The Accelerate Pheno™ System—A New Tool in Microbiological Diagnostics of Bloodstream Infections: A Pilot Study from Poland
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare Associated Infections and Antimicrobial Use in European Acute Care Hospitals; ECDC: Stockholm, Sweden, 2013; Available online: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use-0 (accessed on 27 October 2022).
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968574/ (accessed on 27 October 2022). [CrossRef]
- Antimicrobial Resistance Surveillance in Europe 2022-2020 Data. Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data (accessed on 27 October 2022).
- Kaye, K.S.; Marchaim, D.; Chen, T.-Y.; Baures, T.; Anderson, D.J.; Choi, Y.; Sloane, R.; Schmader, K.E. Effect of nosocomial bloodstream infections on mortality, length of stay, and hospital costs in older adults. J. Am. Geriatr. Soc. 2014, 62, 306–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antimicrobial Resistance: Tackling the Burden in the European Union-AMR Insights. Available online: https://www.amr-insights.eu/antimicrobial-resistance-tackling-the-burden-in-the-european-union/ (accessed on 27 October 2022).
- Kumar, A.; Ellis, P.; Arabi, Y.; Roberts, D.; Light, B.; Parrillo, J.E.; Dodek, P.; Wood, G.; Kumar, A.; Simon, D.; et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009, 136, 1237–1248. [Google Scholar] [CrossRef]
- Ehren, K.; Meißner, A.; Jazmati, N.; Wille, J.; Jung, N.; Vehreschild, J.J.; Hellmich, M.; Seifert, H. Clinical impact of rapid species identification from positive blood cultures with same-day phenotypic antimicrobial susceptibility testing on the management and outcome of bloodstream infections. Clin. Infect. Dis. 2020, 70, 1285–1293. [Google Scholar] [CrossRef]
- Marschal, M.; Bachmaier, J.; Autenrieth, I.; Oberhettinger, P.; Willmann, M.; Peter, S. Evaluation of the Accelerate Pheno System for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by Gram-negative pathogens. J. Clin. Microbiol. 2017, 55, 2116–2126. [Google Scholar] [CrossRef] [Green Version]
- Fast Antibiotic Susceptibility Results Accelerate Pheno™ System. Available online: https://acceleratediagnostics.com/ (accessed on 27 October 2022).
- European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 12.0. 2022. Available online: https://www.eucast.org (accessed on 27 October 2022).
- European Committee on Antimicrobial Susceptibility Testing Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion as Recommended by EUCAST. Version 12.0. 2022. Available online: https://www.eucast.org (accessed on 27 October 2022).
- Humphries, R.M.; Ambler, J.; Mitchell, S.L.; Castanheira, M.; Dingle, T.; Hindler, J.A.; Koeth, L.; Sei, K. CLSI methods development and standardization working group of the subcommittee on antimicrobial susceptibility tests. J. Clin. Microbiol. 2018, 56, e01934-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullberg, M.; Özenci, V. Identification and antimicrobial susceptibility testing of Gram-positive and Gram-negative bacteria from positive blood cultures using the Accelerate Pheno™ system. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descours, G.; Desmurs, L.; Hoang, T.L.T.; Ibranosyan, M.; Baume, M.; Ranc, A.-G.; Fuhrmann, C.; Dauwalder, O.; Salka, W.; Vandenesch, F. Evaluation of the Accelerate Pheno™ system for rapid identification and antimicrobial susceptibility testing of Gram-negative bacteria in bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1573–1583. [Google Scholar] [CrossRef] [PubMed]
- Giordano, C.; Piccoli, E.; Brucceleri, V.; Barnini, S. A Prospective evaluation of two rapid phenotypical antimicrobial susceptibility technologies for the diagnostic stewardship of sepsis. BioMed Res. Int. 2018, 2018, 6976923. [Google Scholar] [CrossRef]
- De Socio, G.V.; Belati, A.; Paggi, R.; D’Arpino, A.; Moretti, A.; Allegrucci, F.; Cenci, E.; Francisci, D.; Mencacci, A. Accelerate Pheno™ system in sepsis by Gram-negative pathogens: Four months of hospital experience. New Microbiol. 2020, 43, 6–12. [Google Scholar] [PubMed]
- Pantel, A.; Monier, J.; Lavigne, J.-P. Performance of the Accelerate Pheno™ system for identification and antimicrobial susceptibility testing of a panel of multidrug-resistant Gram-negative bacilli directly from positive blood cultures. J. Antimicrob. Chemother. 2018, 73, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Charnot-Katsikas, A.; Tesic, V.; Love, N.; Hill, B.; Bethel, C.; Boonlayangoor, S.; Beavis, K.G. Use of the Accelerate Pheno system for identification and antimicrobial susceptibility testing of pathogens in positive blood cultures and impact on time to results and workflow. J. Clin. Microbiol. 2018, 56, e01166-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnham, J.P.; Wallace, M.A.; Fuller, B.M.; Shupe, A.; Burnham, C.-A.D.; Kollef, M.H. Clinical effect of expedited pathogen identification and susceptibility testing for Gram-negative bacteremia and candidemia by use of the Accelerate Pheno™ system. J. Appl. Lab. Med. 2019, 3, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Lutgring, J.D.; Bittencourt, C.; McElvania TeKippe, E.; Cavuoti, D.; Hollaway, R.; Burd, E.M. Evaluation of the Accelerate Pheno system: Results from two academic medical centers. J. Clin. Microbiol. 2018, 56, e01672-17. [Google Scholar] [CrossRef] [Green Version]
- Pancholi, P.; Carroll, K.C.; Buchan, B.W.; Chan, R.C.; Dhiman, N.; Ford, B.; Granato, P.A.; Harrington, A.T.; Hernandez, D.R.; Humphries, R.M.; et al. Multicenter evaluation of the Accelerate PhenoTest BC Kit for rapid identification and phenotypic antimicrobial susceptibility testing using morphokinetic cellular analysis. J. Clin. Microbiol. 2018, 56, e01329-17. [Google Scholar] [CrossRef] [Green Version]
- Calderaro, A.; Buttrini, M.; Martinelli, M.; Covan, S.; Montecchini, S.; Ruggeri, A.; Arcangeletti, M.C.; De Conto, F.; Chezzi, C. Rapid microbial identification and phenotypic antimicrobial susceptibility testing directly from positive blood cultures: A new platform compared to routine laboratory methods. Diagn. Microbiol. Infect. Dis. 2020, 96, 114955. [Google Scholar] [CrossRef]
- Elliott, G.; Malczynski, M.; Barr, V.O.; Aljefri, D.; Martin, D.; Sutton, S.; Zembower, T.R.; Postelnick, M.; Qi, C. Evaluation of the impact of the Accelerate Pheno™ system on time to result for differing antimicrobial stewardship intervention models in patients with Gram-negative bloodstream infections. BMC Infect. Dis. 2019, 19, 942. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R.; Komarow, L.; Virk, A.; Rajapakse, N.; Schuetz, A.N.; Dylla, B.; Earley, M.; Lok, J.; Kohner, P.; Ihde, S.; et al. Randomized trial evaluating clinical impact of rapid identification and susceptibility testing for Gram-negative bacteremia: RAPIDS-GN. Clin. Infect. Dis. 2021, 73, e39–e46. [Google Scholar] [CrossRef]
- Henig, O.; Kaye, K.S.; Chandramohan, S.; Cooper, C.C.; Lephart, P.; Salimnia, H.; Taylor, M.; Pogue, J.M. The hypothetical impact of Accelerate Pheno on time to effective therapy and time to definitive therapy for bloodstream infections due to drug-resistant Gram-negative bacilli. Antimicrob. Agents Chemother. 2019, 63, e01477-18. [Google Scholar] [CrossRef]
- Henig, O.; Cooper, C.C.; Kaye, K.S.; Lephart, P.; Salimnia, H.; Taylor, M.; Hussain, N.; Hussain, Z.; Deeds, K.; Hayat, U.; et al. The hypothetical impact of Accelerate Pheno™ system on time to effective therapy and time to definitive therapy in an institution with an established antimicrobial stewardship programme currently utilizing rapid genotypic organism/resistance marker identification. J. Antimicrob. Chemother. 2019, 74, i32–i39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, F.; Leedahl, N.D.; Leedahl, D.D.; Guerrero, D.M. Clinical and financial impact of rapid antimicrobial susceptibility testing in blood cultures. Antibiotics 2022, 11, 122. [Google Scholar] [CrossRef] [PubMed]
Test No. | Unit | ID in MALDI Biotyper | ID in APS | Time to APS ID (h:min) | Time to APS AST (h:min) | Time to APS Report (h:min) | The Total Time Difference between APS and Standard Workflow Report (d:h:min) |
---|---|---|---|---|---|---|---|
14133/KRCT | KAR | Staphylococcus aureus | Staphylococcus aureus | 1:33 | 5:07 | 6:40 | 1:3:35 |
15875/KRCB | GER | Staphylococcus aureus | Staphylococcus aureus | 1:33 | 5:07 | 6:40 | 1:9:44 |
25373/KRCB | OUM | Staphylococcus aureus | Staphylococcus aureus | 1:34 | 5:05 | 6:39 | 1:3:33 |
36677/KRT | KAR | Staphylococcus aureus | Staphylococcus aureus | 1:33 | 5:06 | 6:39 | 1:10:8 |
11620/KRT | KAR | Staphylococcus aureus | Staphylococcus aureus | 1:33 | 5:06 | 6:39 | 0:18:17 |
24095/KRCT | CHIOE | Staphylococcus epidermidis | Coagulase-Negative Staphylococcus | 1:33 | 5:04 | 6:37 | 0:22:13 |
24511/KRT | OIZ1 | Staphylococcus epidermidis Staphylococcus haemolyticus | Coagulase-Negative Staphylococcus | 1:34 | 5:03 | 6:37 | 1:0:18 |
24336/KRT | KCH | Staphylococcus hominis | Coagulase-Negative Staphylococcus | 1:33 | 5:05 | 6:38 | 0:21:8 |
36558/KRCT | OIT | Staphylococcus epidermidis | Coagulase-Negative Staphylococcus | 1:33 | 5:04 | 6:37 | 1:1:34 |
13938/KRB | KCH | Staphylococcus epidermidis | Coagulase-Negative Staphylococcus | 1:34 | 5:04 | 6:38 | 0:20:12 |
12307/KRT | KAR | Staphylococcus epidermidis Staphylococcus hominis | Coagulase-Negative Staphylococcus | 1:34 | 5:03 | 6:37 | 2:3:53 |
74534/KRT | OIT | Staphylococcus epidermidis Staphylococcus haemolyticus | Coagulase-Negative Staphylococcus | 1:33 | 5:04 | 6:37 | 1:18:51 |
74734/KRT | NCH | Staphylococcus epidermidis | Coagulase-Negative Staphylococcus | 1:32 | 5:05 | 6:37 | 0:23:37 |
53277/KRT | OIT | Staphylococcus epidermidis | Coagulase-Negative Staphylococcus | 1:34 | 5:04 | 6:38 | 1:18:43 |
36558/KRCT | OIT | Staphylococcus epidermidis | Coagulase-Negative Staphylococcus | 1:33 | 5:04 | 6:37 | 0:13:34 |
1:32–1:34 | 5:03–5:07 | 6:37–6:40 | 0:13:34–2:3:53 |
Test No. | Unit | ID in MALDI Biotyper | ID in APS | Time to APS ID (h:min) | Time to APS AST (h:min) | Time to APS Report (h:min) | The Total Time Difference between APS and Standard Workflow Report (d:h:min) |
---|---|---|---|---|---|---|---|
14285/KRB | OIZ1 | Enterococcus faecium | Enterococcus faecium | 1:32 | 5:03 | 6:35 | 1:3:47 |
11768/KRCB | KAR | Enterococcus faecium | Enterococcus faecium | 1:33 | 5:03 | 6:36 | 0:20:30 |
73865/KRT | CHIOE | Enterococcus faecium Staphylococcus epidermidis | Enterococcus faecium | 1:32 | 5:03 | 6:35 | 2:1:4 |
36510/KRT | OIT | Enterococcus faecium Staphylococcus epidermidis | Enterococcus faecium | 1:33 | 5:03 | 6:36 | 1:21:6 |
30827/KRCB | URO | Enterococcus faecium Klebsiella pneumoniae Candida albicans | Enterococcus faecium | 1:33 | 5:03 | 6:36 | 3:14:41 |
16451/KRT | OIT | Enterococcus faecium | Enterococcus faecium | 1:33 | 5:03 | 6:36 | 0:14:17 |
15500/KRT | KMS | Enterococcus faecium Klebsiella pneumoniae Candida glabrata | Enterococcus faecium | 1:32 | 5:03 | 6:35 | 2:11:42 |
14516/KRB | NCH | Enterococcus faecium | Enterococcus faecium | 1:34 | 5:02 | 6:36 | 0:14:30 |
23589/KRCT | OIZ2 | Enterococcus faecalis Acinetobacter baumannii | Enterococcus faecalis | 1:33 | 5:03 | 6:36 | 3:21:22 |
25159/KRT | NCH | Enterococcus faecalis isolate#1 Enterococcus faecalis isolate#2 Staphylococcus haemolyticus | Enterococcus faecalis | 1:34 | 5:02 | 6:36 | 3:3:15 |
31559/KRCT | PHO | Streptococcus viridans, α-hem | Streptococcus spp. | 1:37 | x | 1:37 | - |
1:32–1:37 | 5:02–5:03 | 6:35–6:37 | 0:14:17–3:21:22 |
Test No. | Unit | ID in MALDI Biotyper | ID in APS | Time to APS ID (h:min) | Time to APS AST (h:min) | Time to APS Report (h:min) | The Total Time Difference between APS and Standard Workflow Report (d:h:min) |
---|---|---|---|---|---|---|---|
35807/KRT | KAR | Enterobacter cloacae | Enterobacter spp. | 1:34 | 5:36 | 7:00 | 1:1:35 |
66588/KRT | CHIOE | Klebsiella oxytoca | Klebsiella spp. | 1:42 | 5:34 | 7:16 | 0:23:21 |
23555/KRB | KAR | Klebsiella pneumoniae | Klebsiella spp. | 1:34 | 5:25 | 6:59 | 0:21:27 |
17822/KRT | NEF | Klebsiella pneumoniae | Klebsiella spp. | 1:33 | 5:26 | 6:59 | 0:23:12 |
17244/KRT | KAR | Klebsiella pneumoniae | Klebsiella spp. | 1:33 | 5:34 | 7:07 | 1:0:31 |
17213/KRT | OIT | Klebsiella pneumoniae | Klebsiella spp. | 1:34 | 5:33 | 7:07 | 1:10:00 |
15007/KRCT | CHIOE | Klebsiella pneumoniae Candida albicans | Klebsiella spp. | 1:34 | 5:36 | 7:00 | 0:22:14 |
24341/KRT | NCH | Proteus mirabilis | Proteus spp. | 1:33 | 5:26 | 6:59 | 0:21:29 |
11542/KRCT | OIT | Pseudomonas aeruginosa | Pseudomonas aeruginosa | 1:33 | 5:22 | 6:55 | 0:16:00 |
16380/KRT | PHOTS | Pseudomonas aeruginosa | Pseudomonas aeruginosa | 1:33 | 5:23 | 6:56 | 0:22:30 |
14338/KRT | OIT | Pseudomonas aeruginosa | Pseudomonas aeruginosa | 1:33 | 5:23 | 6:56 | 0:22:30 |
25059/KRT | OIZ2 | Acinetobacter baumannii | Acinetobacter baumannii | 1:32 | 5:07 | 6:39 | 2:15:47 |
1:32–1:42 | 5:07–5:36 | 6:39–7:16 | 0:16:00–2:15:47 |
Test No. | Unit | ID in MALDI Biotyper | ID in APS | Time to APS ID (h:min) | Time to APS AST (h:min) | Time to APS Report (h:min) | The Time Difference between APS and Standard Workflow Report (d:h:min) |
---|---|---|---|---|---|---|---|
24999/KRCT | OIT | Enterococcus faecium Staphylococcus epidermidis | Enterococcus faecium Coagulase-Negative Staphylococcus | 1:33 | 5:04 | 6:37 | 0:17:11 |
12658/KRCT | NEF | Candida glabrata | Candida glabrata | 1:38 | - | - | - |
12878/KRB | PHO | Clostridium septicum | - | - | - | - | - |
13545/KRCT | PHO | Moraxellaosloensis | - | - | - | - | - |
74436/KRCT | PHO | Enterococcus faecium GRE | - | - | - | - | - |
66751/KRT | URO | Escherichia coli | - | - | - | - | - |
73982/KRB | URO | Bacteroides fragilis | - | - | - | - | - |
Antimicrobial Agent | CA | VME | ME | mE |
---|---|---|---|---|
Ampicillin | 10/10 | 0 | 0 | 0 |
100% | 0.0% | 0.0% | 0.0% | |
Amoxicillin/clavulanic acid | 6/6 | 0 | 0 | (-) ** |
100% | 0.0% | 0.0% | ||
Piperacillin/tazobactam | 10/10 | 0 | 0 | 0 |
100% | 0.0% | 0.0% | 0.0% | |
Cefoxitin | 14/14 | - | - | - |
100% | - | - | - | |
Ceftazidime | 10/10 | 0 | 0 | 0 |
100% | 0.0% | 0.0% | 0.0% | |
Ceftriaxone | 5/5 | 0 | 0 | 0 |
100% | 0.0% | 0.0% | 0.0% | |
Cefepime | 9/10 | 0 | 0 | 1/2 |
90.0% | 0.0% | 0.0% | (-) *** | |
Ceftaroline | 5/5 * | 0 | 0 | 0 |
100% | 0.0% | 0.0% | 0.0% | |
Meropenem | 11/11 | 0 | 0 | 0 |
100% | 0.0% | 0.0% | 0.0% | |
Ertapenem | 7/7 | 0 | 0 | (-) ** |
100% | 0.0% | 0.0% | ||
Overall | 87/88 (98.8%) | 0 | 0 | 1 |
Antimicrobial Agent | CA | VME | ME | mE |
---|---|---|---|---|
Gentamicin | 6/7 | 1/1 | 0 | 0 |
86.0% | (-) *** | 0.0% | 0.0% | |
Amikacin | 11/11 | 0 | 0 | (-) ** |
100% | 0.0% | 0.0% | ||
Tobramycin | 10/10 | 0 | 0 | 0 |
100% | 0.0% | 0.0% | 0.0% | |
Ciprofloxacin | 11/11 | 0 | 0 | (-) ** |
100% | 0.0% | 0.0% | ||
Trimethoprim/sulfamethoxazole | 13/13 | 0 | 0 | 0 |
100% | 0.0% | 0.0% | 0.0% | |
Vancomycin | 24/25 | 1/5 | 0 | (-) ** |
96.0% | (-) *** | 0.0% | ||
Daptomycin | 14/14 | 0 | 0 | 0 |
100% | 0.0% | 0.0% | 0.0% | |
Linezolid | 25/25 | 0 | 0 | (-) ** |
100% | 0.0% | 0.0% | ||
Colistin | 11/11 | 0 | 0 | 0 |
100% | 0.0% | 0.0% | 0.0% | |
Overall | 125/127 (98.4%) | 2 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalas-Więcek, P.; Bogiel, T.; Gospodarek-Komkowska, E. The Accelerate Pheno™ System—A New Tool in Microbiological Diagnostics of Bloodstream Infections: A Pilot Study from Poland. Pathogens 2022, 11, 1415. https://doi.org/10.3390/pathogens11121415
Zalas-Więcek P, Bogiel T, Gospodarek-Komkowska E. The Accelerate Pheno™ System—A New Tool in Microbiological Diagnostics of Bloodstream Infections: A Pilot Study from Poland. Pathogens. 2022; 11(12):1415. https://doi.org/10.3390/pathogens11121415
Chicago/Turabian StyleZalas-Więcek, Patrycja, Tomasz Bogiel, and Eugenia Gospodarek-Komkowska. 2022. "The Accelerate Pheno™ System—A New Tool in Microbiological Diagnostics of Bloodstream Infections: A Pilot Study from Poland" Pathogens 11, no. 12: 1415. https://doi.org/10.3390/pathogens11121415
APA StyleZalas-Więcek, P., Bogiel, T., & Gospodarek-Komkowska, E. (2022). The Accelerate Pheno™ System—A New Tool in Microbiological Diagnostics of Bloodstream Infections: A Pilot Study from Poland. Pathogens, 11(12), 1415. https://doi.org/10.3390/pathogens11121415