Unlocking the Hidden Genetic Diversity of Varicosaviruses, the Neglected Plant Rhabdoviruses
Abstract
:1. Introduction
2. Material and Methods
2.1. Identification of Plant Rhabdovirus Sequences from Public Plant RNA-seq Datasets
2.2. Sequence Assembly and Identification
2.3. Bioinformatics Tools and Analyses
2.3.1. Sequence Analyses
2.3.2. Pairwise Sequence Identity
2.3.3. Phylogenetic Analysis
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koonin, E.V.; Krupovic, M.; Agol, V.I. The Baltimore Classification of Viruses 50 Years Later: How Does It Stand in the Light of Virus Evolution? Microbiol. Mol. Biol. Rev. 2021, 85, e0005321. [Google Scholar] [CrossRef]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Varsani, A.; Wolf, Y.I.; Yutin, N.; Zerbini, F.M.; Kuhn, J.H. Global Organization and Proposed Megataxonomy of the Virus World. Microbiol. Mol. Biol. Rev. 2020, 84, e00061-19. [Google Scholar] [CrossRef] [PubMed]
- Geoghegan, J.L.; Holmes, E.C. Predicting virus emergence amid evolutionary noise. Open Biol. 2017, 7, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Dolja, V.V.; Krupovic, M.; Koonin, E.V. Deep Roots and Splendid Boughs of the Global Plant Virome. Annu. Rev. Phytopathol. 2020, 58, 23–53. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Taylor, J.; Lin, V.; Altman, T.; Barbera, P.; Meleshko, D.; Lohr, D.; Novakovsky, G.; Buchfink, B.; Al-Shayeb, B.; et al. Petabase-scale sequence alignment catalyses viral discovery. Nature 2022, 602, 142–147. [Google Scholar] [CrossRef]
- Mifsud, J.C.O.; Gallagher, R.V.; Holmes, E.C.; Geoghegan, J.L. Transcriptome Mining Expands Knowledge of RNA Viruses across the Plant Kingdom. J. Virol. 2022, e00260-22. [Google Scholar] [CrossRef]
- Lauber, C.; Seitz, S. Opportunities and Challenges of Data-Driven Virus Discovery. Biomolecules 2022, 12, 1073. [Google Scholar] [CrossRef]
- Dietzgen, R.G.; Bejerman, N.E.; Goodin, M.M.; Higgins, C.M.; Huot, O.B.; Kondo, H.; Martin, K.M.; Whitfield, A.E. Diversity and epidemiology of plant rhabdoviruses. Virus Res. 2020, 281, 197942. [Google Scholar] [CrossRef]
- Bejerman, N.; Dietzgen, R.; Debat, H. Illuminating the Plant Rhabdovirus Landscape through Metatranscriptomics Data. Viruses 2021, 13, 1304. [Google Scholar] [CrossRef]
- Walker, P.J.; Freitas-Astúa, J.; Bejerman, N.; Blasdell, K.R.; Breyta, R.; Dietzgen, R.G.; Fooks, A.R.; Kondo, H.; Kurath, G.; Kuzmin, I.V.; et al. ICTV Virus Taxonomy Profile: Rhabdoviridae 2022. J. Gen. Virol. 2022, 103, 001689. [Google Scholar] [CrossRef]
- Campbell, R.N. Fungal Transmission of Plant Viruses. Annu. Rev. Phytopathol. 1996, 34, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Sasaya, T.; Ishikawa, K.; Koganezawa, H. The nucleotide sequence of RNA1 of Lettuce big-vein virus, genus Varicosavirus, reveals its relation to nonsegmented negative-strand RNA viruses. Virology 2002, 297, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Sasaya, T.; Kusaba, S.; Ishikawa, K.; Koganezawa, H. Nucleotide sequence of RNA2 of Lettuce big-vein virus and evidence for a possible transcription termination/initiation strategy similar to that of rhabdoviruses. J. Gen. Virol. 2004, 85, 2709–2717. [Google Scholar] [CrossRef]
- Verbeek, M.; Dullemans, A.M.; van Bekkum, P.J.; van der Vlugt, R.A.A. Evidence for Lettuce big-vein associated virus as the causal agent of a syndrome of necrotic rings and spots in lettuce. Plant Pathol. 2013, 62, 444–451. [Google Scholar] [CrossRef]
- Koloniuk, I.; Fránová, J.; Sarkisova, T.; Přibylová, J.; Lenz, O.; Petrzik, K.; Špak, J. Identification and molecular characterization of a novel varicosa-like virus from red clover. Arch. Virol. 2018, 163, 2213–2218. [Google Scholar] [CrossRef] [PubMed]
- Sabbadin, F.; Glover, R.; Stafford, R.; Rozado-Aguirre, Z.; Boonham, N.; Adams, I.; Mumford, R.; Edwards, R. Transcriptome sequencing identifies novel persistent viruses in herbicide resistant wild-grasses. Sci. Rep. 2017, 7, srep41987. [Google Scholar] [CrossRef]
- Shin, C.; Choi, D.; Hahn, Y. Identification of the genome sequence of Zostera associated varicosavirus 1, a novel negative-sense RNA virus, in the common eelgrass (Zostera marina) transcriptome. Acta Virol. 2022, 65, 373–380. [Google Scholar] [CrossRef]
- Sidharthan, V.K.; Chaturvedi, K.K.; Baranwal, V.K. Diverse RNA viruses in a parasitic owering plant (spruce dwarf mistletoe) revealed through RNA-seq data mining. J. Gen. Plant Pathol. 2022, 88, 138–144. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Sadiq, S.; Tian, J.-H.; Chen, X.; Lin, X.-D.; Shen, J.-J.; Chen, H.; Hao, Z.-Y.; Wille, M.; Zhou, Z.-C.; et al. RNA viromes from terrestrial sites across China expand environmental viral diversity. Nat. Microbiol. 2022, 7, 1312–1323. [Google Scholar] [CrossRef]
- Nabeshima, T.; Abe, J. High-throughput sequencing indicates novel Varicosavirus, Emaravirus and Deltapartitvirus infections in Vitis coignetiae. Viruses 2021, 13, 827. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, H.; Qiao, Q.; Wang, Y.; Zhang, D.; Wang, S.; Tian, Y.; Zhang, Z. Complete genome sequence of a novel varicosavirus infecting tall morning glory (Ipomoea purpurea). Arch. Virol. 2021, 166, 3225–3228. [Google Scholar] [CrossRef]
- Leebens-Mack, J.H.; Barker, M.S.; Carpenter, E.J. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 2019, 574, 679–685. [Google Scholar]
- Wang, Y.; Li, X.; Zhou, W.; Li, T.; Tian, C. De novo assembly and transcriptome characterization of spruce dwarf mistletoe Arceuthobium sichuanense uncovers gene expression profiling associated with plant development. BMC Genom. 2016, 17, 771. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhao, W.; Xing, M.; Zhao, J.; Jiang, Z.; You, J.; Ni, B.; Ni, Y.; Liu, C.; Li, J. Resource allocation strategies among vegetative growth, sexual reproduction, asexual reproduction and defense during growing season of Aconitum kusnezoffii Reichb. Plant J. 2021, 105, 957–977. [Google Scholar] [CrossRef]
- Yu, C.; Zhan, X.; Zhang, C.; Xu, X.; Huang, J.; Feng, S.; Shen, C.; Wang, H. Comparative metabolomic analyses revealed the differential accumulation of taxoids, flavonoids and hormones among six Taxaceae trees. Sci. Hortic. 2021, 285, 110196. [Google Scholar] [CrossRef]
- Babineau, M.; Mahmood, K.; Mathiassen, S.K.; Kudsk, P.; Kristensen, M. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages. BMC Genom. 2017, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Rowarth, N.M.; Curtis, B.A.; Einfeldt, A.L.; Archibald, J.M.; Lacroix, C.R.; Gunawardena, A.H. RNA-Seq analysis reveals potential regulators of programmed cell death and leaf remodelling in lace plant (Aponogeton madagascariensis). BMC Plant Biol. 2021, 21, 375. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, A.S.; Fisher, M.F.; Panero, J.L.; Secco, D.; Bernath-Levin, K.; Berkowitz, O.; Taylor, N.L.; Schilling, E.E.; Whelan, J.; Mylne, J.S. Stepwise Evolution of a Buried Inhibitor Peptide over 45 My. Mol. Biol. Evol. 2017, 34, 1505–1516. [Google Scholar] [CrossRef]
- Weitemier, K.; Straub, S.C.; Fishbein, M.; Bailey, C.D.; Cronn, R.C.; Liston, A. A draft genome and transcriptome of common milkweed (Asclepias syriaca) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae. PeerJ 2019, 7, e7649. [Google Scholar] [CrossRef]
- Shen, H.; Jin, D.; Shu, J.-P.; Zhou, X.-L.; Lei, M.; Wei, R.; Shang, H.; Wei, H.-J.; Zhang, R.; Liu, L.; et al. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns. GigaScience 2017, 7, gix116. [Google Scholar] [CrossRef]
- An, H.; Qi, X.; Gaynor, M.L.; Hao, Y.; Gebken, S.C.; Mabry, M.E.; McAlvay, A.C.; Teakle, G.R.; Conant, G.C.; Barker, M.S.; et al. Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid Brassica napus. Nat. Commun. 2019, 10, 2878. [Google Scholar] [CrossRef] [Green Version]
- Bisht, D.S.; Chamola, R.; Nath, M.; Bhat, S.R. Molecular mapping of fertility restorer gene of an alloplasmic CMS system in Brassica juncea containing Moricandia arvensis cytoplasm. Mol. Breed. 2015, 35, 14. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, J.; Mao, S.; Xu, H.; Wu, Q.; Liang, M.; Yuan, Y.; Liu, M.; Huang, K. Comparative transcriptome analyses of genes involved in sulforaphane metabolism at different treatment in Chinese kale using full-length transcriptome sequencing. BMC Genom. 2019, 20, 377. [Google Scholar] [CrossRef]
- Xu, H.; Bohman, B.; Wong, D.C.J.; Rodriguez-Delgado, C.; Scaffidi, A.; Flematti, G.R.; Phillips, R.D.; Pichersky, E.; Peakall, R. Complex Sexual Deception in an Orchid Is Achieved by Co-opting Two Independent Biosynthetic Pathways for Pollinator Attraction. Curr. Biol. 2017, 27, 1867–1877.e5. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.; Hou, X.; Liu, C.; Sun, J.; Guo, C.; Su, L.; Jiang, W.; Ling, C.; Wang, C.; Wang, H.; et al. Phytochemical and comparative transcriptome analyses reveal different regulatory mechanisms in the terpenoid biosynthesis pathways between Matricaria recutita L. and Chamaemelum nobile L. BMC Genom. 2020, 21, 169. [Google Scholar] [CrossRef]
- Lü, P.; Yu, S.; Zhu, N.; Chen, Y.-R.; Zhou, B.; Pan, Y.; Tzeng, D.; Fabi, J.P.; Argyris, J.; Garcia-Mas, J.; et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 2018, 4, 784–791. [Google Scholar] [CrossRef]
- Li, J.; Milne, R.I.; Ru, D.; Miao, J.; Tao, W.; Zhang, L.; Xu, J.; Liu, J.; Mao, K. Allopatric divergence and hybridization within Cupressus chengiana (Cupressaceae), a threatened conifer in the northern Hengduan Mountains of western China. Mol. Ecol. 2020, 29, 1250–1266. [Google Scholar] [CrossRef]
- Huang, C.; Qi, X.; Chen, D.; Qi, J.; Ma, H. Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns. J. Integr. Plant Biol. 2019, 62, 433–455. [Google Scholar] [CrossRef]
- Osuna-Mascaró, C.; de Casas, R.R.; Gómez, J.M.; Loureiro, J.; Castro, S.; Landis, J.B.; Hopkins, R.; Perfectti, F. Hybridization and introgression are prevalent in Southern European Erysimum (Brassicaceae) species. Ann. Bot. 2022. [Google Scholar] [CrossRef] [PubMed]
- Young, E.; Carey, M.; Meharg, A.A.; Meharg, C. Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing. Microbiome 2018, 6, 48. [Google Scholar] [CrossRef]
- Nevado, B.; Atchison, G.W.; Hughes, C.E.; Filatov, D.A. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins. Nat. Commun. 2016, 7, 12384. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Duan, Z.; Xu, P.; Yan, Q.; Meng, M.; Cao, M.; Jones, C.S.; Zong, X.; Zhou, P.; Wang, Y.; et al. Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. Plant Biotechnol. J. 2021, 20, 592–609. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Snedden, W.; DiCenzo, G. Reference nodule transcriptomes for Melilotus officinalis and Medicago sativa cv. Algonquin. Grassl. Res. 2022, 6, e408. [Google Scholar] [CrossRef]
- Piñeiro Fernández, L.; Byers, K.J.R.P.; Cai, J.; Sedeek, K.E.M.; Kellenberger, R.T.; Russo, A.; Qi, W.; Aquino Fournier, C.; Schlüter, P.M. A Phylogenomic Analysis of the Floral Transcriptomes of Sexually Deceptive and Rewarding European Orchids, Ophrys and Gymnadenia. Front. Plant Sci. 2019, 10, 1553. [Google Scholar] [CrossRef]
- Peery, R.M.; McAllister, C.H.; Cullingham, C.I.; Mahon, E.L.; Arango-Velez, A.; Cooke, J.E. Comparative genomics of the chitinase gene family in lodgepole and jack pines: Contrasting responses to biotic threats and landscape level investigation of genetic differentiation. Botany 2021, 99, 355–378. [Google Scholar] [CrossRef]
- Cai, N.; Xu, Y.; Chen, S.; He, B.; Li, G.; Li, Y.; Duan, A. Variation in seed and seedling traits and their relations to geo-climatic factors among populations in Yunnan Pine (Pinus yunnanensis). J. For. Res. 2016, 27, 1009–1017. [Google Scholar] [CrossRef]
- Zhao, Z.; Luo, Z.; Yuan, S.; Mei, L.; Zhang, D. Global transcriptome and gene co-expression network analyses on the development of distyly in Primula oreodoxa. Heredity 2019, 123, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Pellino, M.; Hojsgaard, D.; Schmutzer, T.; Scholz, U.; Hörandl, E.; Vogel, H.; Sharbel, T.F. Asexual genome evolution in the apomictic Ranunculus auricomus complex: Examining the effects of hybridization and mutation accumulation. Mol. Ecol. 2013, 22, 5908–5921. [Google Scholar]
- Yang, Z.; Li, W.; Su, X.; Ge, P.; Zhou, Y.; Hao, Y.; Shu, H.; Gao, C.; Cheng, S.; Zhu, G.; et al. Early Response of Radish to Heat Stress by Strand-Specific Transcriptome and miRNA Analysis. Int. J. Mol. Sci. 2019, 20, 3321. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.; Lou, H.; Wang, H.; Xu, Q. Comparative transcriptome analysis of dioecious, unisexual floral development in Ribes diacanthum pall. Gene 2019, 699, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Wickett, N.J.; Mirarab, S.; Nguyen, N.; Warnow, T.; Carpenter, E.; Matasci, N.; Ayyampalayam, S.; Barker, M.S.; Burleigh, J.G.; Gitzendanner, M.A.; et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. USA 2014, 111, E4859–E4868. [Google Scholar] [CrossRef] [PubMed]
- Meier, S.K.; Adams, N.; Wolf, M.; Balkwill, K.; Muasya, A.M.; Gehring, C.A.; Bishop, J.M.; Ingle, R.A. Comparative RNA -seq analysis of nickel hyperaccumulating and non-accumulating populations of Senecio coronatus (Asteraceae). Plant J. 2018, 95, 1023–1038. [Google Scholar] [CrossRef] [Green Version]
- Baloun, J.; Nevrtalova, E.; Kovacova, V.; Hudzieczek, V.; Čegan, R.; Vyskot, B.; Hobza, R. Characterization of the HMA7 gene and transcriptomic analysis of candidate genes for copper tolerance in two Silene vulgaris ecotypes. J. Plant Physiol. 2014, 171, 1188–1196. [Google Scholar] [CrossRef]
- Clancy, M.V.; Haberer, G.; Jud, W.; Niederbacher, B.; Niederbacher, S.; Senft, M.; Zytynska, S.E.; Weisser, W.W.; Schnitzler, J.-P. Under fire-simultaneous volatilome and transcriptome analysis unravels fine-scale responses of tansy chemotypes to dual herbivore attack. BMC Plant Biol. 2020, 20, 551. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Luo, X.; Yu, C.; Zhang, C.; Zhang, L.; Song, Y.B.; Dong, M.; Shen, C. Transcriptome analyses provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species. BMC Plant Biol. 2019, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Hodge, B.A.; Paul, P.A.; Stewart, L.R. Occurrence and High-Throughput Sequencing of Viruses in Ohio Wheat. Plant Dis. 2020, 104, 1789–1800. [Google Scholar] [CrossRef]
- Yu, X.; Wang, W.; Yang, H.; Zhang, X.; Wang, D.; Tian, X. Transcriptome and comparative chloroplast genome analysis of Vincetoxicum versicolor: Insights into molecular evolution and phylogenetic implication. Front. Genet. 2021, 12, 602528. [Google Scholar] [CrossRef]
- Lanver, D.; Müller, A.N.; Happel, P.; Schweizer, G.; Haas, F.B.; Franitza, M.; Pellegrin, C.; Reissmann, S.; Altmüller, J.; Rensing, S.A.; et al. The Biotrophic Development of Ustilago maydis Studied by RNA-Seq Analysis. Plant Cell 2018, 30, 300–323. [Google Scholar] [CrossRef]
- Muhire, B.M.; Varsani, A.; Martin, D.P. SDT: A Virus Classification Tool Based on Pairwise Sequence Alignment and Identity Calculation. PLoS ONE 2014, 9, e108277. [Google Scholar] [CrossRef]
- Geoghegan, J.L.; Duchêne, S.; Holmes, E.C. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLOS Pathog. 2017, 13, e1006215. [Google Scholar] [CrossRef]
- Alvarez-Quinto, R.A.; Lockhart, B.E.L.; Fetzer, J.L.; Olszewski, E.N. Genomic characterization of cycad leaf necrosis virus, the first badnavirus identified in a gymnosperm. Arch. Virol. 2020, 165, 1671–1673. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.H.; Li, H.; Admiraal, R.; Jones, M.G.; Wylie, S. Catharanthus mosaic virus: A potyvirus from a gymnosperm, Welwitschia mirabilis. Virus Res. 2015, 203, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.S.; Karasev, A.V.; Ieki, H.; Iwanami, T. Nucleotide sequence and taxonomy of Cycas necrotic stunt virus. Arch. Virol. 2002, 147, 2207–2214. [Google Scholar] [CrossRef] [PubMed]
- Rastrojo, A.; Núñez, A.; Moreno, D.A.; Alcamí, A. A New Putative Caulimoviridae Genus Discovered through Air Metagenomics. Microbiol. Resour. Announc. 2018, 7, e00955-18. [Google Scholar] [CrossRef]
- Sidharthan, V.K.; Rajeswari, V.; Vanamala, G.; Baranwal, V.K. Revisiting the amalgaviral landscapes in plant transcriptomes expands the host range of plant amalgaviruses. Available SSRN 4210265 2022. [Google Scholar] [CrossRef]
- Debat, H.; Bejerman, N. A glimpse into the DNA virome of the unique “living fossil” Welwitschia mirabilis. Gene 2022, 843, 146806. [Google Scholar] [CrossRef]
Plant Host | Taxa/Family | Virus Name/Abbreviation | Bioproject ID/ Data Citation | Segment/Coverage | Length (nt) | Accession Number | Protein ID | Length (aa) | Highest Scoring Virus-Protein/E-Value/Query Coverage%/Identity% (Blast P) |
---|---|---|---|---|---|---|---|---|---|
Trojan fir (Abies nordmannia) | Gymnosperm/Pinaceae | Abies virus 1/ AbiV1 | PRJNA387306/ University of Connecticut, USA | RNA1/30.97X | 11,287 | BK061731 | N 2 3 4 L | 430 420 317 163 2050 | PiFleV1-N/9e-130/87/50.79 PiFleV1-P2/2e-18/57/28.05 PiFleV1-P3/2e-103/97/47.44 no hits PiFleV1-L/0.0/98/52.68 |
Dwarf mistletoe (Arceuthobium sichuanense) | dicot/ Santalaceae | Arceuthobium virus 8/ ArcV8 | PRJNA307530/ [23] | RNA1/9.31X RNA2/72.35X | 6628 4149 | BK061732 BK061733 | L N 2 3 | 2013 369 453 159 | ASaV2-L/0.0/98/100 ZaVV1-N/1e-34/91/28.36 no hits no hits |
Bei Wu Tou (Aconitum kusnezoffii) | dicot/ Ranunculaceae | Aconitum virus 1/ AcoV1 | PRJNA670255/ [24] | RNA1/10.16X RNA2/105.03X | 6483 5561 | BK061734 BK061735 | L N 2 3 4 5 | 2000 424 329 311 204 297 | ZaVV1-L/0.0-97/61.18 ZaVV1-N/2e-115/99/43.82 VVV-P2/4e-36/80/32.13 ZaVV1-P3/5e-105/85/54.51 VVV-P4/1e-27/87/33.33 VVV-P5/5e-17/92/26.18 |
Catkin yew (Amentotaxus argotaenia) | Gymnosperm/ Cephalotaxeae | Amentotaxus virus 1/ AmeV1 | PRJNA498605/ [25] | RNA1/109.96X | 10,965 | BK061736 | N 2 3 4 L | 391 431 314 187 2062 | ASaV2-N/3e-111/94/45.95 PiFleV1-P2/1e-06/55/26.98 ASaV2-P3/4e-83/94/43.42 no hits PiFleV1-L/0.0/99/46.16 |
Common windgrass (Apera spica-venti) | monocot/ Poaceae | Apera virus 1/ ApeV1 | PRJNA356380/ [26] | RNA1/11.98X RNA2/110.50X | 6516 6552 | BK061737 BK061738 | L N 2 3 4 5 | 2027 447 363 298 196 444 | MelRoV1-L/0.0/98/52.12 MelRoV1-N/2e-69/82/34.57 MelRoV1-P2/4e-17/75/26.37 MelRoV1-P3/2e-80/97/41.25 no hits no hits |
Lace plant (Aponogeton madagascariensis) | monocot/ Aponogetonaceae | Aponogeton virus 1/ ApoV1 | PRJNA591467/ [27] | RNA1/36.42X RNA2/81.25X | 6678 5628 | BK061739 BK061740 | L N 2 3 4 | 2022 435 454 300 174 | BrRV1-L/0.0/98/52.7 BrRV1-N/7e-81/88/37 no hits TfVV-P3/2e-45/96/34 BrRV1-P3/0.003/73/25 |
Wormwood (Artemisia absinthium) | dicot/ Asteraceae | Artemisia virus 1/ ArtV1 | PRJNA371565/ [28] | RNA1/33.06X RNA2/50.30X | 7373 4497 | BK061741 BK061742 | L N 2 3 | 2020 453 494 174 | BrRV1-L/0.0/98/49.18 BrRV1-N/3e-45/76/28.90 no hits no hits |
Common milkweed (Asclepias syriaca) | dicot/ Apocynaceae | Asclepias syriaca virus 3 AscSyV3 | PRJNA210776/ [29] | RNA1/37.86X RNA2/138.94X | 6506 6280 | BK061743 BK061744 | L N 2 3 4 5 | 2021 453 370 286 160 393 | TfVV-L/0.0/94/42.62 TfVV-N/3e-39/78/32.13 no hits TfVV-P3/73-32/78/29.26 no hits no hits |
Beautiful tree fern (Asplenium loriceum) | Polypodiophyta/ Aspleniaceae | Asplenium virus 1/ AspV1 | PRJNA281136/ [30] | RNA1/4.51X RNA2/8.91X | 6287 * 4371 * | BK061745 BK061746 | L N 2 3 4 | 1957 * 396 490 294 127 * | TfVV-L/0.0/98/43.81 TfVV-N/2e-79/90/37.82 no hits TfVV-P3/1e-45/87/33.33 no hits |
Shortpod mustard (Brassica incana)¡ | dicot/ Brassicaceae | Brassica virus 2_Inc/ BrV2_Inc | PRJNA428769/ [31] | RNA1/11.89X RNA2/14.63X | 6316 5616 | BK061747 BK061748 | L N 2 3 4 | 2032 591 459 282 141 | TfVV-L/0.0/99/41.86 LoPV1-N/1e-31/58/27.93 no hits TfVV-P3/9e-33/91/29.32 no hits |
Indian mustard (Brassica juncea var. rugosa) | dicot/ Brassicaceae | Brassica virus 2_Jun/ BrV2_Jun | PRJNA290942/ [32] | RNA1/80.91X RNA2/950.63X | 6316 5537 | BK061749 BK061750 | L N 2 3 4 | 2032 591 459 282 141 | TfVV-L/0.0/99/41.57 LoPV1-N/6e-31/58/27.65 no hits TfVV-P3/1e-32/91/29.32 no hits |
Chinese kale (Brassica oleracea var. alboglabra) | dicot/ Brassicaceae | Brassica virus 2_Ole/ BrV2_Ole | PRJNA525713/ [33] | RNA1/11.03X RNA2/66.34X | 6316 5647 | BK061751 BK061752 | L N 2 3 4 | 2032 591 459 282 141 | TfVV-L/0.0/99/41.81 LoPV1-N/7e-32/58/27.93 no hits TfVV-P3/8e-33/91/29.32 no hits |
Crab-lipped spider orchid (Caladenia plicata) | monocot/ Orchidaceae | Caladenia virus 1/ CalV1 | PRJNA384875/ [34] | RNA1/10.51X RNA2/52.44X | 6454 5011 | BK061755 BK061756 | L N 2 3 4 | 2024 449 468 293 165 | BrRV1-L/0.0/98/50.17 BrRV1-N/1e-64/97/32.43 no hits TfVV-P3/1e-43/86/34.78 BrRV1-P3/3e-07/61/31.13 |
Conrflower (Centaurea cyanus) | dicot/ Asteraceae | Centaurea virus 1/ CenV1 | PRJNA371565/ [28] | RNA1/63.11X RNA2/159.93X | 6789 4567 | BK061757 BK061758 | L N 2 3 | 2019 469 501 111 | BrRV1-L/0.0/98/50.50 BrRV1-N/6e-48/73/30.72 no hits no hits |
Chamomile (Chamaemelum nobile) | dicot/ Asteraceae | Chamaemelum virus 1/ ChaV1 | PRJNA382469/ [35] | RNA1/21.33X RNA2/234.84X | 6670 * 5957 | BK061759 BK061760 | L P6 N 2 3 4 5 | 1916 * 171 426 346 305 255 330 | VVV-L/0.0/99/58.85 no hits ZaVV1-N/2e-105/95/41.40 VVV-P2/2e-19/84/30.28 VVV-P3/5e-97/94/49.14 ZaVV1-P4/3e-05/70/22.1 VVV-P5/3e-22/85/29.14 |
Melon (Cucumis melo) | dicot/ Cucurbitaceae | Cucumis virus 1/ CucV1 | PRJNA381300/ [36] | RNA1/47.79X RNA2/60.05X | 6919 5322 | BK061761 BK061762 | L N 2 3 4 | 2034 341 404 285 119 | AMVV1-L/0.0/99/47.47 InPRV-N/4e-77/98/38.71 no hits TfVV-P3/1e-46/91/34.21 no hits |
Chen cypress (Cupressus chengiana) | Gymnosperm/ Cupressaceae | Cupressus virus 1/ CupV1 | PRJNA556937/ [37] | RNA1/32.13X | 12143 | BK061763 | N 2 3 4 5 L | 379 447 313 187 168 2055 | ASaV2-N/2e-106/97/44.59 ASaV2-P2/5e-30/67/30.86 ASaV2-P3/2e-100/84/53.38 no hits no hits PiFleV1-L/0.0/99/48.68 |
Tree maidenhair fern (Didymochlaena truncatula) | Polypodiophyta/ Hypodeatiaceae | Didymochlaena virus 1/ DidV1 | PRJNA422112/ [38] | RNA1/8.88X RNA2/52.28X | 6319 5924 | BK061764 BK061765 | L N 2 3 4 5 | 2044 386 394 292 187 374 | TfVV-L/0.0/100/74.17 TfVV-N/0.0/100/72.75 TfVV-P2/7e-74/96/40.26 TfVV-P3/2e-159/99/70.69 TfVV-P4/5e-23/88/30.72 TfVV-P5/0.0/97/64.11 |
Wallflower (Erysimum bastetanum) | dicot/ Brassicaceae | Erysimum virus 1/ EryV1 | PRJNA607615/ [39] | RNA1/271.24X RNA2/516.22X | 6676 3980 | BK061766 BK061767 | L N 2 3 | 1985 439 404 172 | BrRV1-L/0.0/99/62-34 BrRV1-N/3e-90/99/33.86 no hits BrRV1-P3/4e-26/100/31.4 |
Liverwort (Frullania orientalis) | Marchantiophyta/ Frullaniaceae | Frullania virus 1/ FruV1 | PRJNA505755/ Fairylake Botanical Garden, China | RNA1/11.60X RNA2/8.20X | 6458 4363 | BK061768 BK061769 | L N 2 3 4 | 2033 372 336 289 148 | MgVV-L/0.0/98/54.77 MgVV-N/2e-94/97/43.96 MgVV-P2/8e-05/56/27.27 MgVV-P3/5e-85/89/47.49 MgVV-P4/4e-05/70/29.81 |
Noug (Guizotia abyssinica) | dicot/ Asteraceae | Guizotia virus 1/ GuiV1 | PRJNA371565/ [28] | RNA1/153.49X RNA2/1192.66X | 6457 4722 | BK061770 BK061771 | L N 2 3 4 | 2007 434 340 262 307 | MelRoV1-L/0.0/98/60.42 MelRoV1-N/3e-103/82/43.96 MelRoV1-P2/7e-22/85/24.53 no hits no hits |
Common velvet grass (Holcus lanatus) | monocot/ Poaceae | Holcus virus 1/ HolV1 | PRJEB11654/ [40] | RNA1/19.48X RNA2/29.44X | 6571 4397 | BK061772 BK061773 | L N 2 3 4 | 2031 476 286 211 161 | AMVV1-L/0.0/98/65.12 LoPV1-N/8e-132/77/51.23 LoPV1-P2/5e-23/56/33.33 LoPV1-P2/8e-12/63/29.76 LoPV1-P3/1e-49/90/51.72 |
Oxeye daisy (Leucanthemum vulgare) | dicot/ Asteraceae | Leucanthemum virus 1/ LeuV1 | PRJNA371565/ [28] | RNA1/141.76X RNA2/229.85X | 6763 4775 | BK061774 BK061775 | L N 2 3 | 2021 448 520 167 | BrRV1-L/0.0/98/49.63 BrRV1-N/3e-42/71/32.11 no hits no hits |
Downy flax (Linum hirsutum) | dicot/ Linaceae | Linum virus 1/ LinV1 | PRJEB21674/ 1000 Plant (1KP) Transcriptomes Initiative | RNA1/26.47X RNA2/119.90X | 5999 * 6330 | BK061776 BK061777 | L N 2 3 4 | 1940 * 450 463 313 260 | MelRoV1-L/0.0/94/53.78 MelRoV1-/3e-69/82/33.96 no hits MelRoV1-P3/7e-81/88/42.39 no hits |
Sponge gourd (Luffa aegyptiaca) | dicot/ Cucurbitaceae | Luffa virus 1/ LufV1 | PRJNA390566/ Mylne, J., The University of Western Australia | RNA1/16.47X RNA2/11.32X | 6693 4961 | BK061780 BK061781 | L N 2 3 4 | 2032 487 366 286 126 | LoPV1-L/0.0/99/49.04 InPRV-N/7e-84/86/36.93 no hits TfVV-P3/3e-53/81/41.7 no hits |
Riverbank lupine (Lupinus rivularis) | dicot/ Fabaceae | Lupinus virus 1/ LupV1 | PRJNA318864/ [41] | RNA1/14.64X RNA2/97.57X | 6688 4042 * | BK061782 BK061783 | L N 2 3 | 1997 426 497 116 * | ZaVV1-L/0.0/99/56.91 ZaVV1-N/2e-83/99/36.92 ZaVV1-P2/3e-14/39/28.99 no hits |
Sweet clover (Melilotus spp) | dicot/ Fabaceae | Melilotus virus 1_Alb/ MelV1_Alb | PRJNA647665/ [42] | RNA1/30.69X RNA2/98.21X | 6657 3985 | BK061784 BK061785 | L N 2 3 | 2019 430 393 189 | RCaVV-L/0.0/99/64.97 RCaVV-N/5e-80/93/33.5 RCaVV-P2/0.001/42/27.54 RCaVV-P3/8e-25/88/35.12 |
Sweet clover (Melilotus spp) | dicot/ Fabaceae | Melilotus virus 1_Off/ MelV1_Off | PRJNA751393/ [43] | RNA1/12.15X RNA2/25.36X | 6433 3781 | BK061786 BK061787 | L N 2 3 | 2019 430 399 191 | RCaVV-L/0.0/99/65.37 RCaVV-N/5e-77/91/33.33 RCaVV-P2/0.002/42/28.14 RCaVV-P3/5e-23/87/34.52 |
Early spider orchid (Ophrys sphegodes) | monocot/ Orchidaceae | Ophrys virus 1/ OphV1 | PRJNA574279/ [44] | RNA1/7.72X RNA2/206.15X | 6134 * 5036 | BK061788 BK061789 | L N 2 3 4 | 1988 * 447 466 293 214 | MelRoV1-L/0.0/99/56.95 MelRoV1-N/4e-97/96/37.1 MelRoV1-P2/4e-23/54/28.9 MelRoV1-P3/2e-84/91/43.87 MelRoV1-P4/0.009/63/26.39 |
Purple Grass (Pennisetum violaceum) | monocot/ Poaceae | Pennisetum virus 1/ PenV1 | PRJNA282366/ Suja George, M.S Swaminathan Research Foundation, India | RNA1/44.59X RNA2/112.25X | 6284 3407 | BK061790 BK061791 | L N 2 3 | 2033 451 286 151 | LoPV1-L/0.0/98/51.27 LoPV1-N/5e-79/75/40.52 no hits LoPV1-P3/4e-12/83/30.16 |
Qinghai spruce (Picea crassifolia) | Gymosperm/ Pinaceae | Picea virus 1/ PicV1 | PRJNA307530/ [23] | RNA1/5.86X | 11,193 | BK061792 | N 2 3 4 L | 382 452 318 174 2051 | ASaV2-N/0.0/100/100 ASaV2-P2/0.0/100/100 ASaV2-P3/0.0/100/100 ASaV2-P4/0.0/100/100 PiFleV1-L/0.0/99/49.12 |
Jack pine (Pinus banksiana) | Gymosperm/ Pinaceae | Pinus banksiana virus 1/ PiBanV1 | PRJNA524866/ [45] | RNA1/97.66X | 11276 | BK061793 | N 2 3 4 L | 406 433 317 175 2048 | PiFleV1-N/0.0/100/68.72 PiFleV1-P2/3e-48/57/39.2 PiFleV1-P3/1e-161/100/64.78 PiFleV1-P4/3e-17/65/36.84 PiFleV1-L/0.0/99/65.35 |
Yunnan pine (Pinus yunnanensis) | Gymosperm/ Pinaceae | Pinus yunnanensis virus 1/PiYunV1 | PRJNA507489/ [46] | RNA1/36.47X | 12,057 | BK061794 | N 2 3 4 L | 411 440 319 204 2048 | PiFleV1-N/0.0/93/70.5 PiFleV1-P2/7e-48/97/35.49 PiFleV1-P3/8e-145/100/62.38 PiFleV1-P4/7e-30/75/38.46 PiFleV1-L/0.0/98/70.33 |
Spendlor primrose (Primula oreodoxa) | dicot/ Primulaceae | Primula virus 1/ PriV1 | PRJNA544868/ [47] | RNA1/7.72X RNA2/149.23X | 6352 6283 | BK061795 BK061796 | L N 2 3 4 5 | 2022 435 352 288 145 384 | TfVV-L/0.0/98/42.3 TfVV-N/1e-40/74/33.33 no hits TfVV-P3/2e-28/75/29.55 no hits no hits |
Goldilocks buttercup (Ranunculus auricomus) | dicot/ Ranunculaceae | Ranunculus virus 1/ RanV1 | PRJNA217403/ [48] | RNA1/29.64X RNA2/163.27X | 6481 6269 | BK061797 BK061798 | L N 2 3 4 5 | 2034 529 438 307 200 330 | MelRoV1-L/0.0/98/49.85 MelRoV1-N/2e-65/63/34.63 MelRoV1.P2/4e-08/26/27.83 ZaVV1-P3/2e-59/79/42.86 no hits no hits |
Radish (Raphanus sativus) | dicot/ Brassicaceae | Raphanus virus 1/ RapV1 | PRJNA539856/ [49] | RNA1/165.02X RNA2/521.73X | 6410 4144 | BK061799 BK061800 | L N 2 3 | 2016 439 411 175 | BrRV1-L0.0/99/68.31 BrRV1-N/1e-135/100/46.94 BrRV1-P2/5e-14/61/28.57 BrRV1-P3/6e-34/98/37.5 |
Siberian currant (Ribes diacanthum) | dicot/ Grossulariaceae | Ribes virus 1/ RibV1 | PRJNA407394/ [50] | RNA1/6.29X RNA2/33.97X | 6323 5201 | BK061801 BK061802 | L N 2 3 4 | 2017 372 402 301 194 | SpV1-L/0.0/98/47.29 TfVV-N/1e-60/90/36.01no hits TfVV-P3/2e-45/82/33.33 no hits |
Japanese umbrella pine (Sciadopitys verticillata) | Gymnosperm/ Sciadopityaceae | Sciadopitys virus 1_Chi/ SciV1_Chi | PRJNA396655/ Institute of Botany, CAS, China | RNA1/98.99X | 11,224 | BK061803 | N 2 3 4 L | 389 466 315 168 2054 | ASaV2-N/1e-111/95/43.13 ASaV2-P2/1e-22/60/30.14 ASaV2-P3/4e-104/95/48.23 PiFleV1-P4/3e-05/67/26.32 PiFleV1-L/0.0/99/46.13 |
Japanese umbrella pine (Sciadopitys verticillata) | Gymnosperm/ Sciadopityaceae | Sciadopitys virus 1_Can/ SciV1_Can | PRJEB4921/ [51] | RNA1/14.02X | 11,132 | BK061804 | N 2 3 4 L | 389 466 314 168 2071 | ASaV2-N/1e-111/95/43.67 ASaV2-P2/8e-22/60/29.87 ASaV2-P3/2e-105/95/48.23 PiFleV1-P4/7e-07/80/25.93 PiFleV1-L/0.0/99/45.88 |
Wooly grassland senecio (Senecio coronatus) | dicot/ Asteraceae | Senecio virus 1/ SenV1 | PRJNA312157/ [52] | RNA1/10.59X RNA2/93.61X | 6173 * 5617 | BK061805 BK061806 | L N 2 3 4 5 | 2031 * 376 345 294 147 370 | LBVaV-L/0.0/98/42.8 PhPV1/2e-132/98/51.98 no hits PhPV1-P3/9e-124/87/56.64 no hits XVV-L/2e-08/29/30 |
Bladder campion (Silene vulgaris) | dicot/ Caryophyllaceae | Silene virus 1/ SilV1 | PRJNA104951/ [53] | RNA1/29.59X RNA2/77.05X | 6391 4363 | BK061807 BK061808 | L N 2 3 | 2019 445 509 179 | SpV1-0.0/99/59.91 SpV1-N/4e-65/91/33.99 SpV1-P2/2e-13/61/24.07 BrRV1-P3/0.001/97/24.29 |
Broadhead daisy (Streptoglossa macrocephala) | dicot/ Asteraceae | Streptoglossa virus 1/ StrV1 | PRJNA371565/ [28] | RNA1/131.33X RNA2/140.03X | 6776 5130 | BK061813 BK061814 | L N 2 3 4 | 2023 449 333 287 162 | LoPV1-L/0.0/99/49.09 InPRV-N3e-86/99/36.01 no hits PhPV1-P3/2e-43/91/32.2 no hits |
Tansy (Tanacetum vulgare) | dicot/ Asteraceae | Tanacetum virus 1/ TanV1 | PRJNA646340/ [54] | RNA1/10.19X RNA2/239.11X | 6888 4608 | BK061815 BK061816 | L N 2 3 | 2020 447 505 176 | BrRV1-L/0.0/98/49.03 BrRV1-L/8e-52/88/30.56 no hits RCaVV-P3/3e-05/73/30.60 |
Hybrid yew (Taxus media) | Gymnosperm/ Taxaceae | Taxus virus 1/ TaxV1 | PRJNA497542/ [55] | RNA1/57.28X | 11,174 | BK061817 | N 2 3 4 L | 382 417 310 201 2057 | ASaV2-N/7e-111/96/43.55 ASaV2-P2/1e-18/68/26.28 ASaV2-P3/3e-94/93/45.25 no hits PiFleV1-L/0.0/98/46.81 |
Chinese nutmeg yew (Torreya grandis) | Gymnosperm/ Taxaceae | Torreya virus 1/ TorV1 | PRJNA498605 [25] | RNA1/59.04X | 10,253 | BK061818 | N 2 3 4 L | 379 339 283 152 2002 | TfVV-N/2e-57/93/32.5 no hits TfVV-P3/4e-28-67/36.27 no hits TfVV-L/0.0/97/35.4 |
Liverwort (Treubia lacunosa) | Marchantiophyta/ Treubiaceae | Treubia virus 1/ TreV1 | PRJNA505755/ Fairylake Botanical Garden, China | RNA1/364.20X RNA2/350.53X | 6684 4940 | BK061819 BK061820 | L N 2 3 4 | 2040 392 395 288 153 | TfVV-L/0.0/99/54.2 TfVV-N/3e-116/99/46.27 TfVV-P2/0.015/56/24.34 TfVV-P31e-114/85/55.07 no hits |
Wheat (Triticum aestivum) | monocot/ Poaceae | Triticum virus 1/ TriV1 | PRJNA558380/ [56] | RNA1/10.25X RNA2/16.64X | 6290 4103 | BK061821 BK061822 | L N 2 3 | 2019 430 451 179 | RCaVV-L/0.0/99/72.58 RCaVV-N/8e-135/99/46.26 RCaVV-P2/2e-32/67/30.70 RCaVV-P3/1e-48/100/44.13 |
Variegated swallow-wort (Vincetoxicum versicolor) | dicot/ Apocynaceae | Vincetoxicum virus 1/ VinV1 | PRJNA599262/ [57] | RNA1/56.05X RNA2/140.76X | 6598 4655 | BK061823 BK061824 | L N 2 3 4 | 2037 430 356 307 174 | MelRoV1-L/0.0/99/48.19 ZaVV1-N/7e-63/76/35 MelRoV1-P2/2e-08/68/21.15 MelRoV1-P3/63-51/80/36.44 no hits |
Corn (Zea mays) | monocot/ Poaceae | Zea virus 1/ ZeaV1 | PRJNA407369/ [58] | RNA1/6.25X RNA2/40.88X | 6345 4607 | BK061825 BK061826 | L N 2 3 4 | 2037 483 353 286 158 | AMVV1-L/0.0/99/49.07 AMVV1-N/2e-90/76/40.92 LoPV1-P2/4e-08/63/24.89 TfVV-P3/6e-48/94/31.11 LoPV1-P3/1e-09/86/29.2 |
Virus * | 3′ end mRNA | Intergenic Spacer | 5′ end mRNA |
---|---|---|---|
AbiV1 | CU(N)5UUUUU | G | CUCU |
ArcV8 | AU(N)5UUUUU | G | CUCU |
AcoV1 | AU(N)5UUUUU | G | CUCU |
AmeV1 | CU(N)5UUUUU | G | CUCU |
ApeV1 | AU(N)5UUUUU | G | CUCU |
ApoV1 | AU(N)5UUUUU | G | CUCU |
ArtV1 | AU(N)5UUUUU | G | CUCU |
AscSyV3 | AU(N)5UUUUU | G | CUCU |
AspV1 | AU(N)5UUUUU | G | CUCU |
BrV2 | AU(N)5UUUUU | G | CUCU |
CalV1 | AU(N)5UUUUU | G | CUCU |
CenV1 | AU(N)5UUUUU | G | CUCU |
ChaV1 | AU(N)5UUUUU | G | CUCU |
CucV1 | AU(N)5UUUUU | G | CUCU |
CupV1 | CU(N)5UUUUU | G | CUCU |
DidV1 | AU(N)5UUUUU | G | CUCU |
EryV1 | AU(N)5UUUUU | G | CUCU |
FruV1 | AU(N)5UUUUU | G | CUCU |
GuiV1 | AU(N)5UUUUU | G | CUCU |
HolV1 | AU(N)5UUUUU | G | CUCU |
LeuV1 | AU(N)5UUUUU | G | CUCU |
LinV1 | AU(N)5UUUUU | G | CUCU |
LufV1 | AU(N)5UUUUU | G | CUCU |
LupV1 | AU(N)5UUUUU | G | CUCU |
MelV1 | AU(N)5UUUUU | G | CUCU |
OphV1 | AU(N)5UUUUU | G | CUCU |
PenV1 | AU(N)5UUUUU | G | CUCU |
PicV1 | CU(N)5UUUUU | G | CUCU |
PiBanV1 | CU(N)5UUUUU | G | CUCU |
PiYunV1 | CU(N)5UUUUU | G | CUCU |
PriV1 | AU(N)5UUUUU | G | CUCU |
RanV1 | AU(N)5UUUUU | G | CUCU |
RapV1 | AU(N)5UUUUU | G | CUCU |
RibV1 | AU(N)5UUUUU | G | CUCU |
SciV1 | CU(N)5UUUUU | G | CUCU |
SenV1 | AU(N)5UUUUU | G | CUCU |
SilV1 | AU(N)5UUUUU | G | CUCU |
StrV1 | AU(N)5UUUUU | G | CUCU |
TanV1 | AU(N)5UUUUU | G | CUCU |
TaxV1 | CU(N)5UUUUU | G | CUCU |
TorV1 | AU(N)5UUUUU | G | CUCU |
TreV1 | AU(N)5UUUUU | G | CUCU |
TriV1 | AU(N)5UUUUU | G | CUCU |
VinV1 | AU(N)5UUUUU | G | CUCU |
ZeaV1 | AU(N)5UUUUU | G | CUCU |
AAnV1 | AU(N)5UUUUU | G | CUCU |
AMVV1 | AU(N)5UUUUU | G | CUCU |
BrV1 | AU(N)5UUUUU | G | CUCA |
LBVaV | AU(N)5UUUUU | G | CUCU |
LoV1 | AU(N)5UUUUU | G | CUCU |
MelRoV1 | AU(N)5UUUUU | G | CUCU |
MGVV | AU(N)5UUUUU | G | CUCU |
MgVV | AU(N)5UUUUU | G | CUCU |
PhPiV1 | AU(N)5UUUUU | G | CUCU |
PiFleV1 | GU(N)5UUUUU | G | CUCU |
RCaVV | AU(N)5UUUUU | G | CUCU |
SpV1 | AU(N)5UUUUU | G | CUCU |
TfVV | AU(N)5UUUUU | G | CUCU |
VVV | AU(N)5UUUUU | G | CUCU |
XVV | AU(N)5UUUUU | G | CUCU |
ZaVV1 | AU(N)5UUUUU | G | CUCU |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bejerman, N.; Dietzgen, R.G.; Debat, H. Unlocking the Hidden Genetic Diversity of Varicosaviruses, the Neglected Plant Rhabdoviruses. Pathogens 2022, 11, 1127. https://doi.org/10.3390/pathogens11101127
Bejerman N, Dietzgen RG, Debat H. Unlocking the Hidden Genetic Diversity of Varicosaviruses, the Neglected Plant Rhabdoviruses. Pathogens. 2022; 11(10):1127. https://doi.org/10.3390/pathogens11101127
Chicago/Turabian StyleBejerman, Nicolas, Ralf G. Dietzgen, and Humberto Debat. 2022. "Unlocking the Hidden Genetic Diversity of Varicosaviruses, the Neglected Plant Rhabdoviruses" Pathogens 11, no. 10: 1127. https://doi.org/10.3390/pathogens11101127
APA StyleBejerman, N., Dietzgen, R. G., & Debat, H. (2022). Unlocking the Hidden Genetic Diversity of Varicosaviruses, the Neglected Plant Rhabdoviruses. Pathogens, 11(10), 1127. https://doi.org/10.3390/pathogens11101127