. Conserv. 2012, 35, 209–217. [Google Scholar] [CrossRef]
- 2014/709/EU: Commission Implementing Decision of 9 October 2014 concerning animal health control measures relating to African swine fever in certain Member States and repealing Implementing Decision 2014/178/EU (notified under document C (2014) 7222) Text with EEA relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014D0709 (accessed on 2 September 2021).
- 2021/605/EU: Commission Implementing Regulation of 7 April 2021 laying down special control measures for African swine fever (Text with EEA relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R0605 (accessed on 2 September 2021).
Significance Assessment of the Model (p Value of the LR 1 Test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
Wild boars found dead in ASF zones II and III—Impact of the month on the result (reference month: July) | |||||||
<0.0001 | Absolute term (β0) | −0.27721 | 0.10927 | 0.01120 | 0.75789 | 0.61176 | 0.93894 |
January | 1.30962 | 0.13134 | p < 0.0001 | 3.70479 | 2.86381 | 4.79273 | |
February | 1.78336 | 0.13285 | 0 | 5.94983 | 4.58570 | 7.71974 | |
March | 1.47939 | 0.12575 | 0 | 4.39029 | 3.43116 | 5.61753 | |
April | 1.02127 | 0.13202 | p < 0.0001 | 2.77674 | 2.14358 | 3.59692 | |
May | 0.60145 | 0.14525 | p < 0.0001 | 1.82476 | 1.37261 | 2.42586 | |
June | 0.09489 | 0.16553 | 0.56650 | 1.09953 | 0.79485 | 1.52101 | |
August | 0.31255 | 0.16145 | 0.05292 | 1.36690 | 0.99607 | 1.87581 | |
September | 0.47028 | 0.16984 | 0.00564 | 1.60043 | 1.14721 | 2.23270 | |
October | 0.21441 | 0.17187 | 0.21224 | 1.23913 | 0.88471 | 1.73553 | |
November | 0.99842 | 0.15511 | p < 0.0001 | 2.71398 | 2.00240 | 3.67842 | |
December | 1.56634 | 0.14611 | p < 0.0001 | 4.78909 | 3.59634 | 6.37742 | |
Wild boars found dead in ASF zones 0 and I—Impact of the month on the result (reference month: July) | |||||||
<0.0001 | Absolute term (β0) | −5.21495 | 1.00336 | p < 0.0001 | 0.00544 | 0.00076 | 0.03894 |
February | 3.44643 | 1.02310 | 0.00079 | 31.38823 | 4.21377 | 233.8099 | |
March | 0.81433 | 1.23021 | 0.50819 | 2.25767 | 0.20185 | 25.25229 | |
April | 2.86356 | 1.06922 | 0.00754 | 17.52381 | 2.14891 | 142.9023 | |
October | 2.10886 | 1.16381 | 0.07033 | 8.23881 | 0.83913 | 80.89124 | |
December | 2.44932 | 1.06041 | 0.02114 | 11.58042 | 1.44487 | 92.81559 |
Significance Assessment of the Model (p Value of the LR 1 Test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
Road-killed wild boars in ASF zones II and III—Impact of the month on the result (reference month: May) | |||||||
0.0001 | Absolute term (β0) | −4.41884 | 0.93870 | p < 0.0001 | 0.01205 | 0.00191 | 0.07594 |
January | 1.15527 | 1.01450 | 0.25496 | 3.17486 | 0.43411 | 23.21920 | |
February | 2.32287 | 0.97762 | 0.01760 | 10.20492 | 1.50005 | 69.42461 | |
March | 1.07245 | 1.04305 | 0.30400 | 2.92253 | 0.37785 | 22.60454 | |
April | 0.12838 | 1.36178 | 0.92490 | 1.13699 | 0.07867 | 16.43156 | |
June | 0.34981 | 1.18298 | 0.76749 | 1.41880 | 0.13941 | 14.43931 | |
July | 1.12300 | 1.06773 | 0.29305 | 3.07408 | 0.37866 | 24.95604 | |
August | 0.18473 | 1.18720 | 0.87636 | 1.20290 | 0.11722 | 12.34379 | |
September | 1.38629 | 1.00593 | 0.16834 | 4.00000 | 0.55621 | 28.76604 | |
October | 0.11478 | 1.05369 | 0.91327 | 1.12162 | 0.14202 | 8.85818 | |
November | 1.69317 | 0.97571 | 0.08285 | 5.43668 | 0.80215 | 36.84768 | |
December | −0.77412 | 1.37270 | 0.57287 | 0.46111 | 0.03123 | 6.80812 |
Significance Assessment of the Model (p Value of the LR 1 test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
Hunted wild boars in ASF zones II and III—Impact of the month on the result (reference month: October) | |||||||
<0.0001 | Absolute term (β0) | −4.84559 | 0.11826 | 0 | 0.00786 | 0.00623 | 0.00992 |
January | 0.84917 | 0.14694 | p < 0.0001 | 2.33771 | 1.75210 | 3.11905 | |
February | 0.60758 | 0.16236 | 0.00018 | 1.83598 | 1.33504 | 2.52489 | |
March | 0.69791 | 0.14546 | p < 0.0001 | 2.00955 | 1.51055 | 2.67339 | |
April | 0.76113 | 0.14893 | p < 0.0001 | 2.14070 | 1.59819 | 2.8673 | |
May | 0.71365 | 0.14616 | p < 0.0001 | 2.04141 | 1.53237 | 2.71955 | |
June | 0.14960 | 0.15010 | 0.31893 | 1.16137 | 0.86506 | 1.55918 | |
July | 0.19344 | 0.21676 | 0.37216 | 1.21342 | 0.79302 | 1.85669 | |
August | 0.48992 | 0.16726 | 0.00340 | 1.63218 | 0.17547 | 2.26632 | |
September | 0.40117 | 0.16543 | 0.01531 | 1.49357 | 1.07955 | 2.06637 | |
November | 0.57003 | 0.14452 | p < 0.0001 | 1.76832 | 1.33165 | 2.34818 | |
December | 0.56180 | 0.13999 | p < 0.0001 | 1.75383 | 1.33254 | 2.3083 | |
Hunted wild boars in ASF zones 0 and I—Impact of the month on the result (reference month: July) | |||||||
0.17981 | Absolute term (β0) | −8.68491 | 1.04092 | p < 0.0001 | 0.00017 | 0.00002 | 0.00130 |
March | 0.24784 | 1.51409 | 0.86998 | 1.28126 | 0.06588 | 24.91773 | |
November | 1.80844 | 1.13267 | 0.11036 | 6.10092 | 0.66254 | 56.17939 | |
December | 0.65922 | 1.26177 | 0.60136 | 1.93329 | 0.16301 | 22.92851 |
Significance Assessment of the Model (p Value of the LR 1 Test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
ASF-affected wild boars in zones II and III—Impact of animal status (reference status: hunted) | |||||||
<0.0001 | Absolute term (β0) | −4.29218 | 0.02921 | 0 | 0.01368 | 0.01291 | 0.01448 |
Found dead | 5.11187 | 0.03880 | 0 | 165.9804 | 153.8082 | 179.1158 | |
Road-killed | 1.06590 | 0.12534 | p < 0.0001 | 2.90344 | 2.27017 | 3.71338 | |
ASF-affected wild boars in zones 0 and I–Impact of animal status (reference status: hunted) | |||||||
<0.0001 | Absolute term (β0) | −8.64273 | 0.33272 | 0 | 0.00017 | 0.00009 | 0.00033 |
Found dead | 5.34975 | 0.36133 | 0 | 210.5549 | 103.6786 | 427.6036 | |
Road-killed | −0.21734 | 1.03383 | 0.83349 | 0.80466 | 0.10600 | 6.10848 |
Significance Assessment of the Model (p Value of LR 1 Test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
< 0.0001 | Absolute term (β0) | −8.51029 | 0.14976 | 0 | 0.00020 | 0.00015 | 0.00027 |
January | 1.14926 | 0.09569 | 0 | 3.15587 | 2.61416 | 3.80982 | |
February | 1.46140 | 0.09440 | 0 | 4.31199 | 3.58090 | 5.19233 | |
March | 1.19758 | 0.09099 | 0 | 3.31211 | 2.76910 | 3.96162 | |
April | 0.94353 | 0.09668 | p < 0.0001 | 2.56903 | 2.12390 | 3.10745 | |
May | 0.72345 | 0.10578 | p < 0.0001 | 2.06153 | 1.67410 | 2.53864 | |
June | 0.20609 | 0.09764 | 0.03480 | 1.22886 | 1.01403 | 1.48920 | |
July | 0.12661 | 0.10891 | 0.25405 | 1.13497 | 0.91600 | 1.40628 | |
August | 0.26906 | 0.11831 | 0.02296 | 1.30873 | 1.03688 | 1.65186 | |
September | 0.38919 | 0.11842 | 0.00010 | 1.47579 | 1.16899 | 1.86311 | |
November | 0.83992 | 0.10326 | p < 0.0001 | 2.31612 | 1.89024 | 2.8381 | |
December | 1.06682 | 0.09689 | p < 0.0001 | 2.90612 | 2.40161 | 3.51662 | |
Zone 0 | −4.38110 | 1.01662 | p < 0.0001 | 0.01251 | 0.00169 | 0.09252 | |
Zone II | 3.14131 | 0.13346 | 0 | 23.13404 | 17.79016 | 30.08314 | |
Zone III | 4.08250 | 0.13665 | 0 | 59.29332 | 45.31107 | 77.59026 | |
Found dead | 5.01313 | 0.03998 | 0 | 150.3741 | 138.9945 | 162.6853 | |
Road-killed | 1.02114 | 0.13037 | p < 0.0001 | 2.77635 | 2.14804 | 3.58846 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frant, M.P.; Gal-Cisoń, A.; Bocian, Ł.; Ziętek-Barszcz, A.; Niemczuk, K.; Woźniakowski, G.; Szczotka-Bochniarz, A. African Swine Fever in Wild Boar (Poland 2020): Passive and Active Surveillance Analysis and Further Perspectives. Pathogens 2021, 10, 1219. https://doi.org/10.3390/pathogens10091219
Frant MP, Gal-Cisoń A, Bocian Ł, Ziętek-Barszcz A, Niemczuk K, Woźniakowski G, Szczotka-Bochniarz A. African Swine Fever in Wild Boar (Poland 2020): Passive and Active Surveillance Analysis and Further Perspectives. Pathogens. 2021; 10(9):1219. https://doi.org/10.3390/pathogens10091219
Chicago/Turabian StyleFrant, Maciej Piotr, Anna Gal-Cisoń, Łukasz Bocian, Anna Ziętek-Barszcz, Krzysztof Niemczuk, Grzegorz Woźniakowski, and Anna Szczotka-Bochniarz. 2021. "African Swine Fever in Wild Boar (Poland 2020): Passive and Active Surveillance Analysis and Further Perspectives" Pathogens 10, no. 9: 1219. https://doi.org/10.3390/pathogens10091219
APA StyleFrant, M. P., Gal-Cisoń, A., Bocian, Ł., Ziętek-Barszcz, A., Niemczuk, K., Woźniakowski, G., & Szczotka-Bochniarz, A. (2021). African Swine Fever in Wild Boar (Poland 2020): Passive and Active Surveillance Analysis and Further Perspectives. Pathogens, 10(9), 1219. https://doi.org/10.3390/pathogens10091219