Experimental Observation of Isolative Efficacy of a Solid Coupling Medium in Extracorporeal Shock Wave Lithotripsy—Implications to Nosocomial Infection Prevention
Abstract
:1. Introduction
2. Materials and Method
2.1. Test Material
2.2. Experimental Procedure
3. Result
3.1. Microscopy Observation
3.2. Spectrofluorometer Observation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knoll, T. Epidemiology, pathogenesis, and pathophysiology of urolithiasis. Eur. Urol. Suppl. 2010, 9, 802–806. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Liao, B.; Luo, D.; Wang, K.; Li, H.; Zeng, G. Epidemiology of urolithiasis in Asia. Asian J. Urol. 2018, 5, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Basulto-Martínez, M.; Klein, I.; Gutiérrez-Aceves, J. The role of extracorporeal shock wave lithotripsy in the future of stone management. Curr. Opin. Urol. 2019, 29, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Bergsdorf, T.; Chaussy, C.; Thueroff, S. 1815 Coupling gel viscosity-a relevant factor for efficient shock wave coupling in SWL. J. Urol. 2010, 183, e704. [Google Scholar] [CrossRef]
- Duryea, A.P.; Roberts, W.W.; Cain, C.A.; Tamaddoni, H.A.; Hall, T.L. Acoustic bubble removal to enhance SWL efficacy at high shock rate: An in vitro study. J. Endourol. 2014, 28, 90–95. [Google Scholar] [CrossRef]
- Pishchalnikov, Y.A.; Neucks, J.S.; VonDerHaar, R.J.; Pishchalnikova, I.V.; Williams, J.C.; McAteer, J.A. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J. Urol. 2006, 176, 2706–2710. [Google Scholar] [CrossRef] [PubMed]
- Rassweiler, J.; Rassweiler, M.-C.; Frede, T.; Alken, P. Extracorporeal shock wave lithotripsy: An opinion on its future. Indian J. Urol. 2014, 30, 73–79. [Google Scholar] [CrossRef]
- Weist, K.; Wendt, C.; Petersen, L.R.; Versmold, H.; Rüden, H. An outbreak of pyodermas among neonates caused by ultrasound gel contaminated with methicillin-susceptible Staphylococcus aureus. Infect. Control Hosp. Epidemiol. 2000, 21, 761–764. [Google Scholar] [CrossRef]
- Ejtehadi, F.; Ejtehadi, F.; Teb, J.C.; Arasteh, M.M. A safe and practical decontamination method to reduce the risk of bacterial colonization of ultrasound transducers. J. Clin. Ultrasound 2014, 42, 395–398. [Google Scholar] [CrossRef]
- Wang, C.-S.; Li, C.-C.; Wu, W.-J.; Liou, W.-C.; Lin, Y.E.; Chen, W.-C. Newly designed solid coupling medium for reducing trapped air pockets during extracorporeal shock wave lithotripsy_a phantom study. BMC Urol. 2021, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-H.; Lin, Y.-C.; Li, C.-C.; Wu, W.-J.; Liou, W.-C.; Lin, Y.E.; Huang, K.-K.; Chen, W.-C. A clinical observational study of effectiveness of a solid coupling medium in extracorporeal shock wave lithotripsy. BMC Urol. 2022, 22, 56. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Katla, S.K.; Perez-Mercader, J. Enhanced fluorescence emission from rhodamine 6G dye through polymerization-induced self-assembly. J. Photochem. Photobiol. A Chem. 2021, 406, 112992. [Google Scholar] [CrossRef]
- Zehentbauer, F.M.; Moretto, C.; Stephen, R.; Thevar, T.; Gilchrist, J.R.; Pokrajac, D.; Richard, K.L.; Kiefer, J. Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects. Spectrochim. Acta Part A 2014, 121, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Levin, P.A.; Angert, E.R. Small but mighty: Cell size and bacteria. Cold Spring Harb. Perspect. Biol. 2015, 7, a019216. [Google Scholar] [CrossRef] [PubMed]
- Neucks, J.S.; Pishchalnikov, Y.A.; Zancanaro, A.J.; VonDerHaar, J.N.; Williams, J.C.; McAteer, J.A. Improved acoustic coupling for shock wave lithotripsy. Urol. Res. 2008, 36, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Shah, T.K. Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur. Urol. 2007, 51, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Bierkens, A.; Hendrikx, A.; De Kort, V.; De Reyke, T.; Bruynen, C.; Bouve, E.; Beek, T.; Vos, P.; Berkel, H. Efficacy of second generation lithotriptors: A multicenter comparative study of 2,206 extracorporeal shock wave lithotripsy treatments with the Siemens Lithostar, Dornier HM4, Wolf Piezolith 2300, Direx Tripter X-1 and Breakstone lithotriptors. J. Urol. 1992, 148, 1052–1056. [Google Scholar] [CrossRef]
- Doran, O.; Foley, B. Acute complications following extracorporeal shock-wave lithotripsy for renal and ureteric calculi. Emerg. Med. Australas. 2008, 20, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Malaki, M.; Baghizadeh, E.; Abdullah, A.; Heidari-Chamshiri, Z. Complications due to extracorporeal shock wave lithotripsy and role of cavitation bubbles impacts. In Proceedings of the 2010 17th Iranian Conference of Biomedical Engineering (ICBME), Isfahan, Iran, 3–4 November 2010; pp. 1–4. [Google Scholar]
- Belyi, V.A.; Levine, A.J.; Skalka, A.M. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: The parvoviridae and circoviridae are more than 40 to 50 million years old. J. Virol. 2010, 84, 12458–12462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group. | No. of Sample | Mean * | ±S.D. | p Value ** |
---|---|---|---|---|
Experimental | 3 | 0.219 | 0.083 | 0.953 |
Control | 3 | 0.192 | 0.100 | |
Blank | 3 | 0.198 | 0.147 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, H.-W.; Huang, C.-L.; Lin, Y.-C.; Lin, Y.E.; Chen, W.-C. Experimental Observation of Isolative Efficacy of a Solid Coupling Medium in Extracorporeal Shock Wave Lithotripsy—Implications to Nosocomial Infection Prevention. Pathogens 2022, 11, 1103. https://doi.org/10.3390/pathogens11101103
Chou H-W, Huang C-L, Lin Y-C, Lin YE, Chen W-C. Experimental Observation of Isolative Efficacy of a Solid Coupling Medium in Extracorporeal Shock Wave Lithotripsy—Implications to Nosocomial Infection Prevention. Pathogens. 2022; 11(10):1103. https://doi.org/10.3390/pathogens11101103
Chicago/Turabian StyleChou, Hui-Wen, Chih-Lin Huang, Yu-Chih Lin, Yusen Eason Lin, and Wei-Chuan Chen. 2022. "Experimental Observation of Isolative Efficacy of a Solid Coupling Medium in Extracorporeal Shock Wave Lithotripsy—Implications to Nosocomial Infection Prevention" Pathogens 11, no. 10: 1103. https://doi.org/10.3390/pathogens11101103
APA StyleChou, H. -W., Huang, C. -L., Lin, Y. -C., Lin, Y. E., & Chen, W. -C. (2022). Experimental Observation of Isolative Efficacy of a Solid Coupling Medium in Extracorporeal Shock Wave Lithotripsy—Implications to Nosocomial Infection Prevention. Pathogens, 11(10), 1103. https://doi.org/10.3390/pathogens11101103