Echinococcus multilocularis and Other Taeniid Metacestodes of Muskrats in Luxembourg: Prevalence, Risk Factors, Parasite Reproduction, and Genetic Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Necropsy
2.3. Protoscoleces Count
2.4. Data Analyses
2.5. Molecular Analysis
3. Results
3.1. Prevalence and Species Identification
3.2. Infection Intensity
3.3. Genetic Diversity
3.4. Risk Factors
3.5. Hepatic Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kern, P.; da Silva, A.M.; Akhan, O.; Müllhaupt, B.; Vizcaychipi, K.A.; Budke, C.; Vuitton, D.A. The Echinococcoses: Diagnosis, clinical management and burden of disease. Adv. Parasitol. 2017, 96, 259–369. [Google Scholar] [PubMed]
- Romig, T.; Deplazes, P.; Jenkins, D.; Giraudoux, P.; Massolo, A.; Craig, P.S.; Wassermann, M.; Takahashi, K.; de la Rue, M. Ecology and life cycle patterns of Echinococcus species. Adv. Parasitol. 2017, 95, 213–314. [Google Scholar] [CrossRef] [PubMed]
- Niethammer, J.; Krapp, F. Handbuch der Säugetiere Europas. Nagetiere II. Vol 2/I; Akademische Verlagsgesellschaft: Wiesbaden, Germany, 1982. [Google Scholar]
- Triplet, P. CABI—Invasive Species Compendium-Ondatra zibethicus (Muskrat). Available online: https://www.cabi.org/isc/datasheet/71816 (accessed on 10 August 2022).
- Brzeziński, M.; Romanowski, J.; Żmihorski, M.; Karpowicz, K. Muskrat (Ondatra zibethicus) decline after the expansion of American mink (Neovison vison) in Poland. Eur. J. Wildl. Res. 2010, 56, 341–348. [Google Scholar] [CrossRef]
- Skyrienė, G.; Paulauskas, A. Distribution of invasive muskrats (Ondatra zibethicus) and impact on ecosystem. Ekologija 2013, 58, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Romig, T.; Bilger, B.; Dinkel, A.; Merli, M.; Mackenstedt, U. Echinococcus multilocularis in animal hosts: New data from Western Europe. Helminthologia 1999, 36, 185–191. [Google Scholar]
- Oksanen, A.; Siles-Lucas, M.; Karamon, J.; Possenti, A.; Conraths, F.J.; Romig, T.; Wysocki, P.; Mannocci, A.; Mipatrini, D.; Torre, G.L.; et al. The geographical distribution and prevalence of Echinococcus multilocularis in animals in the European Union and adjacent countries: A systematic review and meta-analysis. Parasit. Vectors 2016, 9, 519. [Google Scholar] [CrossRef] [Green Version]
- Loos-Frank, B.; Zeyhle, E. Zur Parasitierung von 3603 Rotfüchsen in Württemberg. Z. Jagdwiss. 1981, 27, 258–266. [Google Scholar] [CrossRef]
- Friedland, T.; Steiner, B.; Böckeler, W. Prävalenz der Cysticercose bei Bisams (Ondatra zibethica L.) in Schleswig-Holstein. Z. Jagdwiss. 1985, 31, 134–139. [Google Scholar] [CrossRef]
- Baumeister, S.; Pohlmeyer, K.; Kuschfeldt, S.; Stoye, M. [Prevalence of Echinococcus multilocularis and other metacestodes and cestodes in the muskrat (Ondatra zibethicus L. 1795) in Lower Saxony]. Dtsch. Tierärztl. Wochs. 1997, 104, 448–452. [Google Scholar]
- Borgsteede, F.H.M.; Tibben, J.H.; van der Giessen, J.W.B. The muskrat (Ondatra zibethicus) as intermediate host of cestodes in the Netherlands. Vet. Parasitol. 2003, 117, 29–36. [Google Scholar] [CrossRef]
- Schuster, R.K.; Specht, P.; Rieger, S. On the helminth fauna of the muskrat (Ondatra zibethicus (Linnaeus, 1766)) in the Barnim district of Brandenburg State/Germany. Animals 2021, 11, 2444. [Google Scholar] [CrossRef] [PubMed]
- Mathy, A.; Hanosset, R.; Adant, S.; Losson, B. The carriage of larval Echinococcus multilocularis and other cestodes by the muskrat (Ondatra zibethicus) along the Ourthe River and its tributaries (Belgium). J. Wildl. Dis. 2009, 45, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M.; Lavikainen, A.; Iwaki, T.; Haukisalmi, V.; Konyaev, S.; Oku, Y.; Okamoto, M.; Ito, A. Molecular Phylogeny of the Genus Taenia (Cestoda: Taeniidae): Proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria. Int. J. Parasitol. 2013, 43, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Lavikainen, A.; Iwaki, T.; Haukisalmi, V.; Konyaev, S.V.; Casiraghi, M.; Dokuchaev, N.E.; Galimberti, A.; Halajian, A.; Henttonen, H.; Ichikawa-Seki, M.; et al. Reappraisal of Hydatigera taeniaeformis (Batsch, 1786) (Cestoda: Taeniidae) sensu lato with description of Hydatigera kamiyai n. sp. Int. J. Parasitol. 2016, 46, 361–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA; ECDC. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. Efsa J. 2018, 16, e05500. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, P.E.; Nikulin, M.S. A Guide to Chi-Squared Testing; Wiley & Son, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Hope, A.C.A. A Simplified monte carlo significance test procedure. J. Royal Stat. Soc. Ser. B Methodol. 1968, 30, 582–598. [Google Scholar] [CrossRef]
- Patefield, W.M. An Efficient method of generating random R × C tables with given row and column totals. J. Royal Stat. Soc. Ser. C Appl. Stat. 1981, 30, 91–97. [Google Scholar] [CrossRef]
- Fox, J. Applied Regression Analysis and Generalized Linear Models, 3rd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Stroup, W.W. Generalized Linear Mixed Models: Modern Concepts, Methods and Applications; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- R Core Team. R Foundation for Statistical Computing; The R Foundation: Vienna, Austria, 2018. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using Lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Brown, L.D.; Cai, T.T.; DasGupta, A. Interval estimation for a binomial proportion. Stat. Sci. 2001, 16, 101–133. [Google Scholar] [CrossRef]
- Nakao, M.; Sako, Y.; Ito, A. Isolation of polymorphic microsatellite loci from the tapeworm Echinococcus multilocularis. Infect. Genet. Evol. 2003, 3, 159–163. [Google Scholar] [CrossRef]
- Hüttner, M.; Nakao, M.; Wassermann, T.; Siefert, L.; Boomker, J.D.F.; Dinkel, A.; Sako, Y.; Mackenstedt, U.; Romig, T.; Ito, A. Genetic characterization and phylogenetic position of Echinococcus felidis Ortlepp, 1937 (Cestoda: Taeniidae) from the African lion. Int. J. Parasitol. 2008, 38, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, M.; Aschenborn, O.; Aschenborn, J.; Mackenstedt, U.; Romig, T. A sylvatic lifecycle of Echinococcus equinus in the Etosha National Park, Namibia. Int. J. Parasitol. Parasites Wildl. 2015, 4, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M.; Xiao, N.; Okamoto, M.; Yanagida, T.; Sako, Y.; Ito, A. Geographic pattern of genetic variation in the fox tapeworm Echinococcus multilocularis. Parasit. Int. 2009, 58, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Lavikainen, A.; Haukisalmi, V.; Lehtinen, M.J.; Henttonen, H.; Oksanen, A.; Meri, S. A Phylogeny of members of the family Taeniidae based on the mitochondrial cox1 and nad1 gene data. Parasitology 2008, 135, 1457–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajer, A.; Alsarraf, M.; Dwużnik, D.; Mierzejewska, E.J.; Kołodziej-Sobocińska, M.; Behnke-Borowczyk, J.; Banasiak, Ł.; Grzybek, M.; Tołkacz, K.; Kartawik, N.; et al. Rodents as intermediate hosts of cestode parasites of mammalian carnivores and birds of prey in Poland, with the first data on the life-cycle of Mesocestoides melesi. Parasit. Vectors 2020, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Nicodemus, S. Echinococcus multilocularis and Other Cestoda Larvae in Muskrat (Ondarta zibethicus) in Luxembourg. Bachelor’s Thesis, University of Hohenheim, Stuttgart, Germany, 2012. (In German). [Google Scholar]
- Hanosset, R.; Saegerman, C.; Adant, S.; Massart, L.; Losson, B. Echinococcus multilocularis in Belgium: Prevalence in red foxes (Vulpes vulpes) and in different species of potential intermediate hosts. Vet. Parasitol. 2008, 151, 212–217. [Google Scholar] [CrossRef]
- Romig, T.; Kratzer, W.; Kimmig, P.; Frosch, M.; Gaus, W.; Flegel, W.A.; Gottstein, B.; Lucius, R.; Beckh, K.; Kern, P. An epidemiologic survey of human alveolar echinococcosis in Southwestern Germany. Römerstein Study Group. Am. J. Trop. Med. 1999, 61, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Mažeika, V.; Kontenytė, R.; Paulauskas, A. New data on the helminths of the muskrat (Ondatra zibethicus) in Lithuania. Estonian J. Ecol. 2009, 58, 103. [Google Scholar] [CrossRef] [Green Version]
- Seegers, G.; Baumeister, S.; Pohlmeyer, K.; Stoye, M. Echinococcus multilocularis–metazestoden bei Bisamratten in Niedersachsen. Dtsch. Tierärztl. Wschr. 1995, 102, 256. [Google Scholar]
- Umhang, G.; Richomme, C.; Boucher, J.-M.; Guedon, G.; Boué, F. Nutrias and muskrats as bioindicators for the presence of Echinococcus multilocularis in new endemic areas. Vet. Parasitol. 2013, 197, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Romig, T. Spread of Echinococcus Multilocularis in Europe. In Cestode Zoonoses: Echinococcosis and Cysticercosis; Craig, P., Pawlowski, Z., Eds.; IOS Press: Amsterdam, The Netherlands; Berlin, Germany; Oxford, UK; Tokyo, Japan; Washington, DC, USA, 2002; pp. 65–80. [Google Scholar]
- Burlet, P.; Deplazes, P.; Hegglin, D. Age, season and spatio-temporal factors affecting the prevalence of Echinococcus multilocularis and Taenia taeniaeformis in Arvicola terrestris. Parasit. Vectors 2011, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Beerli, O.; Guerra, D.; Baltrunaite, L.; Deplazes, P.; Hegglin, D. Microtus arvalis and Arvicola scherman: Key players in the Echinococcus multilocularis life cycle. Front. Vet. Sci. 2017, 4, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolsey, I.D.; Jensen, P.M.; Deplazes, P.; Kapel, C.M.O. Establishment and development of Echinococcus multilocularis metacestodes in the common vole (Microtus arvalis) after oral inoculation with parasite eggs. Parasitol. Int. 2015, 64, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Woolsey, I.D.; Jensen, P.M.; Deplazes, P.; Kapel, C.M.O. Peroral Echinococcus multilocularis egg inoculation in Myodes glareolus, Mesocricetus auratus and Mus musculus (CD-1 IGS and C57BL/6j). Int. J. Parasitol. Parasites Wildl. 2016, 5, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Veit, P.; Bilger, B.; Schad, V.; Schafer, J.; Frank, W.; Lucius, R. Influence of environmental factors on the infectivity of Echinococcus multilocularis eggs. Parasitology 1995, 110 Pt 1, 79–86. [Google Scholar] [CrossRef]
- Hegglin, D.; Bontadina, F.; Contesse, P.; Gloor, S.; Deplazes, P. Plasticity of predation behaviour as a putative driving force for parasite life-cycle dynamics: The case of urban foxes and Echinococcus multilocularis tapeworm. Funct. Ecol. 2007, 21, 552–560. [Google Scholar] [CrossRef]
- Danell, K. Population dynamics of the muskrat in a shallow Swedish lake. J. Animal. Ecol. 1978, 47, 697. [Google Scholar] [CrossRef]
- Beer, J.R.; Truax, W. Sex and age ratios in Wisconsin muskrats. J. Wildl. Manag. 1950, 14, 323. [Google Scholar] [CrossRef]
- Boussinesq, M.; Bresson, S.; Liance, M.; Houin, R. A new natural intermediate host of Echinococcus multilocularis in France: The muskrat (Ondatra zibethicus L.). Ann. Parasitol. Hum. Comp. 1986, 61, 431–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowal, J.; Nosał, P.; Adamczyk, I.; Kornaś, S.; Wajdzik, M.; Tomek, A. [The influence of Taenia taeniaeformis larval infection on morphometrical parameters of muskrat (Ondatra zibethicus)]. Wiad. Parazytol. 2010, 56, 163–166. [Google Scholar] [PubMed]
- Ganoe, L.S.; Brown, J.D.; Yabsley, M.J.; Lovallo, M.J.; Walter, W.D. A review of pathogens, diseases, and contaminants of muskrats (Ondatra zibethicus) in North America. Front. Vet. Sci. 2020, 7, 233. [Google Scholar] [CrossRef] [PubMed]
- Deplazes, P.; Eichenberger, R.M.; Grimm, F. Wildlife-transmitted Taenia and Versteria cysticercosis and coenurosis in humans and other primates. Int. J. Parasitol. Parasites Wildl. 2019, 9, 342–358. [Google Scholar] [CrossRef]
- Fournier-Chambrillon, C.; Torres, J.; Miquel, J.; André, A.; Michaux, J.; Lemberger, K.; Carrera, G.G.; Fournier, P. Severe parasitism by Versteria mustelae (Gmelin, 1790) in the critically endangered European mink Mustela lutreola (Linnaeus, 1761) in Spain. Parasitol. Res. 2018, 117, 3347–3350. [Google Scholar] [CrossRef] [PubMed]
- Pétavy, A.-F.; Tenora, F.; Deblock, S. Co-occurrence of metacestodes of Echinococcus multilocularis and Taenia taeniaeformis (Cestoda) in Arvicola terrestris (Rodentia) in France. Folia Parasitol. 2003, 50, 157–158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.-Q.; Chen, X.-H.; Wen, H. Improved experimental model of hepatic cystic hydatid disease resembling natural infection route with stable growing dynamics and immune reaction. World J. Gastroentero. 2017, 23, 7989–7999. [Google Scholar] [CrossRef]
- Umhang, G.; Knapp, J.; Wassermann, M.; Bastid, V.; de Garam, C.P.; Boué, F.; Cencek, T.; Romig, T.; Karamon, J. Asian admixture in European Echinococcus multilocularis populations: New data from Poland comparing EmsB microsatellite analyses and mitochondrial sequencing. Front. Vet. Sci. 2021, 7, 620722. [Google Scholar] [CrossRef]
- Karamon, J.; Stojecki, K.; Samorek-Pierog, M.; Bilska-Zając, E.; Rozycki, M.; Chmurzynska, E.; Sroka, J.; Zdybel, J.; Cencek, T. Genetic diversity of Echinococcus multilocularis in red foxes in Poland: The first report of a haplotype of probable asian origin. Folia Parasitol. 2017, 64, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Laurimäe, T.; Kronenberg, P.A.; Rojas, C.A.A.; Ramp, T.W.; Eckert, J.; Deplazes, P. Long-term (35 years) cryopreservation of Echinococcus multilocularis metacestodes. Parasitology 2020, 147, 1048–1054. [Google Scholar] [CrossRef]
Weight Class in g (Estimated Age Class) | P%(Ni/N) (95% CI) | ||
---|---|---|---|
♂ | ♀ | Total | |
201–600 (juvenile) | 5.9 (2/34) (1.6–19.1) | 4 (1/25) (0.7–19.5) | 5.1 (3/59) (1.7–14) |
601–1000 (sub-adult) | 13.9 (14/101) (8.4–22) | 12.8 (10/78) (7.1–22) | 13.4 (24/179) (9.2–19.2) |
1001–1400 (adult) | 28 (7/25) (14.3–47.6) | 41.2 (7/17) (21.6–64) | 33.3 (14/42) (21–48.5) |
Total | 14.4 (23/160) (9.8–20.7) | 15 (18/120) (9.7–22.5) | 14.6 (41/280) (11–19.3) |
Weight Class (g) | P% (Ni/N) (95% CI) | |||||||
---|---|---|---|---|---|---|---|---|
H. kamiyai | T. polyacantha | T. martis | V. mustelae | |||||
♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | |
201–600 | 23.5 (8/34) (12.4–40) | 24 (6/25) (11.5–43.4) | 5.9 (2/34) (1.6–19.1) | 8 (2/25) (2.2–25) | 8.8 (3/34) (3.1–23) | 4 (1/25) (0.7–19.5) | 0 (0/34) | 0 (0/25) |
601–1000 | 40.6 (41/101) (32–50.4) | 53.8 (42/78) (43–64.5) | 3 (3/101) (1–8.4) | 2.6 (2/78) (0.7–9) | 7 (7/101) (3.4–14) | 9 (7/78) (4.4–17.4) | 0.9 (1/101) (0.2–5.4) | 1.3 (1/78) (0.2–7) |
1001–1400 | 72 (18/25) (52.4–86) | 76.5 (13/17) (53–90.4) | 12 (3/25) (4.2–30) | 11.8 (2/17) (3.3–34.3) | 24 (6/25) (11.5–43.3) | 5.9 (1/17) (1.1–27) | 0 (0/25) | 0 (0/17) |
Total | 41.9 (67/160) (35–50) | 50.8 (61/120) (42–59.6) | 5 (8/160) (2.6–9.6) | 5 (6/120) (2.3–10.5) | 10 (16/160) (6.3–15.6) | 7.5 (9/120) (4–13.6) | 0.6 (1/160) (0.1–3.5) | 0.8 (1/120) (0.2–4.6) |
Weight Class (g) | Echinococcus multilocularis Lesions | |||
---|---|---|---|---|
Ni | Ni without Protoscoleces | Ni with Protoscoleces (Mean n Protoscoleces; SE; Range) | Mean Lesion Weight (g) | |
201–600 | 3 | 1 | 2 (4427; 2771; 1656–7198) | 1.1 ± 0.9 |
601–1000 | 24 | 5 | 19 (160,353; 37,999; 1966–588,768) | 6.5 ± 1.2 |
1001–1400 | 14 | 1 | 13 (580,210; 148,186; 5292–1,609,816) | 17.5 ± 3.9 |
Overall | 41 | 7 | 34 (311,714; 69,892; 1656–1,609,816) | 9.9 ± 1.7 |
Haplotypes | n Isolates | Known Geographic Distribution | References |
---|---|---|---|
B2 | 3 | Bosnia, European Russia | [16] |
B3/B6/B19 | 3 | Sweden, Finland, Russia, Poland | [16,33] |
B7/B15 | 6 | Sweden, Finland, Russia (Western Siberia), Italy | [16] |
B12 | 1 | Finland | [16] |
Lux1 | 5 | - | Present study |
Lux2 | 4 | - | Present study |
Lux3 | 2 | - | Present study |
Lux4 | 1 | - | Present study |
Lux5 | 1 | - | Present study |
Variable | Estimated Coefficients | Std. Error | Z | p(d) |
---|---|---|---|---|
Intercept H. kamiyai co-infection(a) Age class(b) juveniles Age class(b) adults Period(c) 2 | −3.22 1.41 −0.50 0.82 1.12 | 0.44 0.42 0.66 0.42 0.37 | −7.37 3.36 −0.76 1.96 3.01 | <0.001 *** <0.001 *** 0.447 0.050 * 0.003 ** |
Variable | Estimate | Std. Error | Z | p(b) |
---|---|---|---|---|
Presence/Absence of Lesions by E. multilocularis | ||||
Intercept Left Lateral(a) Left Medial(a) Right Lateral(a) Caudate(a) | 2.14 −1.66 −2.62 −2.96 −1.66 | 0.86 0.99 1.02 1.05 0.99 | 2.50 −1.68 −2.56 −2.82 −1.68 | 0.012 * 0.094 0.010 * 0.005 ** 0.094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martini, M.; Dumendiak, S.; Gagliardo, A.; Ragazzini, F.; La Rosa, L.; Giunchi, D.; Thielen, F.; Romig, T.; Massolo, A.; Wassermann, M. Echinococcus multilocularis and Other Taeniid Metacestodes of Muskrats in Luxembourg: Prevalence, Risk Factors, Parasite Reproduction, and Genetic Diversity. Pathogens 2022, 11, 1414. https://doi.org/10.3390/pathogens11121414
Martini M, Dumendiak S, Gagliardo A, Ragazzini F, La Rosa L, Giunchi D, Thielen F, Romig T, Massolo A, Wassermann M. Echinococcus multilocularis and Other Taeniid Metacestodes of Muskrats in Luxembourg: Prevalence, Risk Factors, Parasite Reproduction, and Genetic Diversity. Pathogens. 2022; 11(12):1414. https://doi.org/10.3390/pathogens11121414
Chicago/Turabian StyleMartini, Matilde, Sonja Dumendiak, Anna Gagliardo, Francesco Ragazzini, Letizia La Rosa, Dimitri Giunchi, Frank Thielen, Thomas Romig, Alessandro Massolo, and Marion Wassermann. 2022. "Echinococcus multilocularis and Other Taeniid Metacestodes of Muskrats in Luxembourg: Prevalence, Risk Factors, Parasite Reproduction, and Genetic Diversity" Pathogens 11, no. 12: 1414. https://doi.org/10.3390/pathogens11121414
APA StyleMartini, M., Dumendiak, S., Gagliardo, A., Ragazzini, F., La Rosa, L., Giunchi, D., Thielen, F., Romig, T., Massolo, A., & Wassermann, M. (2022). Echinococcus multilocularis and Other Taeniid Metacestodes of Muskrats in Luxembourg: Prevalence, Risk Factors, Parasite Reproduction, and Genetic Diversity. Pathogens, 11(12), 1414. https://doi.org/10.3390/pathogens11121414