In Vitro Anthelmintic Activity of a Hydroalcoholic Extract from Guazuma ulmifolia Leaves against Haemonchus contortus
Abstract
:1. Introduction
2. Results
2.1. Hydroalcoholic Extract and Fractions Yields
2.2. Chemical Characterization of the Extract and Fractions
2.3. Egg Hatching Inhibition Test
2.4. Larval Mortality Test
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Hydroalcoholic Extract and Fraction Obtaining
4.3. Major Compound Identification by HPLC
4.4. Biological Material
4.4.1. Haemonchus contortus Eggs Recovery Procedure
4.4.2. Haemonchus contortus Infective Larvae Recovery Procedure
4.5. Egg Hatch Inhibition Test (EHIT)
4.6. Larval Mortality Assay
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roeber, F.; Jex, A.R.; Gasser, R.B. Advances in the diagnosis of key gastrointestinal nematode infections of livestock, with an emphasis on small ruminants. Biotechnol. Adv. 2013, 31, 1135–1152. [Google Scholar] [CrossRef] [PubMed]
- Torres-Fajardo, R.A.; Higuera-Piedrahita, R.I. Actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes. Rev. MVZ Córdoba 2021, 26, e2317. [Google Scholar] [CrossRef]
- Rodríguez-Vivas, R.I.; Grisi, L.; Pérez-de León, A.A.; Silva-Villela, H.; Torres-Acosta, J.F.d.J.; Fragoso-Sánchez, H.; Romero- Salas, D.; Rosario-Cruz, R.; Saldierna, F.; García-Carrasco, D. Potential economic impact assessment for cattle parasites in Mexico. Review. Rev. Mex. Ciencias Pecu. 2017, 8, 61. [Google Scholar] [CrossRef]
- Grisi, L.; Leite, R.C.; Martins, J.R.d.S.; de Barros, T.M.; Andreoti, R.; Cançado, P.H.D.; de León, A.A.P.; Pereira, J.B.; Villela, H.S. Reassessment of the potential economic impact of cattle parasites in Brazil. Rev. Bras. Parasitol. Vet. 2014, 23, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavrot, F.; Hertzberg, H.; Torgerson, P. Effect of gastrointestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasit. Vectors 2015, 8, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acevedo-Ramírez, P.M.C.; García-Soria, A.L.; Úlloa-Arvizú, R.; Cruz-Mendoza, I.; Quiroz-Romero, H. Comprehensive diagnosis of parasites in sheep kept under different zootechnical management in a region temperate in Mexico. Vet. Res. Commun. 2022, 46, 397–404. [Google Scholar] [CrossRef]
- Idris, O.A.; Wintola, O.A.; Afolayan, A.J. Helminthiases: Prevalence, transmission, host-parasite interactions, resistance to common synthetic drugs and treatment. Heliyon 2019, 5, e01161. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.M.; Vidyashankar, A.N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 2012, 186, 70–78. [Google Scholar] [CrossRef]
- Learmount, J.; Stephens, N.; Boughtflower, V.; Barrecheguren, A.; Rickell, K. The development of anthelmintic resistance with best practice control of nematodes on commercial sheep farms in the UK. Vet. Parasitol. 2016, 229, 9–14. [Google Scholar] [CrossRef]
- Arsenopoulos, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A challenging parasitic infection of sheep and goats. Animals 2021, 11, 363. [Google Scholar] [CrossRef]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J.A. The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Adv. Parasitol. 2016, 93, 95–143. [Google Scholar] [CrossRef] [PubMed]
- Emery, D.L.; Hunt, P.W.; Le Jambre, L.F. Haemonchus contortus: The then and now, and where to from here? Int. J. Parasitol. 2016, 46, 755–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Alvarado, J.; Zaragoza-Bastida, A.; López-Rodríguez, G.; Peláez-Acero, A.; Olmedo-Juárez, A.; Rivero-Pérez, N. Actividad antibacteriana y sobre nematodos gastrointestinales de metabolitos secundarios vegetales: Enfoque en medicina veterinaria. Abanico Vet. 2018, 8, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Cortes-Morales, J.A.; Olmedo-Juárez, A.; Trejo-Tapia, G.; González-Cortazar, M.; Domínguez-Mendoza, B.E.; Mendoza-de Gives, P.; Zamilpa, A. In vitro ovicidal activity of Baccharis conferta Kunth against Haemonchus contortus. Exp. Parasitol. 2019, 197, 20–28. [Google Scholar] [CrossRef]
- García-Hernández, C.; Arece-García, J.; Rojo-Rubio, R.; Mendoza-Martínez, G.D.; Albarrán-Portillo, B.; Vázquez-Armijo, J.F.; Avendaño-Reyes, L.; Olmedo-Juárez, A.; Marie-Magdeleine, C.; López-Leyva, Y. Nutraceutic effect of free condensed tannins of Lysiloma acapulcensis (Kunth) Benth on parasite infection and performance of Pelibuey sheep. Trop. Anim. Health Prod. 2017, 49, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.O.; Cerqueira, P.M.A.; Branco, A.; Batatinha, M.J.M.; Botura, M.B. Anthelmintic activity of plants against gastrointestinal nematodes of goats: A review. Parasitology 2019, 146, 1233–1246. [Google Scholar] [CrossRef]
- Olmedo-Juárez, A.; Rojo-Rubio, R.; Zamilpa, A.; Mendoza-de Gives, P.; Arece-García, J.; López-Arellano, M.E.; von Son-de Fernex, E. In vitro larvicidal effect of a hydroalcoholic extract from Acacia cochliacantha leaf against ruminant parasitic nematodes. Vet. Res. Commun. 2017, 41, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Olmedo-Juárez, A.; Rojo-Rubio, R.; Arece-García, J.; Salem, A.Z.M.; Kholif, A.E.; Morales-Almaraz, E. In vitro activity of Pithecellobium dulce and Lysiloma acapulcensis on exogenous development stages of sheep gastrointestinal strongyles. Italy J. Anim. Sci. 2014, 13, 221–225. [Google Scholar] [CrossRef] [Green Version]
- von Son-De Fernex, E.; Alonso-Díaz, M.Á.; Mendoza-de Gives, P.; Valles-de la Mora, B.; Zamilpa, A.; González-Cortazar, M. Ovicidal activity of extracts from four plant species against the cattle nematode Cooperia punctata. Vet. Mex. OA 2016, 3, 1–14. [Google Scholar] [CrossRef]
- Zarza-Albarrán, M.A.; Olmedo-Juárez, A.; Rojo-Rubio, R.; Mendoza-de Gives, P.; González-Cortazar, M.; Tapia-Maruri, D.; Mondragón-Ancelmo, J.; García-Hernández, C.; Blé-González, E.A.; Zamilpa, A. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae. J. Ethnopharmacol. 2020, 249. [Google Scholar] [CrossRef]
- Ragusa, M.; Miceli, N.; Piras, C.; Bosco, A.; Castagna, F.; Rinaldi, L.; Musella, V.; Taviano, M.F.; Britti, D. In vitro anthelmintic activity of Isatis tinctoria extracts against ewes’ gastrointestinal nematodes (GINs), a possible application for animal welfare. Vet. Sci. 2022, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Morais, S.M.; Calixto-Júnior, J.T.; Ribeiro, L.M.; Sousa, H.A.; Silva, A.A.S.; Figueiredo, F.G.; Matias, E.F.F.; Boligon, A.A.; Athayde, M.L.; Morais-Braga, M.F.B.; et al. Phenolic composition and antioxidant, anticholinesterase and antibiotic-modulating antifungal activities of Guazuma ulmifolia Lam. (Malvaceae) ethanol extract. South Afr. J. Bot. 2017, 110, 251–257. [Google Scholar] [CrossRef]
- Sosa-Rubio, E.E.; Pérez-Rodríguez, D.; Ortega-Reyes, L.; Zapata-Buenfil, G. Evaluación del potencial forrajero de árboles y arbustos tropicales para la alimentación de ovinos. Téc. Pecu. Méx. 2004, 42, 129–144. [Google Scholar]
- Castillo-Mitre, G.F.; Olmedo-Juárez, A.; Rojo-Rubio, R.; González-Cortázar, M.; Mendoza-de Gives, P.; Hernández-Beteta, E.E.; Reyes-Guerrero, D.E.; López-Arellano, M.E.; Vázquez-Armijo, J.F.; Ramírez-Vargas, G.; et al. Caffeoyl and coumaroyl derivatives from Acacia cochliacantha exhibit ovicidal activity against Haemonchus contortus. J. Ethnopharmacol. 2017, 204, 125–131. [Google Scholar] [CrossRef]
- Hernández-Bolio, G.I.; Kutzner, E.; Eisenreich, W.; de Jesús Torres-Acosta, J.F.; Peña-Rodríguez, L.M. The use of 1 H-NMR metabolomics to optimise the extraction and preliminary identification of anthelmintic products from the leaves of Lysiloma latisiliquum. Phytochem. Anal. 2018, 29, 413–420. [Google Scholar] [CrossRef]
- Antonio-Irineo, N.; Flota-Bañuelos, C.; Hernández-Marín, A.; Arreola-Enríquez, J.; Fraire-Cordero, S. Estudio preliminar sobre la inhibición in vitro de nematodos gastrointestinales de ovinos con extractos acuosos de plantas forrajeras. Abanico Vet. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Silva-Soares, S.C.; de Lima, G.C.; Carlos-Laurentiz, A.; Féboli, A.; dos Anjos, L.A.; de Paula-Carlis, M.S.; da Silva-Filardi, R.; da Silva-de Laurentiz, R. In vitro anthelmintic activity of grape pomace extract against gastrointestinal nematodes of naturally infected sheep. Int. J. Vet. Sci. Med. 2018, 6, 243–247. [Google Scholar] [CrossRef] [Green Version]
- Cortes-Morales, J.A.; Olmedo-Juárez, A.; González-Cortazar, M.; Zamilpa, A.; López-Arellano, M.A.; Ble-González, E.A.; Tapia-Maruri, D.; Flores-Franco, G.; Salinas-Sánchez, D.O. In vitro ovicidal activity of Brongniartia montalvoana against Small Ruminant Gastrointestinal Nematodes. Exp. Parasitol. 2022, 240, 108336. [Google Scholar] [CrossRef]
- Mancilla-Montelongo, G.; Castañeda-Ramírez, G.S.; Torres-Acosta, J.F.d.J.; Sandoval-Castro, C.A.; Borges-Argáez, R. Evaluation of cinnamic acid and six analogues against eggs and larvae of Haemonchus contortus. Vet. Parasitol. 2019, 270, 25–30. [Google Scholar] [CrossRef]
- Calixto Júnior, J.T.; de Morais, S.M.; Gomez, C.V.; Molas, C.C.; Rolon, M.; Boligon, A.A.; Athayde, M.L.; de Morais Oliveira, C.D.; Tintino, S.R.; Henrique Douglas, M.C. Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast “Cerrado”. Saudi J. Biol. Sci. 2016, 23, 434–440. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, C.; Rojo-Rubio, R.; Olmedo-Juárez, A.; Zamilpa, A.; Mendoza-de Gives, P.; Antonio-Romo, I.A.; Aguilar-Marcelino, L.; Arece-García, J.; Tapia-Maruri, D.; González-Cortazar, M. Galloyl derivatives from Caesalpinia coriaria exhibit in vitro ovicidal activity against cattle gastrointestinal parasitic nematodes. Exp. Parasitol. 2019, 200, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Jasso-Díaz, G.; Hernández, G.T.; Zamilpa, A.; Becerril-Pérez, C.M.; Ramírez-Bribiesca, J.E.; Hernández-Mendo, O.; Sánchez-Arroyo, H.; González-Cortazar, M.; Mendoza-de Gives, P. In vitro assessment of Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia against Haemonchus contortus nematode eggs and infective (L3) larvae. Microb. Pathog. 2017, 109, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer: Berlin/Heidelberg, Germany, 1970; pp. 41–42. [Google Scholar] [CrossRef]
- Wagner, H.C.; Bladt, S. Plant Drugs Analysis, a Thin Layer Chromatography, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2001; pp. 195–196. [Google Scholar] [CrossRef]
- Norma Oficial Mexicana NOM-051-ZOO-1995. Trato Humanitario en la Movilización de Animales. Diario Oficial de la Federación. 1998. Primera Sección, 42–67. Available online: https://www.gob.mx/cms/uploads/attachment/file/563487/NOM-051-ZOO-1995_230398.pdf (accessed on 27 July 2022).
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World association for the advancement of veterinary parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- Corticelli, B.; Lai, M. Ricerche sulla tecnica di coltura delle larve infestive degli strongili gastro-intestinali del bovino. Acta Med. Vet. 1963, 9, 347–357. [Google Scholar]
- Mesquita, J.R.; Mega, C.; Coelho, C.; Cruz, R.; Vala, H.; Esteves, F.; Santos, C.; Vasconcelos-Nóbrega, C. EBC series on diagnostic parasitology part 3: The Baermann technique. Vet. Nurse 2017, 8, 10. [Google Scholar] [CrossRef]
- SAS Institute. Statistical Analysis Software SAS/STAT®, version 9.0.2; SAS Institute Inc.: Cary, NC, USA, 2014; ISBN 978-1-60764-599-593. Available online: http://www.sas.com/en_us/software/analytics/stat.html# (accessed on 24 June 2021).
Treatments | Mean of Recovered Nematodes | %EHI ± s.d | |
---|---|---|---|
Eggs | Larvae (L1 or L2) | ||
Distilled water | 4.16 | 72.83 | 5.15 ± 5.01 c |
Methanol 2% | 2.62 | 67.12 | 3.51 ± 3.08 c |
Ivermectin 5 mg/mL | 81.41 | 0 | 100 a |
Hydroalcoholic extract (HA-E, mg/mL) | |||
10.0 | 73.5 | 0 | 100 a |
5.0 | 79.62 | 0.25 | 99.66 ± 0.61 a |
2.5 | 97.62 | 0.25 | 99.76 ± 0.65 a |
1.25 | 97.34 ± 2.11 a | ||
Aqueous fraction (Aq-F) mg/mL | |||
10.0 | 71.5 | 0 | 100 a |
5.0 | 95.5 | 0 | 100 a |
2.5 | 97.0 | 3.25 | 96.68 ± 3.17 a |
1.25 | 99.0 | 5.5 | 94.78 ± 0.75 a |
Organic fraction (EtOAc-F) mg/mL | |||
2.5 | 97.25 | 0 | 100 a |
1.25 | 93.0 | 0 | 100 a |
0.62 | 88.5 | 0 | 100 a |
0.31 | 65.25 | 20 | 75.49 ± 11.18 b |
Variation Coefficient | 4.18 | ||
R2 | 0.99 |
Treatments | EC50 mg/mL | Confidence Interval (95%) | EC90 mg/mL | Confidence Interval (95%) | ||
---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | |||
HA-E | 0.092 | 0.002 | 0.269 | 0.502 | 0.104 | 0.831 |
Aq-F | 0.146 | 0.028 | 0.300 | 0.923 | 0.544 | 1.204 |
EtOAc-F | 0.008 | 0.001 | 0.021 | 0.138 | 0.086 | 0.187 |
Treatments | Means of Recovered Infective Larvae | %Mortality ± s.d | |
---|---|---|---|
Dead | Alive | ||
Distilled water | 0 | 113.5 | 0 e |
Methanol 2% | 0.67 | 92.67 | 0.73 ± 0.63 e |
Ivermectin 5 mg/mL | 51.25 | 0 | 100 a |
Hydroalcoholic extract (HA-E, mg/mL) | |||
50.0 | 24.00 | 54.25 | 34.08 ± 10.81 cd |
25.0 | 23.27 | 77.00 | 22.04 ± 7.23 cd |
12.5 | 22.25 | 83.25 | 21.91 ± 5.66 cd |
Aqueous fraction (Aq-F, mg/mL) | |||
50.0 | 79.00 | 23.25 | 77.90 ± 8.28 b |
25.0 | 28.33 | 84.33 | 25.26 ± 16.29 cd |
12.5 | 19.50 | 81.00 | 20.74 ± 9.80 d |
Organic fraction (EtOAc-F, mg/mL) | |||
25.0 | 100.75 | 17.00 | 85.35 ± 5.01 ab |
12.5 | 72.25 | 31.00 | 69.77 ± 2.84 b |
6.25 | 39.25 | 55.50 | 40.92 ± 9.06 c |
Variation coefficient | 17.81 | ||
R2 | 0.96 |
Treatments | LC50 mg/mL | Confidence Interval (95%) | LC90 mg/mL | Confidence Interval (95%) | ||
---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | |||
Aq-F | 29.77 | 25.91 | 33.54 | 99.77 | 84.15 | 125.86 |
EtOAc-F | 7.69 | 6.84 | 8.48 | 30.48 | 26.42 | 36.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reséndiz-González, G.; Higuera-Piedrahita, R.I.; Lara-Bueno, A.; González-Gardúño, R.; Cortes-Morales, J.A.; González-Cortazar, M.; Mendoza-de Gives, P.; Romero-Romero, S.G.; Olmedo-Juárez, A. In Vitro Anthelmintic Activity of a Hydroalcoholic Extract from Guazuma ulmifolia Leaves against Haemonchus contortus. Pathogens 2022, 11, 1160. https://doi.org/10.3390/pathogens11101160
Reséndiz-González G, Higuera-Piedrahita RI, Lara-Bueno A, González-Gardúño R, Cortes-Morales JA, González-Cortazar M, Mendoza-de Gives P, Romero-Romero SG, Olmedo-Juárez A. In Vitro Anthelmintic Activity of a Hydroalcoholic Extract from Guazuma ulmifolia Leaves against Haemonchus contortus. Pathogens. 2022; 11(10):1160. https://doi.org/10.3390/pathogens11101160
Chicago/Turabian StyleReséndiz-González, Guillermo, Rosa Isabel Higuera-Piedrahita, Alejandro Lara-Bueno, Roberto González-Gardúño, Jorge Alberto Cortes-Morales, Manasés González-Cortazar, Pedro Mendoza-de Gives, Sara Guadalupe Romero-Romero, and Agustín Olmedo-Juárez. 2022. "In Vitro Anthelmintic Activity of a Hydroalcoholic Extract from Guazuma ulmifolia Leaves against Haemonchus contortus" Pathogens 11, no. 10: 1160. https://doi.org/10.3390/pathogens11101160
APA StyleReséndiz-González, G., Higuera-Piedrahita, R. I., Lara-Bueno, A., González-Gardúño, R., Cortes-Morales, J. A., González-Cortazar, M., Mendoza-de Gives, P., Romero-Romero, S. G., & Olmedo-Juárez, A. (2022). In Vitro Anthelmintic Activity of a Hydroalcoholic Extract from Guazuma ulmifolia Leaves against Haemonchus contortus. Pathogens, 11(10), 1160. https://doi.org/10.3390/pathogens11101160