One-Year Surveillance of SARS-CoV-2 Virus in Natural and Drinking Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Water Sampling
2.2. Processing and Concentration of the Filtered Water Samples
2.3. Detection and Quantification of SARS-CoV-2 RNA
2.4. Detection and Quantification of Norovirus RNA
3. Results
3.1. Monitoring of SARS-CoV-2 RNA in Natural and Drinking Water
3.2. Evaluation of the Electiveness of Water Treatments in the Elimination of SARS-CoV-2 RNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Girón-Navarro, R.; Linares-Hernández, I.; Castillo-Suárez, A.L. The impact of coronavirus SARS-CoV-2 (COVID-19) in water: Potential risks. Environ. Sci. Pollut. Res. 2021, 28, 52651–52674. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- International Committee on Taxonomy of Viruses. Available online: https://ictv.global/taxonomy (accessed on 15 September 2022).
- Tran, H.N.; Le, G.T.; Nguyen, D.T.; Juang, R.S.; Rinklebe, J.; Bhatnagar, A.; Lima, E.C.; Iqbal, H.M.N.; Sarmah, A.K.; Chao, H.P. SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern. Environ. Res. 2021, 193, 110265. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 28 August 2022).
- Direção Geral de Saúde. Estado Epidemiológico COVID19 Portugal. Available online: https://covid19estamoson.gov.pt/estado-epidemiologico-covid19-portugal/ (accessed on 18 August 2022).
- Zamhuri, S.A.; Soon, C.F.; Nordin, A.N.; Ab Rahim, R.; Sultana, N.; Khan, M.A.; Lim, G.P.; Tee, K.S. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. Sens. Bio-Sens. Res. 2022, 36, 100482. [Google Scholar] [CrossRef]
- Sangkham, S. A review on detection of SARS-CoV-2 RNA in wastewater in light of the current knowledge of treatment process for removal of viral fragments. J. Environ. Manag. 2021, 299, 113563. [Google Scholar] [CrossRef]
- Yang, H.; Rao, Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 2021, 19, 685–700. [Google Scholar] [CrossRef]
- Giacobbo, A.; Rodrigues, M.A.S.; Zoppas Ferreira, J.; Bernardes, A.M.; de Pinho, M.N. A critical review on SARS-CoV-2 infectivity in water and wastewater. What do we know? Sci. Total Environ. 2021, 774, 145721. [Google Scholar] [CrossRef]
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef]
- Haramoto, E.; Malla, B.; Thakali, O.; Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 2020, 737, 140405. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Padilla Reyes, D.A.; Ramos, E.; Reyes, L.M.; Álvarez, M.M. The presence of SARS-CoV-2 RNA in different freshwater environments in urban settings determined by RT-qPCR: Implications for water safety. Sci. Total Environ. 2021, 784, 147183. [Google Scholar] [CrossRef]
- Fongaro, G.; Rogovski, P.; Savi, B.P.; Cadamuro, R.D.; Pereira, J.V.F.; Anna, I.H.S.; Rodrigues, I.H.; Souza, D.S.M.; Saravia, E.G.T.; Rodríguez-Lázaro, D.; et al. SARS-CoV-2 in Human Sewage and River Water from a Remote and Vulnerable Area as a Surveillance Tool in Brazil. Food Environ. Virol. 2021, 8, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Tandukar, S.; Sthapit, N.; Thakali, O.; Malla, B.; Sherchan, S.P.; Shakya, B.M.; Shrestha, L.P.; Sherchand, J.B.; Joshi, D.R.; Lama, B.; et al. Detection of SARS-CoV-2 RNA in wastewater, river water, and hospital wastewater of Nepal. Sci. Total Environ. 2022, 824, 153816. [Google Scholar] [CrossRef] [PubMed]
- Tomasino, M.P.; Semedo, M.; Vieira e Moreira, P.; Ferraz, E.; Rocha, A.; Carvalho, M.F.; Magalhães, C.; Mucha, A.P. SARS-CoV-2 RNA detected in urban wastewater from Porto, Portugal: Method optimization and continuous 25-week monitoring. Sci. Total Environ. 2021, 792, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.; Rente, D.; Cunha, M.V.; Gomes, M.C.; Marques, T.A.; Lourenço, A.B.; Cardoso, E.; Álvaro, P.; Silva, M.; Coelho, N.; et al. A wastewater-based epidemiology tool for COVID-19 surveillance in Portugal. Sci. Total Environ. 2022, 804, 150264. [Google Scholar] [CrossRef] [PubMed]
- Salvador, D.; Neto, C.; Benoliel, M.J.; Filomena Caeiro, M. Assessment of the presence of hepatitis E virus in surface water and drinking water in Portugal. Microorganisms 2020, 8, 761. [Google Scholar] [CrossRef] [PubMed]
- Salvador, D.; Neto, C.; Carneiro, R.N.; Caeiro, M.F. Mengovirus as Process Control Virus in the Monitoring of Genomic RNA and Infectivity of Enteric Viruses in Water Matrices. Water 2021, 13, 2834. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention Real-time RT-PCR Primers and Probes for COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html (accessed on 5 January 2021).
- Salvador, D.; Caeiro, M.F.; Serejo, F.; Nogueira, P.; Carneiro, R.N.; Neto, C. Monitoring waterborne pathogens in surface and drinking waters. Are water treatment plants (wtps) simultaneously efficient in the elimination of enteric viruses and fecal indicator bacteria (fib)? Water 2020, 12, 2824. [Google Scholar] [CrossRef]
- Langone, M.; Petta, L.; Cellamare, C.M.; Ferraris, M.; Guzzinati, R.; Mattioli, D.; Sabia, G. SARS-CoV-2 in water services: Presence and impacts. Environ. Pollut. 2021, 268, 115806. [Google Scholar] [CrossRef]
- Mancuso, G.; Perulli, G.D.; Lavrnic, S.; Morandi, B.; Toscano, A. Sars-cov-2 from urban to rural water environment: Occurrence, persistence, fate, and influence on agriculture irrigation. A review. Water 2021, 13, 764. [Google Scholar] [CrossRef]
- Wyk, Y.; Ubomba-Jaswa, E.; Dippenaar, M.A. Potential SARS-CoV-2 contamination of groundwater as a result of mass burial: A mini-review. Sci. Total Environ. 2022, 835, 155473. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Is Drinking Tap Water Safe? Available online: https://www.epa.gov/coronavirus/drinking-tap-water-safe (accessed on 30 March 2022).
- Ji, B.; Zhao, Y.; Wei, T.; Kang, P. Water science under the global epidemic of COVID-19: Bibliometric tracking on COVID-19 publication and further research needs. J. Environ. Chem. Eng. 2021, 9, 105357. [Google Scholar] [CrossRef]
- Wolf, C.; Von Gunten, U.; Kohn, T. Kinetics of Inactivation of Waterborne Enteric Viruses by Ozone. Environ. Sci. Technol. 2018, 52, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
- Bouseettine, R.; Hassou, N.; Bessi, H.; Ennaji, M.M. Waterborne transmission of enteric viruses and their impact on public health. In Emerging and Reemerging Viral Pathogens; Academic Press: Cambridge, MA, USA, 2020; pp. 907–932. [Google Scholar]
- Teixeira, P.; Salvador, D.; Brandão, J.; Ahmed, W.; Sadowsky, M.J.; Valério, E. Environmental and Adaptive Changes Necessitate a Paradigm Shift for Indicators of Fecal Contamination. Microbiol. Spectr. 2020, 8, 1–20. [Google Scholar] [CrossRef]
- Tiwari, A.; Phan, N.; Tandukar, S.; Ashoori, R.; Thakali, O.; Mousazadesh, M.; Dehghani, M.H.; Sherchan, S.P. Persistence and occurrence of SARS-CoV-2 in water and wastewater environments: A review of the current literature. Environ. Sci. Pollut. Res. 2021, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schussman, M.K.; McLellan, S.L. Effect of Time and Temperature on SARS-CoV-2 in Municipal Wastewater Conveyance Systems. Water 2022, 14, 1373. [Google Scholar] [CrossRef]
- Lo, M.; Mitra, S.; De, P.; Banerjee, A.; Deb, A.K.; Miyoshi, S.; Manna, A.; Ghosh, S.K.; Okamoto, K.; Dutta, S.; et al. Genetic characterization and evolutionary analysis of norovirus genotypes circulating among children in eastern India during 2018–2019. Arch. Virol. 2021, 166, 2989–2998. [Google Scholar] [CrossRef] [PubMed]
Water Matrix | Water Source | Water Treatment Plant | Region * | Treatment Schemes | Observations |
---|---|---|---|---|---|
Surface water | River | WTP_T | Lisboa e Vale do Tejo | Pre-oxidation with potassium permanganate and/or ozone, pH adjustment, coagulation-flocculation, adsorption, decantation, oxidation with sodium hypochlorite, filtration, pH correction, and final disinfection | Water Treatment Plant composed of two independent treatment lines, each with the capacity to produce 120,000 m3/day |
Dam reservoir_C | WTP_C | Lisboa e Vale do Tejo | Pre-chlorination, aggressiveness correction and remineralization, coagulation-flocculation, flotation, filtration, pH adjustment, and final disinfection | Water Treatment Plant composed of two independent treatment lines, with the capacity to produce 500,000 m3/day (line 1) and 125,000 m3/day (line 2) | |
Dam reservoir_M | WTP_M | Alentejo | Ozone pre-oxidation, remineralization, coagulation, addition of activated carbon, flocculation-flotation, flocculation-decantation, manganese removal, filtration, pH adjustment, and final disinfection | Water Treatment Plant with the capacity to produce 26,400 m3/day | |
Dam reservoir_P | WTP_P | Alentejo | Chemical pre-oxidation with ozone, pH correction, remineralization, coagulation, flocculation, flotation, intermediate oxidation, filtration, pH correction, and final disinfection | Water Treatment Plant with the capacity to produce around 16,800 m3/day | |
Dam reservoir_S | WTP_S | Centro | Pre-oxidation with ozone, remineralization, coagulation/flocculation, adsorption with activated carbon, decantation, filtration, pH adjustment, and disinfection | Water Treatment Plant with the capacity to produce around 2200 m3/hour | |
Groundwater | Borehole_A | - | Lisboa e Vale do Tejo | Disinfection with sodium hypochlorite | Disinfection is carried out by a system with hypochlorite at the exit of the water from the borehole and before entering the network. There are no associated WTPs |
Borehole_L | - | ||||
Borehole_O | - |
Name | N Gene Region | Function | Sequence (5′–3′) | Reference |
---|---|---|---|---|
2019-nCoV_N1-F | N1 | Forward Primer | GACCCCAAAATCAGCGAAAT | Centers for Disease Control and Prevention [20] |
2019-nCoV_N1-R | Reverse Primer | TCTGGTTACTGCCAGTTGAATCTG | ||
2019-nCoV_N1-P | Probe | FAM-ACCCCGCATTACGTTTGGTGGACC-BHQ1 | ||
2019-nCoV_N2-F | N2 | Forward Primer | TTACAAACATTGGCCGCAAA | |
2019-nCoV_N2-R | Reverse Primer | GCGCGACATTCCGAAGAA | ||
2019-nCoV_N2-P | Probe | FAM-ACAATTTGCCCCCAGCGCTTCAG-BHQ1 |
Water Matrix | Water Source | Number of Collected Samples | SARS-CoV-2 RNA | Norovirus RNA Genogroup I + Genogroup II | |||
---|---|---|---|---|---|---|---|
Number of Positive Samples | Average Concentration (gc/L) * | Number of Positive Samples | Average Concentration (gc/L) * | ||||
Natural water | Surface water | River_T | 10 | 0 | - | 5 | 4132 |
Dam reservoir_C | 9 | 1 | 23,757 | 4 | 26 | ||
Dam reservoir_M | 5 | 0 | - | 2 | 11 | ||
Dam reservoir_P | 7 | 1 | 8035 | 1 | 60 | ||
Dam reservoir_S | 4 | 0 | - | 0 | - | ||
Groundwater | Borehole_A | 2 | 0 | - | 0 | - | |
Borehole_L | 2 | 0 | - | 0 | - | ||
Borehole_O | 4 | 0 | - | 1 | 8 | ||
Drinking water from surface water | WTP_T | 10 | 0 | - | 2 | 263 | |
WTP_C | 9 | 1 | 7463 | 3 | 188 | ||
WTP_M | 5 | 0 | - | 0 | - | ||
WTP_P | 7 | 0 | - | 3 | 16 | ||
WTP_S | 4 | 0 | - | 2 | 7 | ||
Drinking water from groundwater | Borehole_A_DW | 2 | 0 | - | 0 | - | |
Borehole_L_DW | 2 | 0 | - | 1 | 18 | ||
Borehole_O_DW | 4 | 0 | - | 0 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvador, D.; Caeiro, M.F.; Neto, C.; Carneiro, R.N. One-Year Surveillance of SARS-CoV-2 Virus in Natural and Drinking Water. Pathogens 2022, 11, 1133. https://doi.org/10.3390/pathogens11101133
Salvador D, Caeiro MF, Neto C, Carneiro RN. One-Year Surveillance of SARS-CoV-2 Virus in Natural and Drinking Water. Pathogens. 2022; 11(10):1133. https://doi.org/10.3390/pathogens11101133
Chicago/Turabian StyleSalvador, Daniel, Maria Filomena Caeiro, Célia Neto, and Rui Neves Carneiro. 2022. "One-Year Surveillance of SARS-CoV-2 Virus in Natural and Drinking Water" Pathogens 11, no. 10: 1133. https://doi.org/10.3390/pathogens11101133
APA StyleSalvador, D., Caeiro, M. F., Neto, C., & Carneiro, R. N. (2022). One-Year Surveillance of SARS-CoV-2 Virus in Natural and Drinking Water. Pathogens, 11(10), 1133. https://doi.org/10.3390/pathogens11101133