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Abstract: Under laboratory conditions, Triatoma rosai and T. sordida are able to cross and produce
hybrids. In the face of climate and environmental changes, the study of hybrids of triatomines has
evolutionary and epidemiological implications. Therefore, we performed morphological, cytological
and molecular studies and characterized the feeding and defecation pattern of hybrids from crosses
between T. sordida and T. rosai. The morphological characterization of the female genitalia of the
hybrids showed that characteristics of both parental species segregated in the hybrids. Cytogenetic
analyzes of hybrids showed regular metaphases. According to molecular studies, the mitochondrial
marker Cytochrome B (CytB) related the hybrids with T. sordida and the nuclear marker Internal
Transcribed Spacer 1 (ITS-1) related the hybrids with T. rosai. Both parents and hybrids defecated
during the blood meal. Thus, the hybrids resulting from the cross between T. sordida and T. rosai
presented segregation of phenotypic characters of both parental species, 100% homeology between
homeologous chromosomes, phylogenetic relationship with T sordida and with T. rosai (with CytB
and ITS-1, respectively), and, finally, feeding and defecation patterns similar to the parents.

Keywords: Chagas disease vectors; hybridization; molecular biology; morphology; cytogenetics

1. Introduction

Chagas disease is a neglected disease caused by the protozoan Trypanosoma cruzi
(Chagas, 1909) (Kinetoplastida, Trypanosomatidae) [1,2] that affects about seven million
people worldwide [1,2]. This disease is mostly transmitted when humans come into contact
with faeces and/or urine of triatomines (Hemiptera, Triatominae) infected by T. cruzi
(vector-borne transmission) [1,2]. As Chagas disease has no cure in the chronic phase
and the acute phase is usually asymptomatic [1,2], the World Health Organization points
out that vector control is considered as the main measure to reduce the incidence of new
infections [1,2].
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There are currently 157 species (154 extant species and three fossils) grouped into 18
genera and five tribes that are potential vectors of T. cruzi [3–5]. In the last ten years (2012–
2022), 13 species of triatomines were described [3,5]. However, among them, only two
show clues of house invasion or domiciliation: Triatoma huehuetenanguensis Lima-Cordón
et al., 2019 (Hemiptera, Triatominae) and T. rosai Alevi et al., 2020 [6].

Triatoma rosai is a related species of T. sordida (Stål, 1859), and was recently described
using integrative taxonomy [7]. Although phylogenetically related, these species show
differences in morphological, morphometric, genetic, and cytogenetic aspects, as well as
in electrophoresis and cuticular hydrocarbons pattern [7]. Under laboratory conditions,
these species are able to cross and produce hybrids (although the vast majority of hybrid
offspring die before reaching adulthood) [7].

The study of hybridization capacity is an important taxonomic tool for Triatominae [7–10],
because the characterization of pre- and/or post-zygotic reproductive barriers allows
confirming the specific status of parental species from the biological species concept [11–13].
Furthermore, in the face of anthropogenic climate and environmental changes that are
producing significant changes in the distribution pattern, natural history and behavior of
species (including pathogens and disease vectors) [14,15], the study of hybrids of these
insect vectors has evolutionary and, above all, epidemiological implications.

Shorter defecation time [16] and greater fitness [17,18] has been observed in the hybrids
resulting from crosses between Triatoma spp., demonstrating that that triatomine hybrids
can play an important role in the transmission of Chagas disease [16–20]. Both T. rosai and
T. sordida are species that have already been collected naturally infected by T. cruzi [21–25]
and that have vector importance for the epidemiology of Chagas disease.

Based on the above, we performed morphological, cytological and molecular studies
and we characterized the feeding and defecation pattern of hybrids from experimental
crosses between T. sordida and T. rosai.

2. Materials and Methods
2.1. Sampling

We examined specimens of T. rosai from Department San Miguel, Province of Cor-
rientes, Argentina, specimens of T. sordida from Seabra, Bahia, Brazil and adult hybrids
resulting from the cross between T. rosai ♀and T. sordida ♂and between T. rosai ♂and
T. sordida ♀. The analyzed species came from live colonies kept in the Triatominae Insectar-
ium of the São Paulo State University “Julio de Mesquita Filho”, School of Pharmaceutical
Sciences, Araraquara, São Paulo, Brazil. In addition, interspecific crosses were also car-
ried out in the Insectarium to obtain hybrids in both gender combinations (as detailed by
Alevi et al. [7]).

2.2. Morphological Studies in Scanning Electron Microscopy

For morphological characterization of the triatomines in Scanning Electron Microscope
(SEM) (Topcon, Hasunuma-cho, Itabashi-Ku, Tokyo, Japan) (according to Rosa et al. [26]),
four individuals of T. rosai, T. sordida and hybrids from both directions of crosses were
used, emphasizing the study of the female external genitalia. For this study, the insects
were cleaned in ultrasonic devices, dehydrated in graded series of alcohol, oven-dried
at 45 ◦C for 20 min, and then fixed in small aluminum cylinders with colorless enamel.
Afterward, they were metalized by sputtering for two minutes with 10 mA of power. After
the metallization process, the samples were analyzed and photographed on the Topcon
SM-300 SEM (Digital, Hasunuma-cho, Tokyo, Japan).

2.3. Cytogenetic Analysis

Four adult male hybrids from each gender combination were dissected and their
testes removed and stored in a methanol:acetic acid solution (3:1). Slides were prepared
by the cell-crushing technique (as described by Alevi et al. [27]), and cytogenetic analyses
were performed to characterize spermatogenesis, with emphasis on the degree of pairing



Pathogens 2022, 11, 1302 3 of 10

between the homeologous chromosomes, using the lacto-acetic orcein technique [27,28].
The slides were examined under a light microscope (Jenamed; Carl Zeiss, Jena, Germany)
that was coupled with a digital camera with a 1000-fold magnification; AxioVision LE
version 4.8 imaging software (Carl Zeiss) was used for analysis.

2.4. Molecular Analysis

Sequences of two molecular markers [Cytochrome B (CytB) and Internal Transcribed
Spacer 1 (ITS-1)] obtained from T. sordida (n = 4), T. rosai (n = 4) and their hybrids (n = 4)
as well as from T. infestans (Klug, 1834) (placed as outgroup) (Table 1) were submitted to
the MEGA X program [29] and aligned by the Muscle method [30]. The alignments were
concatenated by name using the Seaview4 program [31] and converted with the Mesquite
program [32] for analysis in MrBayes 3.2 [33]. The data of each marker was also converted
individually for analysis.

Table 1. Species and molecular markers used in the phylogenetic studies.

Species Cyt B ITS-1

T. sordida MH054940 *
T. rosai * *

Hybrid 1 * *
Hybrid 2 * *

* Sequences obtained in this study 1 resulting from the cross between T. sordida ♂and T. rosai ♀; 2 resulting from
the cross between T. sordida ♀and T. rosai ♂.

The best nucleotide substitution model (lowest Akaike Information Criterion value)
for each marker was determined using the jModelTest 2 program [30], being HKY +G for
CytB and GTR for ITS-1.

The phylogenetic reconstruction by Bayesian approach was performed in MrBayes
3.2 [34] for each marker, with a total of 100 million generations. Trees were sampled every
1000 generations in two independent runs, with burn-in set to 25%. The Tracer v. 1.7
program [35] was used to verify the stabilization (ESS values above 200) of the sampled
trees and the generated phylogenetic tree of each analysis was viewed and edited in the
FigTree v.1.4.4 [35] program, being rooted at the midpoint.

2.5. Feeding and Defecation Behavior

The feeding and defecation dynamics of T. rosai, T. sordida, and experimental hy-
brids were evaluated based on Diotaiuti et al. [36] with modifications: 20 adults of each
species/hybrid were fed with mice and the mean period of time for feeding and mean
period of time after beginning of feeding until defecation were monitored individually for
one hour. The determination of the period of feeding time started with the beginning of
the feeding process (when the insect inserted the mouthparts into the mouse) and ended
when the insect stopped performing blood ingestion (when removing the mouthparts out
of the mouse). The determination of the period of time until defecation started with the
beginning of the feeding process and ended with the first release of excreta (feces/urine) by
the insect (Figure 1). The period of feeding time and of the period of time until defecation
were compared between hybrids and each parental species using ANOVA. Data between
males and females (without distinction of species/hybrids) were also compared using
Student’s t-test. The results were considered to be statistically significant when p ≤ 0.05.
Analyzes were conducted in Jasp 0.16.2 [37]. All animal experiments were conducted in
accordance with the Guidelines for the Treatment of Experimental Animals according to
the ethical issues approved by the Ethics Committee for Animal Use of the FCFAR/UNESP,
Brazil (CEUA/FCF/CAr n◦ 18/2019) and the National Council for Animal Experiment
Control of the FCFAR/UNESP, Brazil (CIAEP/CONCEA n◦ 02.0082.2019).
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Figure 1. Hybrids defecating (A) and urinating (B) during blood feeding.

3. Results and Discussion

Morphological [8,38–40], morphometric [38], genetic [39], cytogenetic [8,9,38,41], molec-
ular [39], behavioral [42], and epidemiological [16,20] aspects have already been studied
in hybrids of Chagas disease vectors. The morphological characterization of the female
genitalia of the hybrids resulting from the cross between T. rosai ♀and T. sordida ♂showed
that in dorsal view (Figure 2A,D,G), T. rosai pattern (tenth segment form) and T. sordida
pattern (ninth segment central form and eighth segment form) was observed; in posterior
view (Figure 2B,E,H), T. sordida pattern (central portion of the ninth segment) and interme-
diate pattern (shape and length of the tenth segment) was notified, and in ventral view
(Figure 2C,F,I), only the T. sordida pattern (line that divides the seventh and eighth gonocox-
ites segment and gonapophysis and shape of the eighth gonocoxites) was segregated.
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Figure 2. External female genitalia of T. rosai (A–C) from hybrids resulting from the cross between
T. rosai ♀and T. sordida ♂(D–F) and T. sordida (G–I). Gc8: Gonocoxite VIII; Gp8: gonapophysis VIII;
IX, VII and IX: sternites and X: segment.
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The morphological characterization of the female genitalia of the hybrids resulting
from the cross between T. sordida ♀and T. rosai ♂showed that in dorsal view (Figure 3A,D,G),
T. sordida pattern (central form of the ninth segment and form of the tenth segment) and T.
rosai pattern (form of the eighth segment) were observed; in posterior view (Figure 3B,E,F),
only T. sordida pattern (central portion of the ninth segment and shape and length of the
tenth segment) was notified, and in ventral view (Figure 3C,F,I), only T. rosai pattern (line
dividing the seventh segment and the eighth gonocoxites and gonapophysis and form of
the eighth gonocoxites) was segregated.
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The study of the segregation of phenotypic characteristics in Triatominae has been
carried out for over 50 years [43]. Both segregation patterns similar to those observed for
hybrids of T. sordida and T. rosai, as well as divergent patterns were characterized in the
genus Triatoma Laporte, 1832: hybrids resulting from the crosses between T. b. brasiliensis
Neiva, 1911 ♀ x T. lenti Sherlock & Serafim, 1967 ♂, T. juazeirensis Costa & Felix (2007)
♀ x T. lenti ♂, and T. melanica Neiva & Lent, 1941 ♀ x T. lenti ♂showed segregation of
characteristics of both parental species [40], hybrids resulting from the cross between
T. lenti x T. sherlocki Papa et al. (2002) and between T. juazeirensis x T. sherlocki showed
intermediate characteristics [38,42], hybrids resulting from the crosses between T. lenti ♀ x
T. juazeirensis ♂, T. b. macromelasoma Galvão, 1956 ♀ x T. lenti ♂, T. lenti ♀ x T. melanica ♂, and
T. infestans and T. rubrovaria (Blanchard, 1843) showed a specific pattern of T. lenti, T. lenti,
T. melanica, and T. rubrovaria, respectively [40,43].

Morphological studies on hybrids have taxonomic, evolutionary and epidemiological
importance [7–10,38–45]. Recently, Pinotti et al. [40] analyzed the phenotypic segregation
in hybrids of T. brasiliensis subcomplex and, based on the observation of different patterns
(intermediate, of both parents or just one parent), they highlighted the importance of
integrative taxonomy for the correct identification of Chagas disease vectors grouped in
the subcomplex if natural hybridization events occur. In addition, in the studies presented
by Almeida et al. [42] who crossed the brachypterous T. sherlocki with the macropterous
T. juazeirensis, the hybrids presented intermediate patterns, which provided greater fitness
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than the parents in the home invasion process (since they can do this either walking
or flying).

Cytogenetic analyzes of T. sordida and T. rosai hybrids (both gender combinations)
showed regular metaphases, with 100% pairing between the homologous chromosomes
(Figure 4A,B). In general, phylogenetically related species show a higher degree of home-
ology between chromosomes in metaphase I [46]. This can be observed, for example, for
the hybrids of the species of the monophyletic T. brasilieinsis subcomplex [41]. Although
the post-zygotic barrier characterized for the cross between T. sordida and T. rosai is the
infeasibility of the hybrid [7], the reproductive barrier characterized among the species of
the T. brasiliensis subcomplex is the hybrid collapse [38]. This event was characterized by
chromosome pairing errors observed in second-generation hybrids (F2), which resulted in
the formation of nonviable gametes [8–13].
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There is only one molecular study on triatomine hybrids, in which the authors an-
alyzed the relationship between T. longipennis Usinger 1939, T. pallidipennis Stal, 1872, T.
picturata Usinger 1939 and their experimental hybrids through the Cytochrome C Oxidase
Subunit I (COI) gene [39]. We performed molecular studies with the CytB (Figure 5) and
ITS-1 (Figure 6) molecular markers in T. sordida, T. rosai and in the experimental hybrids:
the mitochondrial marker related the hybrids with T. sordida (Figure 5) and the nuclear
marker related the hybrids with T. rosai (Figure 6).

Mitochondrial genes are maternally inherited [47], so it was expected that in the
resulting phylogeny of CytB the hybrids would group together with the respective female
species used in the cross (Figure 5). However, as mentioned above, both hybrids clustered
with T. sordida. The knowledge of gene segregation in triatomine hybrids is still uncertain,
as Davila-Barboza et al. [39], when analyzing hybrids resulting from the cross between T.
picturata ♀and T. pallidipennis ♂for the COI gene, observed that these organisms were not
directly related to the parental species, but with T. longipennis and with hybrids resulting
from the cross between T. longipennis ♀and T. pallidipennis ♂and between T. longipennis ♀and
T. picturata ♂. On the other hand, nuclear genes show genetic recombination [48,49], which
justifies the randomness of the hybrids in the phylogeny. However, with the analysis of
ITS-1, both hybrids were closer to T. rosai (Figure 6), demonstrating that there was probably
a dominance of segregation of the genotypic characteristics of this parental species in
the hybrids.
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However, with the analysis of ITS-1, both hybrids were closer to T. rosai (Figure 6), 

demonstrating that there was probably a dominance of segregation of the genotypic 
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The feeding and defecation pattern of T. rosai, T. sordida and the experimental hy-

brids was evaluated (Table 2). Both parents and hybrids defecated during the blood meal 

(Table 2), however, there was no significant difference between the times of feeding and 
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Despite this, we could observe a significant difference in feeding (p = 0.005) and defeca-

tion (0.009) times between males and females (grouping data for each species and hy-

brids), the shortest times being observed for females. These results are important from an 

epidemiological point of view, as a good vector of Chagas disease, in general, has a 

shorter period of time between the beginning of blood ingestion and first defecation, 

depositing T. cruzi while still feeding [50]. 

Table 2. Mean period of time for feeding and mean period of time after beginning of feeding until 

defecation (n = 20 in each group). 

 Feeding Defecation 

T. sordida ♀ 30:29 18:47 

T. sordida ♂ 32:56 23:09 

T. rosai ♀ 31:49 22:02 

T. rosai ♂ 34:27 25:11 

Figure 6. Phylogenetic relationship between T. rosai, T. sordida, and experimental hybrids with the
ITS-1 molecular marker. The numbers in the nodes indicates the posterior probability.

The feeding and defecation pattern of T. rosai, T. sordida and the experimental hybrids
was evaluated (Table 2). Both parents and hybrids defecated during the blood meal (Table 2),
however, there was no significant difference between the times of feeding and defecation
of the hybrids in relation to the parents (p = 0.595 and p = 0.544, respectively). Despite
this, we could observe a significant difference in feeding (p = 0.005) and defecation (0.009)
times between males and females (grouping data for each species and hybrids), the shortest
times being observed for females. These results are important from an epidemiological
point of view, as a good vector of Chagas disease, in general, has a shorter period of time
between the beginning of blood ingestion and first defecation, depositing T. cruzi while still
feeding [50].
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Table 2. Mean period of time for feeding and mean period of time after beginning of feeding until
defecation (n = 20 in each group).

Feeding Defecation

T. sordida ♀ 30:29 18:47
T. sordida ♂ 32:56 23:09

T. rosai ♀ 31:49 22:02
T. rosai ♂ 34:27 25:11

Hybrid 1 ♀ 32:00 19:14
Hybrid 1 ♂ 35:46 24:18
Hybrid 2 ♀ 31:17 21:01
Hybrid 2 ♂ 36:12 23:15

1 Resulting from the cross between T. sordida ♂and T. rosai ♀; 2 resulting from the cross between T. sordida ♀and T.
rosai ♂.

The time interval before beginning of feeding, for feeding, and until defecation for
T. mazzottii Usinger, 1941, T. pallidipennis, and T. phyllosomus Burmeister, 1835 and their
laboratory hybrids, as well as T. pallidipennis, T. longipennis, T. picturata, and their laboratory
hybrids were evaluated [16–20]. According to these data, the hybrid cohorts were more
effective vectors of T. cruzi than their parental species. In the same way, López et al. [51]
analyzed the vector competence of hybrids resulting from the cross between T. infestans
and T. platensis Neiva, 1913 and, based on the blood ingestion velocity, the amount of blood
ingested, and the short time required for the production of the first defecation, the hybrid
can be considered as a competent T. cruzi vector.

4. Conclusions

Based on the above, the hybrids resulting from the cross between T. sordida and T. rosai
presented segregation of phenotypic characters of both parental species, 100% homeology
between metaphase chromosomes, phylogenetic relationship with T sordida (with the
CytB gene) and with T. rosai (with the ITS-1 molecular marker) and, finally, feeding and
defecation patterns similar to the parents, highlighting the possible vector competence of
these insects for Chagas disease (because they defecate during a blood meal).
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